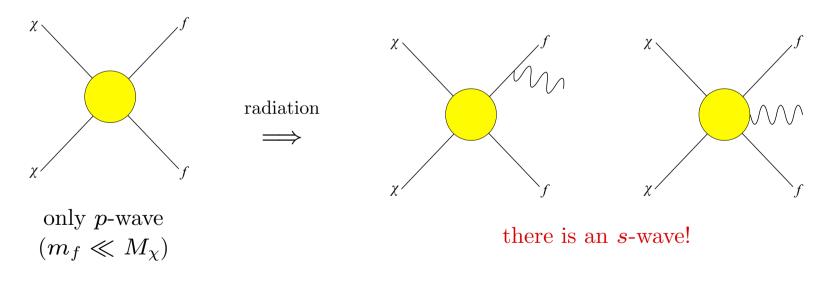

PLANCK 2011 – Lisbon

Electroweak lights from DM annihilations

Andrea De Simone

Based on: Ciafaloni, Cirelli, Comelli, DS, Riotto, Urbano arXiv:1104.2996 (to appear on JCAP)

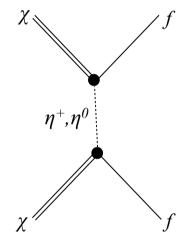

Radiation of EW gauge bosons is a SM effect and can have a big impact on final fluxes in 3 situations:

- 1. when looking at low-energy tails of the spectra, mostly populated by decay products of extra gauge bosons;
- 2. when some species are absent without EW corrections (e.g. \bar{p} from $\chi \chi \to \ell^+ \ell^-$);
- 3. (this talk) when $\sigma(2 \to 2)$ is suppressed, so $\sigma(2 \to 3)$ can even dominate.

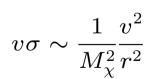
Annihilations of Majorana fermions

$$v\sigma_{\text{ann}} = a + bv^2 + \mathcal{O}(v^4)$$

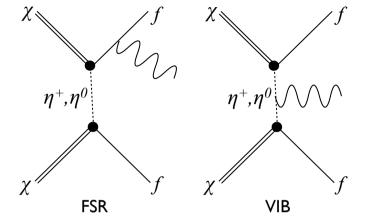
 $\uparrow \quad \uparrow$ (today $v \sim 10^{-3}$)
s-wave p-wave


For a Majorana fermion and SM singlet (e.g. Bino in SUSY)

The Model


The DM couples to the SM via a heavy scalar doublet: $S = \begin{pmatrix} \eta^+ \\ \eta^0 \end{pmatrix}$

$$\begin{aligned} \mathscr{L} &= \mathscr{L}_{\rm SM} + \mathscr{L}_{\chi} + \mathscr{L}_{S} + \mathscr{L}_{\rm int} \\ \mathscr{L}_{\chi} &= \frac{1}{2} \bar{\chi} (i \not{\partial} - M_{\chi}) \chi \,, \\ \mathscr{L}_{S} &= (D_{\mu} S)^{\dagger} (D^{\mu} S) - M_{S}^{2} S^{\dagger} S \,, \\ \mathscr{L}_{\rm int} &= y_{L} \bar{\chi} (Li \sigma_{2} S) + \text{h.c.} \\ &= y_{L} (\bar{\chi} P_{L} f_{2} \eta^{+} - \bar{\chi} P_{L} f_{1} \eta^{0}) + \text{h.c.} \end{aligned}$$



Mass parameters: M_{χ}, M_S

$$\rightsquigarrow M_{\chi}, r \equiv (M_S/M_{\chi})^2 \ge 1$$

Now add radiation of EW gauge bosons \sim

Schematically, the amplitude is

$$\mathcal{M} \sim \frac{1}{M_{\chi}} \mathcal{O}(v) \left[\mathcal{O}\left(\frac{1}{r}\right) \Big|_{\text{FSR}} + \mathcal{O}\left(\frac{1}{r^2}\right) \Big|_{\text{FSR}} \right] + \frac{1}{M_{\chi}} \left[\mathcal{O}\left(\frac{1}{r^2}\right) \Big|_{\text{VIB}} + \mathcal{O}\left(\frac{1}{r^2}\right) \Big|_{\text{FSR}} \right]$$

and the cross section

$$v\sigma(\chi\chi o f\bar{f}Z) \sim \frac{\alpha_W}{M_\chi^2} \left[\mathcal{O}\left(\frac{v^2}{r^2}\right) + \mathcal{O}\left(\frac{v^2}{r^3}\right) + \mathcal{O}\left(\frac{1}{r^4}\right) \right]$$

Important lesson:

- ▶ limiting the expansion to $\mathcal{O}(1/r)$ in the amplitude keeps the annihilation in *p*-wave.
- ▶ at $\mathcal{O}(1/r^2)$, with VIB diagrams, the *s*-wave is opened.

When does the 3-body process dominate over the 2-body one? Estimate:

$$(r \equiv M_S^2/M_\chi^2)$$

[Figure from: Garny, Ibarra, Vogl – 1105.5367]

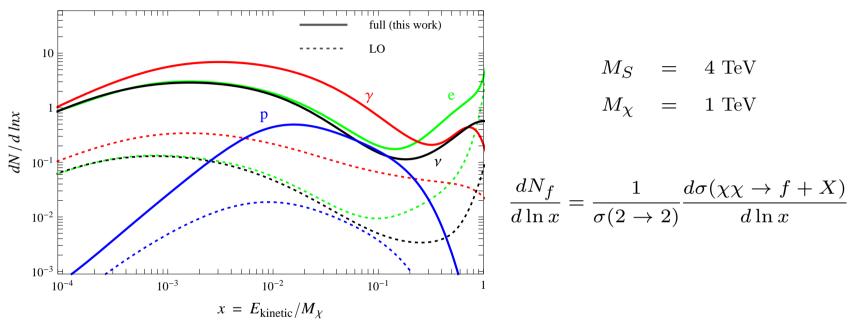
Effective Field Theory

Integrate out the heavy scalar S:

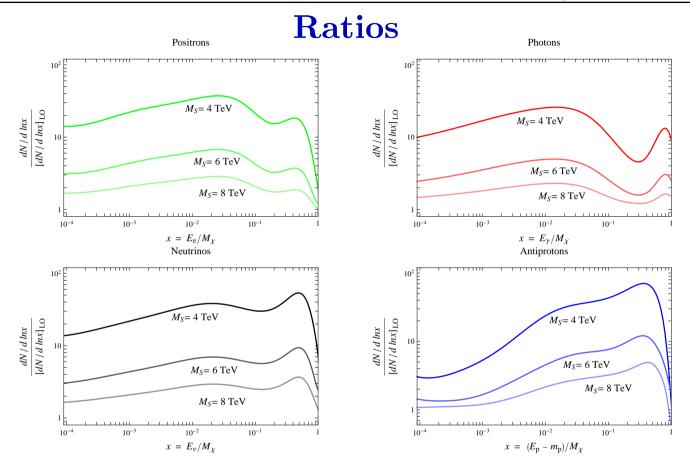
$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\chi} + \frac{1}{r} \frac{\mathcal{O}_6}{M_{\chi}^2} + \frac{1}{r^2} \frac{\mathcal{O}_8}{M_{\chi}^4} + \dots$$

The lowest-dimensional operator gives a p-wave annihilation:

$$\mathcal{O}_6 = \frac{1}{2} |y_L|^2 \left[\bar{\chi} \gamma_\mu \gamma_5 \chi \right] \left[\bar{L} \gamma^\mu P_L L \right] \implies v \sigma(\chi \chi \to f \bar{f} Z) \Big|_{\mathcal{O}_6} \propto \frac{|y_L|^4}{M_\chi^2} \frac{v^2}{r^2}$$

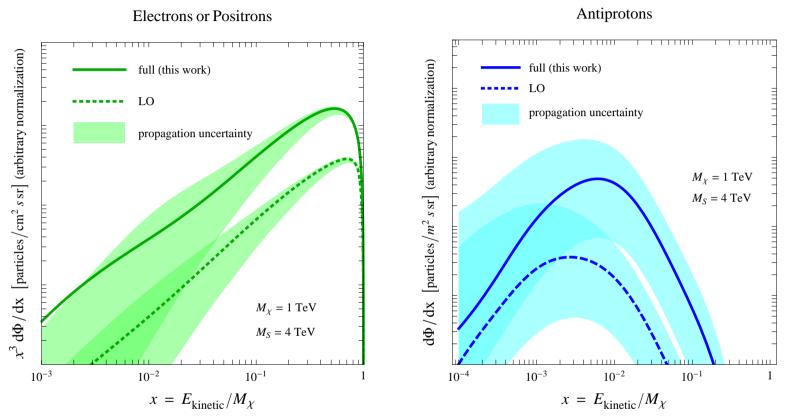

- The s-wave appears due to \mathcal{O}_8 . \mathcal{O}_8 can be more important than \mathcal{O}_6 despite larger dimensionality.
- Warning: in this case, naive dimensional analysis fails to assess the relative importance of operators in the expansion.

More Quantitative Analysis


$$\chi\chi \to e^+e^-\,, \nu\bar\nu\,, e^+e^-\gamma\,, e^+e^-Z\,, \nu\bar\nu Z\,, e^\pm\nu W^\mp$$

- our MC: generates primary annihilation events $(2 \rightarrow 3)$ according to the $|\mathcal{M}|^2$ distribution
- PYTHIA 8.1: for showering + hadronization + decay to final stable SM particles. (Technical remark: PYTHIA 6 does not include $\gamma \rightarrow f\bar{f}$ branchings in the showering).
- extract energy spectra at interaction point for each species
- propagation in the galactic halo

Energy spectra at the interaction point



- * "LO" means adding EW radiation at the lowest order, keeping only the $\mathcal{O}(1/r)$ in the amplitude (*p*-wave).
- * Bump of primary hard photons due to s-wave annihilation $\chi \chi \to e^+ e^- \gamma$.
- * Large low-energy tails due to showering and hadronization of W, Z.

* $dN/dE/[dN/dE]_{\rm LO} \sim \mathcal{O}(10-100)$

* Of course, much larger enhancement wrt not including EW corrections.

Propagated fluxes

- Neutral particles (γ, ν) just go straight.
- Propagation does not spoil the effect.

Conclusions

- Majorana DM annihilates through *s*-wave once EW radiation is included.
- Care when using EFT: the naive dim analysis can be misleading. This effect is missed by \mathcal{O}_6 .
- The resulting spectra get substantially enhanced by factors $\mathcal{O}(10-100)$ (with respect to *p*-wave only). Even more drastic effect with respect to the case without EW corrections.
- EW corrections are a SM effect (no exotics!). Reliable calculations of fluxes for DM ID should take them into account.