Correlations among Dark Matter Signals

Andrea De Simone

Based on: DS, Riotto, Xue - arXiv:1304.1336
AMS-02 has recently released data of positron fraction up to energies of ~350 GeV.

Excess over “known” bkg, confirming previous PAMELA and Fermi-LAT measurements.
where can positrons come from?

- the Dark Matter explanation of the excess is already strongly constrained by other measurements (e.g. gamma-rays)
- so the astrophysical explanations look very likely

- Dark Matter annihilations/decay
- local astrophysical sources (e.g. pulsars)
where can positrons come from?

- the Dark Matter explanation of the excess is already strongly constrained by other measurements (e.g. gamma-rays)

- so the astrophysical explanations look very likely

- I want to insist on the DM interpretation and see how far we can get
quick recap of indirect DM searches and electroweak corrections

interpretation of new AMS-02 results

correlations and predictions
Indirect Detection

e^+, \bar{p} AMS-02, Pamela, Fermi, HESS
γ ATIC, Fermi
ν IceCube, Antares, Km3Net
\bar{d} GAPS, AMS-02

DM annihilations in galactic halo/center

$\ell^-, \bar{q}, W^-, Z, \gamma, \ldots$

primary channels

$\ell^+, q, W^+, Z, \gamma, \ldots$

SM evolution

$e^\pm, \gamma, \nu, \bar{\nu}, p, \bar{p}, \ldots$

stable species

astrophysical propagation

$e^\pm, \gamma, \nu, \bar{\nu}, p, \bar{p}, \ldots$

fluxes at detection
Indirect Detection

Model for DM interactions (\mathcal{L})

Radiation/hadronization/decay (QCD, QED, EW)

Primary channels:
- $\ell^-, \bar{q}, W^-, Z, \gamma, ...$
- $\ell^+, q, W^+, Z, \gamma, ...$

Stable species:
- $e^\pm, \gamma, \nu, \bar{\nu}, p, \bar{p}, ...$

Astrophysical propagation

DM annihilations in galactic halo/center

Key observable

Fluxes at detection
Fluxes of cosmic rays received at Earth: \(d\Phi_i/dE \equiv \beta_i n_i/(4\pi) \)

where the number density \(n_i(r, z, p) \) is the solution of the transport eq.:

\[
\frac{\partial n_i}{\partial t} = Q(r, z, p) + \nabla \cdot \left(D \nabla n_i - \mathbf{V}_c n_i \right) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2 n_i} \nabla \cdot \mathbf{V}_c n_i - \frac{1}{\tau_{sp}} n_i - \frac{1}{\tau_f} n_i
\]

\(Q(r, z, E) \propto \left[\rho_{DM}(r, z) \right]^2 \langle \sigma_{\text{ann}} v \rangle \frac{dN_i}{dE} \)

Astrophysics enters into:
- propagation parameters;
- DM halo profile.

Particle Physics enters into:
- energy spectrum \(dN_i/dE \)
- cross section \(\langle \sigma_{\text{ann}} v \rangle \)
Electroweak Corrections

DM → e^+

DM → e^-
The final state of DM annihilations can radiate γ, Z, W.

It is a SM effect, affecting the final fluxes importantly.

EW interactions connect all SM particles all species will be present in the final state.

![Diagram showing the final state of DM annihilations](diagram.png)
Correlations among DM signals

Assume DM interpretation

Fit

Signal

$e^+, \gamma, \nu, \bar{p}, \ldots$

EW corrections

Predictions

$e^+, \gamma, \nu, \bar{p}, \ldots$
Correlations among DM signals

- Assume DM interpretation
- Fit signal
 - $e^+, \gamma, \nu, \bar{p}, \ldots$
- EW corrections
- Correlated fluxes
- Test with current/future data
- Verify/reject initial hypothesis
- Predictions
 - $e^+, \gamma, \nu, \bar{p}, \ldots$
Correlations among DM signals

- Assume DM interpretation
- Fit signal $e^+, \gamma, \nu, \bar{p}, \ldots$

DM correlations

- EW corrections
- Predictions $e^+, \gamma, \nu, \bar{p}, \ldots$

Correlated fluxes

- Test with current/future data
- robust
- timely

- Verify/reject initial hypothesis
Correlations among DM signals

- Assume DM interpretation
- Fit
- EW corrections
- Predictions

Signal: e^+

Correlated fluxes

Test with current/future AMS data

Verify/reject initial hypothesis
possible interpretation as DM, without upsetting the anti-\(p \) flux

\[\text{DM DM } \rightarrow \tau^+ \tau^- \]
\[M_{\text{DM}} = 1 \text{ TeV} \]
\[\langle \sigma_{\text{ann}} v \rangle = 2.5 \times 10^{-23} \text{ cm}^3 \text{s}^{-1} \]
before claiming any signal, bkg should be under control

e\(^{+}\) and \textbf{anti-p} fluxes (both \textbf{signal} \& \textbf{background}) closely related: propagation from source to detection within the \textbf{same environment}

cosmic-ray propagation is a very complex phenomenon, affected by several uncertainties

crucial to use \textbf{consistently} the same propagation setup for \textbf{all} particle species involved in the analysis.
Propagation Methods

Method 1

Signal: propagate with “MED” propagation model
Bkg: reference one with floating normalizations and slopes

\[\Phi_{i}^{\text{bkg}}(E, A_i, p_i) = A_i \, E^{p_i} \, [\Phi_{i}^{\text{bkg}}(E)]_{\text{reference}} \quad (i = e^+, e^-, \bar{p}) \]

then marginalize over A, p parameters.

✘ fluxes of different species are treated as uncorrelated;
✓ deal with astrophys. uncert. in a simple and conservative way.

Method 2

Propagate signal and bkg with our own propagation model, which provides a good fit to several data-sets (electron+positron, anti-p, Boron-to-Carbon ratio).

✘ not generic;
✓ consistent propagation of all species, for both signal and bkg.
annihilation channels? \[\text{DM DM} \rightarrow q\bar{q}, \ell^+\ell^-, W^+W^-, ZZ, hh, \ldots \]

ALL channels produce hadrons (due to EW corrections), can easily upset anti-p data

Ex.

![Graphs showing exclusion by PAMELA anti-p data](Image)

only **leptonic** annihilation channels are still allowed
Interpretation of AMS-02 data: Best Fits

- use only data with $E > 15$ GeV (not affected by solar modulation)
- number of dof: 36-6=30 (method 1), 36-2=34 (method 2)
- e^+e^- gives even higher χ^2

<table>
<thead>
<tr>
<th>χ^2_{min}/dof</th>
<th>$\mu^+\mu^-$</th>
<th>$\tau^+\tau^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>method 1</td>
<td>1.9</td>
<td>0.7</td>
</tr>
<tr>
<td>method 2</td>
<td>2.4</td>
<td>1.0</td>
</tr>
</tbody>
</table>

only good fit to AMS-02: DM of ~ 1 TeV annihilating into taus
Interpretation of AMS-02 data: Best Fits

3σ best-fit contours for $\text{DM DM} \rightarrow \tau^+ \tau^-$

Method 1

Method 2

method 2 is more constrained
we simulated projected (mock) data for anti-p, consistent with understanding of detector features from outside the collaboration

3 years of AMS-02 anti-p data would be enough to rule out almost completely the DM interpretation of the positron rise
taking into account Fermi-LAT diffuse gamma-ray constraints

Method 1

Method 2

best-fit regions for other halo profiles are mostly excluded
tension with e^+e^- Fermi-LAT data, showing no drop up to ~1 TeV.

[Cirelli et al. - 0809.2409v2]

need somewhat exotic annihilation channels ($\text{DM DM} \rightarrow \phi\phi \rightarrow 2\mu^+2\mu^-$), perhaps with a break in the injection spectrum of primary electrons.

FIG. 6: The same as in Figs. 1, 2, 4 and 5 but for a diffusion zone half-width of $L = 8$ kpc, and for broken power-law spectrum of electrons injected from cosmic ray sources ($dN_e^-/dE_e^- \propto E_e^{-2.65}$ below 100 GeV and $dN_e^-/dE_e^- \propto E_e^{-2.3}$ above 100 GeV). The cross sections are the same as given in the caption of Fig. 5. With this cosmic ray background, the dark matter models shown can simultaneously accommodate the measurements of the cosmic ray positron fraction and the overall leptonic spectrum.

[Cholis,Hooper - 1304.1840]
Conclusions

- **Complementarity**: robust conclusions on the nature of DM should come from **correlations** of different signatures among different expts. (crucial role played by EW corrections)

- Interpretation of AMS-02 recent results on positron fraction:

 - if data are interpreted as a signal of DM, the χ^2 favours: $M_{DM} \sim 1$ TeV, DM $\rightarrow \tau^+ \tau^-$
 - assuming no signal in future anti-p data
 - exclude almost completely the DM origin of the e^+ excess

 we are on the verge of ruling out, once for all, the DM origin of the positron excess

- What’s next?

 - break degeneracy with pulsars, using EW corrections;
 - explore more correlations (neutrinos, gamma-rays etc.)
 - wait for next AMS-02 data releases...
BACK-UP SLIDES
Halo Profiles

\[\rho(r) = \begin{cases}
\rho_s \left[\frac{1 + r/r_s}{r/r_s} \right]^{-1}, & r_s = 12.67 \text{ kpc}, \quad \rho_s = 0.712 \text{ GeV/cm}^3, \quad \text{(Burkert)} \\
\rho_s \exp \left[-\frac{2}{0.17} \left[\left(\frac{r}{r_s} \right)^{0.17} - 1 \right] \right], & r_s = 28.44 \text{ kpc}, \quad \rho_s = 0.033 \text{ GeV/cm}^3, \quad \text{(Einasto)} \\
\rho_s \left(\frac{r_s}{r} \right) \left(1 + \frac{r}{r_s} \right)^{-2}, & r_s = 24.42 \text{ kpc}, \quad \rho_s = 0.184 \text{ GeV/cm}^3, \quad \text{(NFW)}
\end{cases} \]
Fits of our reference propagation model to anti-p PAMELA data

solid/dashed = with/without correcting for solar modulation
EW corrections to DM annihilations are important in 3 cases:

1. when the low-energy regions of the spectra, which are largely populated by the decay products of the emitted gauge bosons, are the ones contributing the most to the observed fluxes;

2. when some species are absent without EW corrections (e.g. antiprotons from $\chi\chi \rightarrow \ell^+ \ell^-$);

3. when $\sigma(2 \rightarrow 3)$, with soft gauge boson emission, is comparable or even dominant with respect to $\sigma(2 \rightarrow 2)$:

- DM Majorana fermion/real scalar and SM singlet;

 [Ciafaloni, Cirelli, Comelli, Riotto, Sala, Strumia, Urbano, 1009.0224]

- DM Majorana fermion/real scalar in an $SU(2)_L$-multiplet.

 [DS, Monin, Thamm, Urbano - 1301.1486]

 [Ciafaloni, Cirelli, Comelli, DS, Riotto, Urbano - 1107.4453]

 [Ciafaloni, Comelli, DS, Riotto, Urbano - 1202.0692]