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> New Physics ?

A. De Simone        

1. New Physics (NP) is not accessible by LHC  
              new particles are too light/heavy  
                   or interacting too weakly  
 
2. We have not explored all the possibilities 
              new physics may be buried under large bkg  
                   or hiding behind unusual signatures

MAYBE:
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Searches for New Physics Beyond the Standard Model 
have been negative so far…



> New Physics ?

A. De Simone        

“Don’t want to miss a thing” (in data) 
              closer look at current data  
                   get ready for upcoming data from next run 
                   
 
Model-independent search 
              searches for specific models may be:  
                   - time-consuming 
                   - insensitive to unexpected/unknown processes
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> New Statistical Test

A. De Simone        4

1. model-independent:  
  no assumption about underlying physical model to intepret data

                  more general  

2. non-parametric: 
  compare two samples as a whole (not just their means, etc.) 
                         fewer assumptions, no max likelihood estim. 

3. un-binned: 
   high-dim feature space partitioned without rectangular bins

                                    retain full multi-dim info of data

Want a statistical test for NP which is: 



> Outline 

A. De Simone        

1. Statistical test of dataset compatibility 

•Nearest-Neighbors Two-Sample Test 

• Identify Discrepancies 

• Include Uncertainties
 

2. Applications to High-Energy Physics
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A. De Simone        

> Two-sample Test 
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[a.k.a. “homogeneity test”]Two sets: 

probability distributions pB,pT  unknown

Benchmark:
Trial:

B = {x0
1, . . . ,x

0
NB

} iid⇠ pB

T = {x1, . . . ,xNT }
iid⇠ pT

xi,x
0
i 2 RD

e.g.:     simulated SM bkg                     real measured data 



easy…
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Are B,T drawn from the same prob. distribution?

> Two-sample Test 
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Two sets: 

probability distributions pB,pT  unknown

Benchmark:
Trial: T = {x1, . . . ,xNT }

iid⇠ pT
xi,x

0
i 2 RD

B = {x0
1, . . . ,x

0
NB

} iid⇠ pB
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> Two-sample Test 
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Are B,T drawn from the same prob. distribution?

… hard!

Two sets: 

probability distributions pB,pT  unknown

Benchmark:
Trial: T = {x1, . . . ,xNT }

iid⇠ pT
xi,x

0
i 2 RD

B = {x0
1, . . . ,x

0
NB

} iid⇠ pB



> Two-sample Test 
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RECIPE: 
1. Density Estimator
                     reconstruct PDFs from samples
 
2. Test Statistic (TS) 
                    measure “distance” between PDFs 
 
3. TS distribution
                    associate probabilities to TS  
                    under null hypothesis H0: pB = pT 
 
4. p -value 
                     accept/reject H0
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T

Divide the space in squared bins?
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✓  easy
✓  can use simple statistics (e.g.     ) 
✘  hard/slow/impossible in high-D

�2B

Nearest Neighbors!
[Schilling - 1986][Henze - 1988] 

[Wang et al. - 2005,2006] 
[Dasu et al. - 2006][Perez-Cruz - 2008] 

[Sugiyama et al. - 2011][Kremer et al, 2015]

Need un-binned  
multivariate approach

> 1. Density Estimator

Find PDFs estimators: 
e.g. based on densities of points: 

p̂B(x), p̂T (x)

p̂B,T (x) =
⇢B,T (x)

NB,T
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T

B

xj
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xj

• Fix integer K. 

• Choose query point xj in T and  
draw it in B. 

> 1. Density Estimator
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T

rj,B

xj

13

xj

B
• Fix integer K. 

• Choose query point xj in T and  
draw it in B. 

• Find the distance rj,B  of the  
Kth-NN of xj  in B. 

> 1. Density Estimator
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T

xj
rj,T
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xj

rj,B

B
• Fix integer K. 

• Choose query point xj in T and  
draw it in B. 

• Find the distance rj,B  of the  
Kth-NN of xj  in B. 

• Find the distance rj,T  of the  
Kth-NN of xj  in T. 

> 1. Density Estimator
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T

• Fix integer K. 

• Choose query point xj in T and  
draw it in B. 

• Find the distance rj,B  of the  
Kth-NN of xj  in B. 

• Find the distance rj,T  of the  
Kth-NN of xj  in T. 

• Estimate PDFs:
xj
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xj

rj,T

rj,B

B

p̂B(xj) =
K

NB

1

!DrDj,B

p̂T (xj) =
K

NT � 1

1

!DrDj,T

> 1. Density Estimator
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> 2. Test Statistic

• Measure of the “distance” between 2 PDFs 

• Define Test Statistic: 
(detect under-/over-densities)

• Related to Kullback-Leibler divergence as: 

 
 

• From NN-estimated PDFs: 
 

• Theorem: this estimator converges to DKL(pB ||pT), 
                  in large sample limit
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[Wang et al. - 2005,2006]

DKL(p||q) ⌘
Z

RD

p(x) log
p(x)

q(x)
dx

TS(B, T ) =

1

NT

NTX

j=1

log

p̂T (xj)

p̂B(xj)

TS(B, T ) = D̂KL(p̂T ||p̂B)

TS

obs

=

D

NT

NTX

j=1

log

rj,B
rj,T

+ log

NB

NT � 1



> 3. Test Statistic Distribution
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Permutation test!How is TS distributed?

Assume pB=pT. Union set:

T
eT

eBB

Random reshuffle

Compute the test  
statistic TSn on:

(B̃, T̃ )

U = T [ B

Repeat many times.

f(TS|H0) {TSn}Distribution of TS under H0:
[asymptotically normal with zero mean]

U



> 4. p-value
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TS ! TS0 ⌘ TS� µ̂

�̂

f 0(TS0|H0) = �̂f(µ̂+ �̂TS0|H0)

µ̂, �̂ :•            mean,variance of TS distribution 
 

•  Standardize the TS: 
 

• TS’ distributed according to  
 

• Two-sided p-value: 
 
 
 

• Equivalent significance: 

f(TS|H0)

p = 2

Z +1

|TS0
obs

|
f 0(TS0|H0)dTS

0

Z ⌘ ��1(1� p/2)



> 2D Gaussian Example
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exact KL  
divergence

µB =

✓
1.0
1.0

◆
µT =

✓
1.2
1.2

◆

⌃B = ⌃T =

✓
1 0
0 1

◆
pB = N (µB ,⌃B) pT = N (µT ,⌃T )

K = 5, Nperm = 1000

µB =

✓
1.0
1.0

◆
µT =

✓
1.15
1.15

◆

more data, 
more power



INPUT: 

OUTPUT: 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p -value of the null hypothesis H0: pB = pT
[check compatibility between 2 samples]

pB,pT unknown

20

Trial sample:
Benchmark sample:

K:      
Nperm:

T = {x1, . . . ,xNT }
iid⇠ pT

B = {x0
1, . . . ,x

0
NB

} iid⇠ pB

xi,x
0
i 2 RD

number of nearest neighbors
number of permutations

> NN2ST: Summary



K-NN density

ratio estimation

Test Statistic

permutation test

p value

TS distribution 

-|TSobs|

TSobs
Benchmark sample

Trial sample

|TSobs|

A. De Simone        21

> NN2ST: Summary

github.com/de-simone/NN2ST
Python code:

https://github.com/de-simone/NN2ST


> Outline 
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1. Statistical test of dataset compatibility 

•Nearest-Neighbors Two-Sample Test 

• Identify Discrepancies 

• Include Uncertainties
 

2. Applications to High-Energy Physics
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> Where are the discrepancies? 
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1. “Score” field over T:                                              with: 
 
 
 
 
 
 
 

2. Identify points  where  
  They contribute the most to large TSobs

                 high-discrepancy (anomalous) regions 

3. Apply a clustering algorithm to group them

Bonus: Characterize regions with significant discrepancies

Z(x) > c

Z(xj) ⌘
u(xj)� ū

�u

Z

x

u(xj) ⌘ log

rj,B
rj,T

TS

obs

= D ū+ const
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> Sample Uncertainties
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1. Model feature uncertainties 
 
                                     [e.g. zero-mean gaussians] 

2. New samples by adding random noise 
    sampled from FB,T : 
 
 
 

3. Compute TS on new samples 
 

4. Repeat many times to reconstruct f(U)

How to include sample uncertainties?

T

B
FB(x), FT (x)

Tu = {xi +�xi}NT
i=1

Bu = {x0
i +�x

0
i}

NB
i=1

TSu ⌘ TS(Bu, Tu) = TS
obs

+ U



> Sample Uncertainties
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•  f(TSu) is a convolution: 
  f(TSu) more spread than f(TS) 
 

•  p-value computed from f(TSu)      
         

• weaker significance,  
 power degradation

How to include sample uncertainties?

f(TSu|H0) = f(TS|H0) ⇤ f(U)

TSobs



> 2D Gaussian with Uncertainties
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�i = ✏xi

gaussian uncorrelated errors
(diagonal covariance)

with fixed relative uncertainty

⌃B = ⌃T =

✓
1 0
0 1

◆

pB = N (µB ,⌃B) pT = N (µT ,⌃T )

µB =

✓
1.0
1.0

◆
µT =

✓
1.15
1.15

◆

B,T gaussian samples:

for each feature component i



> NN2ST: Summary
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✓  general, model-independent 
✓   fast, no optimization  
                 [ NB,T =20k, K=5, Nperm =1k, D=2: t ~ 2 mins
                   NB,T =20k, K=5, Nperm =1k, D=8: t ~ 50 mins ]
✓   sensitive to unspecified signals 
✓   useful when no variable can separate sig/bkg 
✓   helps finding signal regions, optimal cuts, … 
✓   flexible to incorporate uncertainties 
 
✘    need to run for each sample pair 
✘    permutation test is bottleneck



> Outline 
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1. Statistical test of dataset compatibility 

•Nearest-Neighbors Two-Sample Test 

• Identify Discrepancies 

• Include Uncertainties
 

2. Applications to High-Energy Physics
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> Our Method
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Reject  
null hypothesis?

NN2ST

30

Bkg
Simulation Data

yes hint of 
new physics!

select regions 
to explore

(Trial)(Benchmark)

noNo signal 
in data
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mDM = 100 GeV
mZ' = 1.2, 2, 3 TeV
gDM = 1, gq = 0.1

DM + Z’ 
vector mediator

Z’

proton

proton

jet

DM

DM

> DM search @ LHC 

p
s = 13 TeV

Z ! ⌫⌫̄ + (1, 2) j

• “proof-of-principle” study 

• bkg:                                  (𝜎bkg=202.6 pb) 
sub-leading bkgs not included 

• no full detector effects  
(generic Delphes profile)

Benchmark:  BKG1 
          Trials:  BKG2 + SIG 
                K = 5       
           Nperm = 3000

8 features:
    - n. of jets
    -          of 2 leading jets
    - 
    - 

Emiss
T , HT

pT , ⌘

��Emiss
T ,j1
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  B:  BKG1 (20k events) 
T1:  BKG2 (20k events) + SIG1 (2010 events)
T2:  BKG2 (20k events) + SIG2 (375 events)
T3:  BKG2 (20k events) + SIG3 (59 events)

Sample MZ’ 𝜎signal Zno uncert. Z10% rel uncert.

T1 1.2 TeV 20.4 pb 40 𝜎 26 𝜎

T2 2 TeV 3.8 pb 13 𝜎 12 𝜎

T3 3 TeV 0.6 pb 2.7 𝜎 2.5 𝜎

• systematics: expect further degradation of results
• the method has value, it is worth exploring

Nsig = NB ⇥ �signal

�bkg

> DM search @ LHC 

still not 
real-world



Nsig = NB ⇥ �signal

�bkg
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NB = 20 000

NT = NB +Nsig

more data, 
more power

stronger signal
easier to discover

> DM search @ LHC 



> Outlook
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- adaptive choice of K 

- identifying discrepant regions in realistic situations 
  (with Z-score method) 
 
- validation tool for bkg:  
  compatibility between MC sims. and data in control regions

- scalability 

- … your suggestions?

Directions for future work:



1. New Statistical Test for BSM Physics 
                   - assess degree of compatibility between 2 samples 
                   - rooted on nearest neighbors, solid math foundations 
 
 
2. NN2ST as a discovery tool 
                   - powerful and model-independent 
                   - lots of applications 
 

3. NN2ST to guide searches                  
                   - identify regions of discrepancies

> Take-Home Messages 
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BACK UP



> Model Selection 
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how to choose K?
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Define the mean-square error:

Estimate loss: 
 

Select optimal K minimizing the loss. 

Alternatively:  Point-Adaptive k-NN (PAk)

Model Selection!

True: Estimated:

L(r, r̂) =
1

2

Z
[r̂(x0)� r(x0)]

2
pB(x

0)dx0

=
1

2

Z
r̂(x0)2pB(x

0)dx0 �
Z

r̂(x)pT (x)dx+
1

2

Z
r(x0)2pB(x

0)dx0

r(x) =
pT (x)

pB(x)
r̂(x) =

p̂T (x)

p̂B(x)

L̂(r, r̂) =
1

2NB

X

x

02B

r̂(x0)2 � 1

NT

X

x2T
r̂(x)

[1802.10549]


