PP@LHC 2016, PISA - 16 MAY 2016

DM SEARCH @ LHC (THEORY)

Andrea De Simone

MOSTLY BASED ON:

DS, JACQUES - ARXIV: 1603.08002 (REVIEW)
BOVEIA ET AL. - ARXIV: 1603.04156 (LHCDMWG)

OUTLINE

a quick journey in theory space

• simplified models (s-channel, t-channel)

some recommendations & future directions

TO WIMP OR NOT TO WIMP...

[courtesy A. Strumia]

we are only sure that DM has gravitational interactions

WIMP

neutralino
minimal DM
heavy neutrino
inert Higgs doublet
LKP
LTP

non-WIMP

axion gravitino axino sterile neutrino techni-baryon, Q-balls

. .

THEORY SPACE

lots of parameters...

MSSM, Composite Higgs, Extra-Dim...

pMSSM scan

THEORY SPACE

EFFECTIVE FIELD THEORY DESCRIPTION

Integrate out the UV physics connecting DM-SM and describe interactions with eff. ops.:

$$\frac{1}{\Lambda^2}(\bar{\chi}\Gamma^A\chi)(\bar{q}\Gamma_Aq)$$

LHC can access regions beyond the validity of the eff. description

need to use EFT <u>carefully</u> and <u>consistently</u>

the momentum transfer in the relevant process must be $Q_{
m tr} \lesssim M_{
m med}$

LHC VS DIRECT DETECTION

The "money plots"

 $L=20.3 \text{ fb}^{-1}$

[ATLAS - 1502.01518]

after truncation: theoretically robust limits

95% CL

2 × (Fermi-LAT dSphs (χχ)
Majorana
2 × (VISO 2014 (x))
Majorana

10-22

 $2 \times$ (Fermi-LAT dSphs $(\chi\chi)_{Majorana}$

D8: $\chi \gamma^{\mu} \gamma^5 \chi q \gamma_{\parallel} \gamma^5 q \rightarrow (\chi \chi)^{13}$ truncated, coupling = 1

truncated, max coupling

95% CL s=8 TeV, 20.3 fb⁻¹

still relevant at low → qq, Einasto profile) D5: $\chi \gamma^{\mu} \chi q \gamma_{\mu} q \rightarrow (\chi \chi)_{Dirac}$

EFT DISCOVERY POTENTIAL

$L=25 \text{ fb}^{-1}$

$L=300 \text{ fb}^{-1}$

Effective Operator

$$(\bar{\chi}\gamma^{\mu}\chi)(\bar{q}\gamma_{\mu}q)$$

 $m_{\rm DM} = 50~{\rm GeV}$

EFT validity assumed

[ATL-PHYS-PUB-2014-0087]

WAY OUT?

EFT approach

- limited validity
- not entirely model-independent

How to go beyond that (but keeping generality), in view of LHC Run 2?

Simplified Models

SIMPLIFIED MODELS

SIMPLIFIED MODELS

- ... just means extending the SM with:
 - 1 Dark Matter particle
 - 1 Mediator particle connecting DM-SM

>> just another parametrization of unknown high energy physics <<

correspondence eff ops ← simplified models

 \times more parameters (g's)

- ✓ exploit other searches for mediators
 (e.g. di-jet), complementary to mono-jet
- ▼ theoretically consistent,
 no worries about EFT, widths, etc.

from DM search to MEDIATOR search

COMPLEMENTARITY

combine different process involving DM (mono-jet+mono-W/Z +mono-H...)

combine DM + mediator searches (di-jet...)

still, a lot to do here...

[more in Valerio's talk...]

RECOMMENDATIONS

Jalal Abdallah,¹ Adi Ashkenazi,² Antonio Boveia,³ Giorgio Busoni,⁴ Andrea De Simone,⁴ Caterina Doglioni,⁵ Aielet Efrati,⁶ Erez Etzion,² Johanna Gramling,⁵ Thomas Jacques,⁵ Tongyan Lin,⁷ Enrico Morgante,⁵ Michele Papucci,^{8,9} Bjoern Penning,^{3,10} Antonio Walter Riotto,⁵ Thomas Rizzo,¹¹ David Salek,¹² Steven Schramm,¹³ Oren Slone,² Yotam Soreq,⁶ Alessandro Vichi,^{8,9} Tomer Volansky,² Itay Yavin,^{14,15} Ning Zhou,¹⁶ and Kathryn Zurek^{8,9}

[1409.2893] ATLAS/CMS DM Forum

Interplay and Characterization of Dark Matter Searches at Colliders and in Direct Detection Experiments

Sarah A. Malik, a Christopher McCabe, b,c Henrique Araujo, a Alexander Belyaev, d,e Céline Bœhm, b Jim Brooke, f Oliver Buchmueller, a Gavin Davies, a Albert De Roeck, g,h Kees de Vries, a Matthew J. Dolan, i John Ellis, g,j Malcolm Fairbairn, j Henning Flaecher, f Loukas Gouskos, k Valentin V. Khoze, b Greg Landsberg, l Dave Newbold, f Michele Papucci, m Timothy Sumner, a Marc Thomas d , e and Steven Worm e

[1409.4075]

[1603.04156]

Recommendations on presenting LHC searches for missing transverse energy signals using simplified *s*-channel models of dark matter

Antonio Boveia,^{1,*} Oliver Buchmueller,^{2,*} Giorgio Busoni,³ Francesco D'Eramo,⁴ Albert De Roeck,^{1,5} Andrea De Simone,⁶ Caterina Doglioni,^{7,*} Matthew J. Dolan,³ Marie-Helene Genest,⁸ Kristian Hahn,^{9,*} Ulrich Haisch,^{10,11,*} Philip C. Harris,¹ Jan Heisig,¹² Valerio Ippolito,¹³ Felix Kahlhoefer,^{14,*} Valentin V. Khoze,¹⁵ Suchita Kulkarni,¹⁶ Greg Landsberg,¹⁷ Steven Lowette,¹⁸ Sarah Malik,² Michelangelo Mangano,^{11,*} Christopher McCabe,^{19,*} Stephen Mrenna,²⁰ Priscilla Pani,²¹ Tristan du Pree,¹ Antonio Riotto,¹¹ David Salek,^{19,22} Kai Schmidt-Hoberg,¹⁴ William Shepherd,²³ Tim M.P. Tait,^{24,*} Lian-Tao Wang,²⁵ Steven Worm²⁶ and Kathryn Zurek²⁷

LHC DM WG

SIMPLIFIED MODELS OVERVIEW

Mediator spin	Channel	DM spin	Model Name
0	S	0	0s0
0	S	$\frac{1}{2}$	$0s\frac{1}{2}$
0	t	0	0t0
0	t	$\frac{1}{2}$	$0t\frac{1}{2}$
$\frac{1}{2}$	t	0	$\frac{1}{2}t0$
$\frac{1}{2}$	t	$\frac{1}{2}$	$\frac{1}{2}t\frac{1}{2}$
1	S	0	1 <i>s</i> 0
1	S	$\frac{1}{2}$	$1s\frac{1}{2}$
1	t	$\frac{1}{2}$	$1t\frac{1}{2}$

SIMPLIFIED MODELS OVERVIEW

S-CHANNEL MODELS

DM is a Dirac Fermion

 $\mathcal{L}_{\text{scalar}} = -g_{\text{DM}}\phi\bar{\chi}\chi - g_q \frac{\phi}{\sqrt{2}} \sum_{q=u,d,s,c,b,t} y_q \bar{q}q, \qquad \textbf{(0ss1/2)}$

Scalar and Pseudo-Scalar Models:

$$\mathcal{L}_{\text{pseudo-scalar}} = -ig_{\text{DM}}\phi\bar{\chi}\gamma_5\chi - ig_q\frac{\phi}{\sqrt{2}}\sum_{q=u,d,s,c,b,t}y_q\bar{q}\gamma_5q\,,\,\,\textbf{(0ps1/2)}$$

Vector and Axial-Vector Models:

$$\mathcal{L}_{\text{vector}} = -g_{\text{DM}} Z'_{\mu} \bar{\chi} \gamma^{\mu} \chi - g_q \sum_{q=u,d,s,c,b,t} Z'_{\mu} \bar{q} \gamma^{\mu} q , \qquad \text{(1vs1/2)}$$

$$\mathcal{L}_{\text{axial-vector}} = -g_{\text{DM}} Z'_{\mu} \bar{\chi} \gamma^{\mu} \gamma_5 \chi - g_q \sum_{q=u,d,s,c,b,t} Z'_{\mu} \bar{q} \gamma^{\mu} \gamma_5 q . \qquad \text{(1as1/2)}$$

4-dimensional parameter space: $\{m_{\mathrm{DM}}, M_{\mathrm{med}}, g_{\mathrm{DM}}, g_q\}$

THE MASS-MASS PLANE

[1604.04156]

Recommended choices of couplings:

(universal g_q)

Vector mediator: $g_{\text{DM}} = 1$ and $g_q = 0.25$.

Axial-vector mediator: $g_{\rm DM} = 1$ and $g_q = 0.25$.

Scalar mediator: $g_q = 1$ and $g_{DM} = 1$.

Pseudo-scalar mediator: $g_q = 1$ and $g_{DM} = 1$.

- ensure $\Gamma_{
m med}/M_{
m med}\lesssim 10\%$

- avoid current limits

ONTO THE DIRECT DETECTION PLANE

[only for illustration, not real data]

$$\sigma_{
m SI,SD} \propto rac{(g_q g_{
m DM})^2}{M_{
m med}^4}$$

then plug in M_{med} from the mass-mass plane

recommend to plot 90% CL (instead of 95% CL) to comply with DD standards

SIMPLIFIED MODELS OVERVIEW

1s1/2 Model (Z Mediator)

Channel	DM spin	Model Name
S	0	0s0
S	$\frac{1}{2}$	$0s\frac{1}{2}$
t	0	0t0
t	$\frac{1}{2}$	$0t\frac{1}{2}$
	0	$\frac{1}{2}t0$
t	$\frac{1}{2}$	$\frac{1}{2}t\frac{1}{2}$
S	0	1s0
S	$\frac{1}{2}$	$1s\frac{1}{2}$
t	$\frac{1}{2}$	$1t\frac{1}{2}$
	S S S S S S S S S S	$egin{array}{ c c c c c c c c c c c c c c c c c c c$

model parameters: $\{m_{\mathrm{DM}},g\}$

relevant constraints:

- Direct detection ($m_{
 m DM}>m_Z/2$)
- Z invisible width ($m_{\rm DM} < m_Z/2$ and SD scattering)

mono-jet searches not competitive

[DS, Giudice, Strumia - 1402.6287]

Os1/2 Model (Higgs Mediator)

Mediator spin	Channel	DM spin	Model Name	
0	S	0	0s0	- -
0	S	$\frac{1}{2}$	$0s\frac{1}{2}$	C
0	t	0	Ot0	-
0	t	$\frac{1}{2}$	$0t\frac{1}{2}$	
$\frac{1}{2}$	t	0	$\frac{1}{2}t0$	<u> </u>
$\frac{1}{2}$	t	$\frac{1}{2}$	$\frac{1}{2}t\frac{1}{2}$	
1	S	0	1s0	<u>_</u>
1	S	$\frac{1}{2}$	$1s\frac{1}{2}$	
1	t	$\frac{1}{2}$	$1t\frac{1}{2}$	
				_

Model parameters: $\{m_{\rm DM},y\}$

relevant constraints:

- Direct detection ($m_{
 m DM}>m_h/2$)
- Higgs invisible width ($m_{
 m DM} < m_h/2$)

mono-jet searches not competitive

[DS, Giudice, Strumia - 1402.6287]

DM NEAR Z/H RESONANCE

[DS, Giudice, Strumia - 1402.6287]

Near resonance $m_{DM}\sim M_{Z,h}/2$, relic density fixed by the width

Curves for correct DM relic abundance:

Os1/2 Model (Scalar-Higgs Portal)

Mediator spin	Channel	DM spin	Model Name
0	S	0	0s0
0	S	$\frac{1}{2}$	$0s\frac{1}{2}$
0	t	0	Ot0
0	t	$\frac{1}{2}$	$0t\frac{1}{2}$
$\frac{1}{2}$	t	0	$\frac{1}{2}t0$
$\frac{1}{2}$	t	$\frac{1}{2}$	$\frac{1}{2}t\frac{1}{2}$
1	S	0	1 <i>s</i> 0
1	S	$\frac{1}{2}$	$1s\frac{1}{2}$
1	t	$\frac{1}{2}$	$1t\frac{1}{2}$
	l	I	I

S "talks" to SM only via H

mixing of real scalar mediator S and Higgs looks like a 2HDM, with <S>=0

$$\mathcal{L} \supset \frac{1}{2} (\partial_{\mu} S)^{2} - \frac{1}{2} m_{S}^{2} S^{2} + \bar{\chi} (i \partial - m_{\chi}) \chi - \frac{h}{\sqrt{2}} \sum_{f} y_{f} \bar{f} f$$

$$-y_{\chi} S \bar{\chi} \chi - \mu_{S} S |H|^{2} - \lambda_{S} S^{2} |H|^{2}.$$

Model parameters: $\{m_\chi, m_S, \lambda_S, \mu_S\}$

$$\binom{h_1}{h_2} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \binom{h}{S} \qquad m_{h_1} \simeq m_h$$

$$m_{h_2} \simeq \sqrt{m_S^2 + \lambda_S^2 v^2}$$

$$\tan(2\theta) = 2v\mu_S/(m_S^2 - m_h^2 + \lambda_S v^2)$$

In the mass-eigenstate basis:

$$\mathscr{L} \supset -(h_1 \cos \theta - h_2 \sin \theta) \sum_f \frac{y_f}{\sqrt{2}} \bar{f} f - (h_1 \sin \theta + h_2 \cos \theta) y_{\chi} \bar{\chi} \chi$$

Higgs Yukawas reduced by $\cos heta$

OS1/2 MODEL (SCALAR-HIGGS PORTAL)

SIMPLIFIED MODELS OVERVIEW

OT1/2 MODEL

Mediator spin	Channel	DM spin	Model Name
0	S	0	0s0
0	S	$\frac{1}{2}$	$0s\frac{1}{2}$
0	t	0	Ot0
0	t	$\frac{1}{2}$	$0t\frac{1}{2}$
$\frac{1}{2}$	t	0	$\frac{1}{2}t0$
$\frac{1}{2}$	t	$\frac{1}{2}$	$\frac{1}{2}t\frac{1}{2}$
1	S	0	1s0
1	S	$\frac{1}{2}$	$1s\frac{1}{2}$
1	t	$\frac{1}{2}$	$1t\frac{1}{2}$

 η carries **color**, **EW**, **flavor** (if DM total singlet) \longrightarrow squark-like mediator

possible to couple η to: u_R, d_R, Q_L

choose u_R:

$$\mathscr{L}_{0t\frac{1}{2}} \supset \sum_{i=1,2,3} \left[\frac{1}{2} (\partial_{\mu} \eta_{i})^{2} - \frac{1}{2} M_{i}^{2} \eta_{i}^{2} + (g_{i} \eta_{i}^{*} \bar{\chi} u_{i} + \text{h.c.}) \right]$$

MFV:
$$M_1 = M_2 = M_3 \equiv M$$

 $g_1 = g_2 = g_3 \equiv g$

Model parameters: $\{m_\chi, M, g\}$

g is a free parameter (unlike SUSY)

Simone

CONCLUSIONS & OUTLOOK

- In s-channel models: play with Scalar-Higgs Portal model
- In t-channel models: the mediator typically carries charges (QCD, EW produciton possible) Next-in-line to be explored
- >> Fully exploit complementarity <<</p>
- then what? simplified models v. 2.0?
 - guided by new hints/excesses/discoveries in future data
 - new collider signatures, different from mono-X?
 - more degrees of freedom/more parameters? loop mediation?

- ...?

BACKUP

1s1/2 Model (Z Mediator)

Os1/2 Model (Higgs Mediator)

 10^{2}

DM mass in GeV

 10^{3}

10

still allowed: scalar DM (m_{DM} > 100 GeV) and fermion DM with axial couplings

 10^{3}

 10^{2}

DM mass in GeV

LHC: improve on Higgs BR_{inv.} (not much else...)

 10^{2}

DM mass in GeV

 10^{3}

10

10

1/2TO MODEL

Mediator spin	Channel	DM spin	Model Name
0	S	0	0s0
0	S	$\frac{1}{2}$	$0s\frac{1}{2}$
0	t	0	0t0
0	t	$\frac{1}{2}$	$0t\frac{1}{2}$
$\frac{1}{2}$	t	0	$\frac{1}{2}t0$
$\frac{1}{2}$	t	$\frac{1}{2}$	$\frac{1}{2}t\frac{1}{2}$
1	S	0	1s0
1	S	$\frac{1}{2}$	$1s\frac{1}{2}$
1	t	$\frac{1}{2}$	$1t\frac{1}{2}$

mediator ψ is a vector-like fermion carrying **color**, **EW** and **flavor** (if DM total singlet)

possible to couple to: q_R , Q_L

choose q_R:

$$\mathscr{L}_{\frac{1}{2}t0} \supset \frac{1}{2} (\partial_{\mu} \phi)^{2} - \frac{1}{2} m_{\phi} \phi^{2} + \bar{\psi} (i \not\!\!D - M_{\psi}) \psi + (y \phi \bar{\psi} q_{R} + \text{ h.c.})$$

pretty much the same story as 0t1/2 (for LHC)

different results for (in)direct detection e.g. ⟨σ v⟩ is d-wave suppressed (v⁴)

Xenon-1T will probe TeV region of DM mass

1/2T1/2 MODEL

Mediator spin	Channel	DM spin	Model Name
0	S	0	OsO
0	S	$\frac{1}{2}$	$0s\frac{1}{2}$
0	t	0	0t0
0	t	$\frac{1}{2}$	$0t\frac{1}{2}$
$\frac{1}{2}$	t	0	$\frac{1}{2}t0$
$\frac{1}{2}$	t	$\frac{1}{2}$	$\frac{1}{2}t\frac{1}{2}$
1	S	0	1s0
1	S	$\frac{1}{2}$	$1s\frac{1}{2}$
1	t	$\frac{1}{2}$	$1t\frac{1}{2}$

$$\mathscr{L}_{\frac{1}{2}t\frac{1}{2}} \supset \bar{\psi}^a(i\not\!\!D-M)\psi^a + \frac{1}{\Lambda}G^a_{\mu\nu}(\bar{\psi}^a\sigma^{\mu\nu}\chi + \text{h.c.})$$

dimension-5 dipole operator

weak signals for LHC, maybe future colliders...

[details not worked out]

1T1/2 MODEL

Mediator spin	Channel	DM spin	Model Name
0	S	0	0s0
0	S	$\frac{1}{2}$	$0s\frac{1}{2}$
0	t	0	0t0
0	t	$\frac{1}{2}$	$0t\frac{1}{2}$
$\frac{1}{2}$	t	0	$\frac{1}{2}t0$
$\frac{1}{2}$	t	$\frac{1}{2}$	$\frac{1}{2}t\frac{1}{2}$
1	S	0	1s0
1	S	$\frac{1}{2}$	$1s\frac{1}{2}$
1	t	$\frac{1}{2}$	$1t\frac{1}{2}$

vector mediator carries color, EW and flavor

similar story as 0t1/2 (squark-like mediator)

[details not worked out]

LOOP MEDIATION

Beyond tree-level mediation?

a model for scalar DM interacting with gluons

[Godbole, Mendiratta, Tait - 1506.01408]

$$\frac{\alpha_s}{M^2} |\chi|^2 G^a_{\mu\nu} G^{a\,\mu\nu}$$
 (C5 operator)

 χ : DM, complex scalar, gauge singlet

 ϕ_i : scalar mediator, color-triplet, EM charged, flavour triplet

[other color reps. (e.g. octet) not explored]

$$\mathcal{L} \supset \partial_{\mu}\chi^{*}\partial^{\mu}\chi - m_{\chi}^{2}|\chi|^{2} + (D_{\mu}\phi)^{\dagger}D^{\mu}\phi - m_{\phi}^{2}|\phi|^{2}$$
 [neglected mixing with H]
$$+ \lambda_{d} |\chi|^{2}|\phi|^{2} + \text{inter. with quarks}$$

$$\epsilon_{ijk}\phi_iu_ju_k$$
 $y_1 \ (\phi_1c_R-\phi_2u_R)\,t_R+y_2 \ \phi_3u_Rc_R$ (flavour singlet, MFV)

LOOP MEDIATION

[Godbole, Mendiratta, Tait - 1506.01408]

[Godbole, Mendiratta, Tait - 1506.01408]

LOOP MEDIATION

[Weiner, Yavin - 1209.1093] [Primulando, Salvioni, Tsai - 1503.04204]

color-octet scalar mediator (0t1/2)

- η interaction with DM is not renormalizable
- η interaction with gluons: only in pairs $\sim \eta \eta G, \eta \eta GG$
- η interaction with quarks: suppressed by m_q

[not worked out]