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interdisciplinary group working at interface of  
particle physics, astrophysics and cosmology

Address fundamental issues about our Universe: 
origin and evolution, nature of gravity, 

properties of dark matter and dark energy.
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A. De Simone, S. Liberati,  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Speech recognition
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Recommender systemsRecommender Systems

Kijkgedrag etc.

32
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Creative Paintings

[Elgammal et al - 
1706.07068]

Which of these images were created by a machine? 
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Generating Faces

[Karras et al - 1710.10196]

These people do not exist!
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Under review as a conference paper at ICLR 2018

Figure 5: 1024 ⇥ 1024 images generated using the CELEBA-HQ dataset. See Appendix F for a
larger set of results, and the accompanying video for latent space interpolations. On the right, two
images from an earlier megapixel GAN by Marchesi (2017) show limited detail and variation.

Mao et al. (2016b) (128⇥ 128) Gulrajani et al. (2017) (128⇥ 128) Our (256⇥ 256)

Figure 6: Visual quality comparison in LSUN BEDROOM; pictures copied from the cited articles.

mentation used an adaptive minibatch size depending on the current output resolution so that the
available memory budget was optimally utilized.

In order to demonstrate that our contributions are largely orthogonal to the choice of a loss function,
we have also trained the same network using LSGAN loss instead of WGAN-GP loss. Figure 1
shows six examples of 10242 images produced using our method using LSGAN. Further details of
this setup are given in Appendix B.

6.4 LSUN RESULTS

Figure 6 shows a purely visual comparison between our solution and earlier results in LSUN BED-
ROOM. Figure 7 gives selected examples from seven very different LSUN categories at 2562. A
larger, non-curated set of results from all 30 LSUN categories is available in Appendix G, and the
video demonstrates interpolations. We are not aware of earlier results in most of these categories,
and while some categories work better than others, we feel that the overall quality is high.

6.5 CIFAR10 INCEPTION SCORES

The best inception scores for CIFAR10 (10 categories of 32 ⇥ 32 RGB images) we are aware of
are 7.90 for unsupervised and 8.87 for label conditioned setups (Grinblat et al., 2017). The large
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https://youtu.be/XOxxPcy5Gr4CelebA-HQ:

https://youtu.be/XOxxPcy5Gr4
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Autonomous driving
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Games
AlphaGO

AlphaGo beats world champion Go 4-1

”move nr. 37" 33

8

Google’s DeepMind  
plays Breakout
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2010-05-06, 2:45pm
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Dow-Jones 
Industrial Average

Flash Crash!

lost ~9% in 36 minutes!

2010-05-06, 2:45pm
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1. Machine Learning in Science 
 

2. Open problems in High-Energy Physics (HEP) 
 

3. Statistical test of dataset compatibility
 

4. Applications to HEP
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“A computer program is said to learn from experience E  
with respect to some class of tasks T  

and performance measure P,  
 

if its performance at tasks in T, as measured by P,  
improves with experience E.”

[Mitchell - 1997]
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Why is Machine Learning so cool?

• a guide through big data (data mining) 

• many diverse applications  
(from engineering to commerce to science) 

• can help making our life better/easier 

• …

• can help scientists to do science better and faster

14
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- More powerful machines
both speed and storage  
 

- More data
      almost everything is recorded! 
 

- Easier access
      internet revolution, easier to share big data
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Supervised
Learning

Unsupervised
Learning

Reinforcement
Learning
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f(x) = y

labelled data

Logistic Regression
Neural Networks 
Decision Trees
Nearest Neighbors
…

Polynomial Regression
Neural Networks
Support Vector Machines
Nearest Neighbors
…

Classification Regression

machine “learns” the model

features
labels

{(xi, yi)}Ni=1
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Cluster Analysis
Dimensionality Reduction
Anomaly Detection
…

{xi}Ni=1

unlabelled data

features

machine “learns”  
patterns, structures, representations, etc.  

of the data
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[Litjens et al. - Medical Image Analysis 2017]

deep learning
achieved state-of-the art results

19
Figure 3: Collage of some medical imaging applications in which
deep learning has achieved state-of-the-art results. From top-left to
bottom-right: mammographic mass classification (Kooi et al., 2016),
segmentation of lesions in the brain (top ranking in BRATS, ISLES
and MRBrains challenges, image from Ghafoorian et al. (2016b), leak
detection in airway tree segmentation (Charbonnier et al., 2017), di-
abetic retinopathy classification (Kaggle Diabetic Retinopathy chal-
lenge 2015, image from van Grinsven et al. (2016), prostate segmen-
tation (top rank in PROMISE12 challenge), nodule classification (top
ranking in LUNA16 challenge), breast cancer metastases detection in
lymph nodes (top ranking and human expert performance in CAME-
LYON16), human expert performance in skin lesion classification (Es-
teva et al., 2017), and state-of-the-art bone suppression in x-rays, im-
age from Yang et al. (2016c).

methods yet, but given the results in other areas it seems
only a matter of time. An interesting avenue of research
could be the direct training of deep networks for the re-
trieval task itself.

3.5.2. Image Generation and Enhancement
A variety of image generation and enhancement

methods using deep architectures have been proposed,
ranging from removing obstructing elements in im-
ages, normalizing images, improving image quality,
data completion, and pattern discovery.

In image generation, 2D or 3D CNNs are used to
convert one input image into another. Typically these
architectures lack the pooling layers present in classifi-
cation networks. These systems are then trained with a
data set in which both the input and the desired output
are present, defining the di↵erences between the gener-
ated and desired output as the loss function. Examples
are regular and bone-suppressed X-ray in Yang et al.

(2016c), 3T and 7T brain MRI in Bahrami et al. (2016),
PET from MRI in Li et al. (2014), and CT from MRI in
Nie et al. (2016a). Li et al. (2014) even showed that one
can use these generated images in computer-aided diag-
nosis systems for Alzheimer’s disease when the original
data is missing or not acquired.

With multi-stream CNNs super-resolution images
can be generated from multiple low-resolution inputs
(section 2.4.2). In Oktay et al. (2016), multi-stream net-
works reconstructed high-resolution cardiac MRI from
one or more low-resolution input MRI volumes. Not
only can this strategy be used to infer missing spatial in-
formation, but can also be leveraged in other domains;
for example, inferring advanced MRI di↵usion parame-
ters from limited data (Golkov et al., 2016). Other im-
age enhancement applications like intensity normaliza-
tion and denoising have seen only limited application of
deep learning algorithms. Janowczyk et al. (2016a) used
SAEs to normalize H&E-stained histopathology images
whereas Benou et al. (2016) used CNNs to perform de-
noising in DCE-MRI time-series.

Image generation has seen impressive results with
very creative applications of deep networks in signifi-
cantly di↵ering tasks. One can only expect the number
of tasks to increase further in the future.

3.5.3. Combining Image Data With Reports
The combination of text reports and medical image

data has led to two avenues of research: (1) leverag-
ing reports to improve image classification accuracy
(Schlegl et al., 2015), and (2) generating text reports
from images (Kisilev et al., 2016; Shin et al., 2015,
2016a; Wang et al., 2016e); the latter inspired by recent
caption generation papers from natural images (Karpa-
thy and Fei-Fei, 2015). To the best of our knowledge,
the first step towards leveraging reports was taken by
Schlegl et al. (2015), who argued that large amounts of
annotated data may be di�cult to acquire and proposed
to add semantic descriptions from reports as labels. The
system was trained on sets of images along with their
textual descriptions and was taught to predict semantic
class labels during test time. They showed that semantic
information increases classification accuracy for a va-
riety of pathologies in Optical Coherence Tomography
(OCT) images.

Shin et al. (2015) and Wang et al. (2016e) mined se-
mantic interactions between radiology reports and im-
ages from a large data set extracted from a PACS sys-
tem. They employed latent Dirichlet allocation (LDA),
a type of stochastic model that generates a distribution
over a vocabulary of topics based on words in a docu-
ment. In a later work, Shin et al. (2016a) proposed a sys-

14

mammography

diabetic
retinopaty

breast cancer
metastases

airways

lung nodule

bone  
suppression

prostate

brain lesions

skin lesions
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[Esteva et al. - Nature 2017]

Dermatologist-level classification of  
skin cancer with deep neural networks

20

sensitivity =
True Positives

Positives

specificity =
True Negatives

Negatives
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[Wei, Duvenaud, Aspuru-Guzik, 2016]

21

method that generates product molecule graphs from reactant molecule graphs. An overview of

our method can be found in 1, and is explained in further detail in the Prediction Methods section.

We show the results of our prediction method on 16 basic reactions of alkylhalides and alkenes,

some of the first reactions taught to organic chemistry students in many textbooks.48 The training

and validation reactions were generated by applying simple SMARTS transformations to alkenes

and alkylhalides. While we limit our initial exploration to aliphatic, non-stereospecific molecules,

our method can easily be applied a wider span of organic chemical space with enough example

reactions. The algorithm can also be expanded to include experimental conditions such as reac-

tion temperature and time. With additional adjustments and a larger library of training data, our

algorithm will be able to predict multistep reactions, and eventually, become a module in a larger

machine-learning system for suggesting retrosynthetic pathways for complex molecules.

weights
bias 

Hidden 
layer 

weights
bias

      
 
k = types of 
reactions 

CC(C)(C)CCl [C-]#N COC

Reaction Type 
Prediction:

Target: 
SN

Cl-CC(C)(C)CC#N

Reactant1 Reactant2 Reagent Product Structure
Prediction

Reaction 
Transformation

Fingerprint 
Generation

Neural 
Network 
Training

ClN
Cl C N

O

Figure 1: An overview of our method for predicting reaction type and products. A reaction fin-
gerprint, made from concatenating the fingerprints of reactant and reagent molecules, is the inputs
for a neural network that predicts the probability of 17 different reaction types, represented as a
reaction type probability vector. The algorithm then predicts a product by applying a transforma-
tion that corresponds with the most probable reaction type to the reactants. In this work, we use a
SMARTS transformation for the final step.

5

Neural Networks for the prediction  
 of organic chemistry reactions

predict probability of 17  
different reaction types (~85% accuracy

on test set)

b)

a)

c)

0.   Null Reaction
1.   Nucleophilic substitution
2.   Elimination
3.   Nucleophilic Substitution with Methyl Shift
4.   Elimination with methyl shift
5.   Hydrohalogenation (Markovnikov)
6.   Hydrohalogenation (Anti-Markovnikov)
7.   Hydration (Markovnikov) 
8.   Hydration (Anti-Markovnikov)
9.   Alkoxymercuration-demercuration
10.  Hydrogenation
11.  Halogenation
12.  Halohydrin formation
13.  Epoxidation
14.  Hydroxylation
15.  Ozonolysis
16.  Polymerization

Figure 2: Cross validation results for a) Baseline fingerprint, b) Morgan reaction fingerprint, and
c) neural reaction fingerprint. A confusion matrix shows the average predicted probability for
each reaction type. In these confusion matrices, the predicted reaction type is represented on the
vertical axis, and the correct reaction type is represented on the horizantal axis. These figures were
generated based on code from Schneider et al.43

Performance on predicting reaction type of exam questions

Kayala et al.31 had previously employed organic textbook questions both as the training set and as

the validation set for their algorithm, reporting 95.7% accuracy on their training set. We similarly

decided to test our algorithm on a set of textbook questions. We selected problems 8-47 and 8-48

from the Wade 6th edition organic chemistry textbook shown below in Figure 3.48 The reagents

listed in each problem were assigned as secondary reactants or reagents so that they matched the

training set. For all prediction methods, our networks were first trained on the training set of

generated reactions, using the same hyperparameters found by the cross-validation search. The

similarity of the exam questions to the training set was determined by measuring the Tanimoto49

distance of the fingerprints of the reactant and reagent molecules in each reactant set. The average

7
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Detect extreme weather
using deep learning

[Liu et al - 1605.01156]

Table 1: Deep CNN architecture and layer parameters. The convolutional layer param-
eters are denoted as <filter size>-<number of feature maps> (e.g. 5x5-8). The pooling
layer parameters are denoted as <pooling window> (e.g. 2x2). The fully connected
layer parameter are denoted as <number of units> (e.g. 2).

Conv1 Pooling Conv2 Pooling Fully Fully
Tropical Cyclone 5x5-8 2x2 5x5-16 2x2 50 2
Weather Fronts 5x5-8 2x2 5x5-16 2x2 50 2

Atmospheric River 12x12-8 3x3 12x12-16 2x2 200 2

Table 2: Data Sources

Climate Dataset Time Frame Temporal Resolution Spatial Resolution
(lat x lon degree)

CAM5.1 historical run 1979-2005 3 hourly 0.23x0.31
ERA-Interim reanalysis 1979-2011 3 hourly 0.25x0.25
20 century reanalysis 1908-1948 Daily 1x1

NCEP-NCAR reanalysis 1949-2009 Daily 1x1

Table 3: Size of image patch, diagnostic variables and number of labeled dataset used
for extreme event considered in the study

Events Image Dimension Variables Total Examples
Tropical Cyclone 32x32 PSL,VBOT,UBOT,

T200,T500,TMQ,
V850,U850

10,000 +ve 10,000 -ve

Atmospheric River 148 x 224 TMQ,Land Sea Mask 6,500 +ve 6,800 -ve
Weather Front 27 x 60 2m Temp, Precip,

SLP
5,600 +ve 6,500 -ve

4. DATA
In this study, we use both climate simulations and re-

analysis products. The reanalysis products are produced by
assimilating observations into a climate model. A summary
of the data source and its temporal and spatial resolution is
listed in Table 2. Ground truth labeling of various events
is obtained via multivariate threshold based criteria imple-
mented in TECA [18, 17], and manual labeling by experts
[11, 13]. Training data comprise of image patterns, where
several relevant spatial variables are stacked together over
a prescribed region that bounds a type of event. The di-
mension of the bounding box is based domain knowledge of
events spatial extent in real word. For instance, tropical cy-
clone radius are typically with in range of 100 kilometers to
500 kilometers, thus bounding box size of 500 kilometers by
500 kilometers is likely to capture most of tropical cyclones.
The chosen physical variables are also based on domain ex-
pertise. The prescribed bounding box is placed over the
event. Relevant variables are extracted within the bound-
ing box and stacked together. To facilitate model train-
ing, bounding box location is adjusted slightly such that all
of events are located approximately at the center. Image
patches are cropped and centered correspondingly. Because
of the spatial dimension of climate events vary quite a lot
and the spatial resolution of source data is non-uniform, fi-
nal training images prepared di↵er in their size among the
three types of event. A summary of the attributes of training
images is listed in Table 3.

5. RESULTS AND DISCUSSION
Table 4 summarizes the performance of our deep CNN ar-

chitecture on classifying tropical cyclones, atmospheric rivers
and weather fronts. We obtained fairly high accuracy (89%-
99%) on extreme event classification. In addition, the sys-
tems do not su↵er from over-fitting. We believe this is
mostly because of the shallow and small size of the architec-
ture (4 learnable layers) and the weight decay regularization.
Deeper and larger architecture would be inappropriate for
this study due to the limited amount of training data. Fairly
good train and test classification results also suggest that the
deep CNNs we developed are able to e�ciently learn repre-
sentations of climate pattern from labeled data and make
predictions based on feature learned. Traditional threshold
based detection method requires human expert carefully ex-
amine the extreme event and its environment, thus come
up with thresholds for defining the events. In contrast, as
shown in this study, deep CNNs are able to learn climate
pattern just from the labeled data, thus avoiding subjective
thresholds.

Table 4: Overall Classification Accuracy

Event Type Train Test Train
time

Tropical Cyclone 99% 99% ⇡ 30 min
Atmospheric River 90.5% 90% 6-7 hour
Weather Front 88.7% 89.4% ⇡ 30 min

5.1 Classification Results for Tropical Cyclones
Tropical cyclones are rapid rotating weather systems that

are characterized by low pressure center with strong wind
circulating the center and warm temperature core in upper

classification accuracy

troposphere. Figure 1 shows examples of tropical cyclones
simulated in climate models, that are correctly classified by
deep CNN (warm core structure is not shown in this figure).
Tropical cyclone features are rather well defined, as can be
seen from the distinct low pressure center and spiral flow
of wind vectors around the center. These clear and distinct
characteristics make tropical cyclone pattern relatively easy
to learn and represent within CNN. Our deep CNNs achieved
nearly perfect (99%) classification accuracy.

Figure 2 shows examples of tropical cyclones that are mis-
classified. After carefully examining these events, we believe
they are weak systems (e.g. tropical depression), whose low
pressure center and spiral structure of wind have not fully
developed. The pressure distribution shows a large low pres-
sure area without a clear minimum. Therefore, our deep
CNN does not label them as strong tropical cyclones.

Table 5: Confusion matrix for tropical cyclone classification

Label TC Label Non TC
Predict TC 0.989 0.003

Predict Non TC 0.011 0.997

Figure 1: Sample images of tropical cyclones correctly clas-
sified (true positive) by our deep CNN model. Figure shows
sea level pressure (color map) and near surface wind distri-
bution (vector solid line).

Figure 2: Sample images of tropical cyclones mis-classified
(false negative) by our deep CNN model. Figure shows sea
level pressure (color map) and near surface wind distribution
(vector solid line).

5.2 Classification Results for Atmospheric Rivers
In contrast to tropical cyclones, atmospheric rivers are dis-

tinctively di↵erent events. They are narrow corridors of con-
centrated moisture in atmosphere. They usually originate

in tropical oceans and move pole-ward. Figure 3 shows ex-
amples of correctly classified land falling atmospheric rivers
that occur on the western Pacific Ocean and north Atlantic
Ocean. The characteristics of narrow water vapor corridor
is well defined and clearly observable in these images.
Figure 4 are examples of mis-classified atmospheric rivers.

Upon further investigation, we believe there are two main
factors leading to mis-classification. Firstly, presence of
weak atmospheric river systems. For instance, the left col-
umn of Figure 4 shows comparatively weak atmospheric
rivers. The water vapor distribution clearly show a band of
concentrated moisture cross mid-latitude ocean, but the sig-
nal is much weaker comparing to Figure 3. Thus, deep CNN
does not predict them correctly. Secondly, the presence of
other climate event may also a↵ect deep CNN representa-
tion of atmospheric rivers. In reality, the location and shape
of atmospheric river are a↵ected by jet streams and extra-
tropical cyclones. For example, Figure 4 right column shows
rotating systems (likely extra-tropical cyclone) adjacent to
the atmospheric river. This phenomenon presents challenge
for deep CNN on representing atmospheric river.

Table 6: Confusion matrix for atmospheric river classifica-
tion

Label AR Label Non AR
Predict AR 0.93 0.107

Predict Non AR 0.07 0.893

Figure 3: Sample images of atmospheric rivers correctly clas-
sified (true positive) by our deep CNN model. Figure shows
total column water vapor (color map) and land sea boundary
(solid line).
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Machine learning phases of matter

[Carrasquilla, Melko - Nature 2017]

square-lattice Ising model:
Tc/J = 2.266 ± 0.002 

(exact: 2.269..)

triangular-lattice Ising model:
Tc/J = 3.65 ± 0.01 
(exact: 3.64095…)
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Figure 5: (top) ROC and (bottom) SIC curves of the FLD and the deep convolutional

network trained on (left) 200GeV and (right) 1000GeV Pythia jet images with and without

color compared to baseline jet observables and a BDT of the five jet observables.

e�ciency at 50% quark jet classification e�ciency for each of the jet variables and the CNN

are listed in Table 1. To combine the jet variables into more sophisticated discriminants, a

boosted decision tree (BDT) is implemented with scikit-learn. The convolutional network

outperforms the traditional variables and matches or exceeds the performance of the BDT of

all of the jet variables. The performance of the networks trained on images with and without

color is shown in Figure 6.

5.1 Colored Jet Images

The benchmarks in the previous section were compared to the jet images with and without

color, where the three color channels correspond to separating out the charge and multiplicity

information as described in Section 3.3. Figure 6 shows the SIC curves of the neural network

performances with and without color on Pythia jet images. For the 100GeV and 200GeV

images, only small changes in the network performance were observed by adding in color of

this form. For the 500GeV and 1000GeV jet images, performance increases were consistently

– 13 –

[Komiske, Metodiev, Schwartz - 1612.01551]

⌘

�

b
ea
m

pre-process

convolutional layer

max-pooling

dense layer

quark jet

gluon jet

| {z }
⇥3

Figure 2: An illustration of the deep convolutional neural network architecture. The first

layer is the input jet image, followed by three convolutional layers, a dense layer and an

output layer.

The maxpooling layers performed a 2⇥2 down-sampling with a stride length of 2. The dense

layer consisted of 128 units.

All neural network architecture training was performed with the Python deep learning

libraries Keras [47] and Theano [48] on NVidia Tesla K40 and K80 GPUs using the NVidia

CUDA platform. The data consisted of the 100k jet images per pT -bin, partitioned into 90k

training images and 10k test images. An additional 10% of the training images are randomly

withheld as validation data during training of the model for the purposes of hyperparameter

optimization. He-uniform initialization [49] was used to initialize the model weights. The

network was trained using the Adam algorithm [50] using categorical cross-entropy as a loss

– 8 –

quark/gluon jet discrimination
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1. Machine Learning in Science 
 

2. Open problems in High-Energy Physics (HEP) 
 

3. Statistical test of dataset compatibility
 

4. Applications to HEP
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One of the most accurately 
verified predictions in 

history of physics

anomalous magnetic 
moment of the electron

aexp = 0.001 159 652 180 91(26)
ath   = 0.001 159 652 181 643(764)

more than 10 
significant figures!

Excellent description of 
sub-nuclear phenomena

26



Is there anything left to discover?

> Higgs Discovery 
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2012-07-04
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Standard 
Model

Neutrino 
Masses Matter/Anti-matter 

Asymmetry

Dark Matter

Dark Energy
Hierarchy 
problem

Strong-CP problem

28
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protonproton

29

The most complex  
(and expensive) 

experiment ever built!

Cost ~ 4 GigaEur
counter-rotating proton beams 

in 27km circumference ring

center-of-mass energy: 13 TeV

- ATLAS 
- CMS 
- LHCb 
- ALICE

detectors at 4 collision points:
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~ 2100 physicists
37 countries

167 universities/labs
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> Standard Analysis Pipeline 
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Bkg & Signal
Simulation

Events Selection

Statistical Significance
(    ,  likelihood ratio, …)

Histograms

Observed countsExpected counts

�2

32

Variables Selection

Data
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Model N
Standard 
AnalysisData

compatible?

yes

no

discovery!

Model 1
Standard 
AnalysisData

compatible?

yes

no
constraints 
on params

discovery!

Model 2
Standard 
AnalysisData

compatible?

yes

no

discovery!

… … …

constraints 
on params

constraints 
on params
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1. New Physics is not accessible by LHC  
              new particles are too light/heavy  
                   or interacting too weakly  
 
2. We have not explored all the possibilities 
              new physics may be buried under large bkg  
                   or hiding behind unusual signatures

MAYBE:

34

Searches for New Physics Beyond the Standard Model 
have been negative so far…
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“Don’t want to miss a thing” (in data) 
              closer look at currently available data  
                   get ready for upcoming data from next Run of LHC 
                   
 
Model-independent search 
              searches for specific models may be insensitive 
                   to unexpected / unknown / anomalous processes

35
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1. Machine Learning in Science 
 

2. Open problems in High-Energy Physics (HEP) 
 

3. Statistical test of dataset compatibility
 

4. Applications to HEP



> New Statistical Test

A. De Simone        37

1. model-independent:  
  no assumption about underlying physical model to intepret data

                  more general  

2. non-parametric:  
  compare two samples as a whole (not just their means, etc.) 
                         fewer assumptions, no max likelihood estim. 

3. un-binned: 
   high-dim feature space partitioned without rectangular bins

                                    retain full multi-dim info of data

Want a statistical test for NP which is: 
[DS, Jacques - 1807.06038]
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> Two-sample Test 

38

[a.k.a. “homogeneity test”]Two sets: 

probability distributions pB,pT  unknown
Benchmark:

Trial:
B = {x0

1, . . . ,x
0
NB

} iid⇠ pB

T = {x1, . . . ,xNT }
iid⇠ pT

xi,x
0
i 2 RD

e.g.:     simulated SM bkg                     real measured data 



easy…
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Are B,T drawn from the same prob. distribution?

> Two-sample Test 

39

Two sets: 

probability distributions pB,pT  unknown
Benchmark:

Trial: T = {x1, . . . ,xNT }
iid⇠ pT

xi,x
0
i 2 RD

B = {x0
1, . . . ,x

0
NB

} iid⇠ pB
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> Two-sample Test 

40

Are B,T drawn from the same prob. distribution?

… hard!

Two sets: 

probability distributions pB,pT  unknown
Benchmark:

Trial: T = {x1, . . . ,xNT }
iid⇠ pT

xi,x
0
i 2 RD

B = {x0
1, . . . ,x

0
NB

} iid⇠ pB
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Why is it important? 
 
              - decide whether two datasets can be analyzed jointly 

- find anomalous data points (outliers) 
 
- detect changes in the underlying distributions
 
- detect events in streams of data (time-series data) 

- check if data are compatible with expectations 
 
- …

41
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RECIPE: 
1. Density Estimator
                     reconstruct PDFs from samples
 
2. Test Statistic (TS) 
                    measure “distance” between PDFs 
 
3. TS distribution
                    associate probabilities to TS  
                    under null hypothesis H0: pB = pT 
 
4. p -value 
                     accept/reject H0
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T

Divide the space in squared bins?

43

✓  easy
✓  can use simple statistics (e.g.     ) 
✘  hard/slow/impossible in high-D

�2B

Nearest Neighbors!
[Schilling - 1986][Henze - 1988] 

[Wang et al. - 2005,2006] 
[Dasu et al. - 2006][Perez-Cruz - 2008] 

[Sugiyama et al. - 2011][Kremer et al, 2015]

Need un-binned  
multivariate approach

> 1. Density Estimator

Find PDFs estimators: 
e.g. based on densities of points: 

p̂B(x), p̂T (x)

p̂B,T (x) =
⇢B,T (x)

NB,T
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T

B

xj

44

xj

• Fix integer K. 

• Choose query point xj in T and  
draw it in B. 

> 1. Density Estimator
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T

rj,B

xj

45

xj

B
• Fix integer K. 

• Choose query point xj in T and  
draw it in B. 

• Find the distance rj,B  of the  
Kth-NN of xj  in B. 

> 1. Density Estimator
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T

xj
rj,T
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xj

rj,B

B
• Fix integer K. 

• Choose query point xj in T and  
draw it in B. 

• Find the distance rj,B  of the  
Kth-NN of xj  in B. 

• Find the distance rj,T  of the  
Kth-NN of xj  in T. 

> 1. Density Estimator
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T

• Fix integer K. 

• Choose query point xj in T and  
draw it in B. 

• Find the distance rj,B  of the  
Kth-NN of xj  in B. 

• Find the distance rj,T  of the  
Kth-NN of xj  in T. 

• Estimate PDFs:
xj

47

xj

rj,T

rj,B

B

p̂B(xj) =
K

NB

1

!DrDj,B

p̂T (xj) =
K

NT � 1

1

!DrDj,T

> 1. Density Estimator
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> 2. Test Statistic

• Measure of the “distance” between 2 PDFs 

• Define Test Statistic: 
(detect under-/over-densities)

• Related to Kullback-Leibler divergence as: 

 
 

• From NN-estimated PDFs: 
 

• Theorem: this estimator converges to DKL(pB ||pT), 
                  in large sample limit

48

TS(T ) ⌘ 1

NT

NTX

j=1

log

p̂T (xj)

p̂B(xj)

TS(T ) = D̂KL(p̂T ||p̂B)

TS(T ) =

D

NT

NTX

j=1

log

rj,B
rj,T

+ log

NB

NT � 1

[Wang et al. - 2005,2006]

DKL(p||q) ⌘
Z

RD

p(x) log
p(x)

q(x)
dx



> 3. Test Statistic Distribution
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Permutation test!

49

How is TS distributed?

Assume pB=pT. Union set:

T
eT

eBB

Random reshuffle U

Compute the test  
statistic TSn on:

(B̃, T̃ )

U = T [ B

Repeat many times.

f(TS|H0) {TSn}Distribution of TS under H0:
[asymptotically normal with zero mean]



> 4. p-value
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TS ! TS0 ⌘ TS� µ̂

�̂

f 0(TS0|H0) = �̂f(µ̂+ �̂TS0|H0)

µ̂, �̂ :•            mean,variance of TS distribution 
 

•  Standardize the TS: 
 

• TS’ distributed according to  
 

• Two-sided p-value: 
 
 
 

• Equivalent significance: 

f(TS|H0)

p = 2

Z +1

|TS0
obs

|
f 0(TS0|H0)dTS

0

Z ⌘ ��1(1� p/2)



> Gaussian Example
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exact KL  
divergence

µB =

✓
1.0
1.0

◆
µT =

✓
1.2
1.2

◆

⌃B = ⌃T =

✓
1 0
0 1

◆
pB = N (µB ,⌃B) pT = N (µT ,⌃T )

K = 5, Nperm = 1000

µB =

✓
1.0
1.0

◆
µT =

✓
1.15
1.15

◆

more data, 
more power



> Where are the discrepancies? 
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1. “Score” field over T:                                              with: 
 
 
 
 
 
 
 

2. Identify points  where  
  They contribute the most to large TSobs

                 high-discrepancy (anomalous) regions 

3. Apply a clustering algorithm to group them

Bonus: Characterize regions with significant discrepancies

Z(x) > c

Z(xj) ⌘
u(xj)� ū

�u

Z

x

u(xj) ⌘ log

rj,B
rj,T

TS

obs

= D ū+ const



INPUT: 

OUTPUT: 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p -value of the null hypothesis H0: pB = pT
[check compatibility between 2 samples]

pB,pT unknown

53

Trial sample:
Benchmark sample:

K:      
Nperm:

T = {x1, . . . ,xNT }
iid⇠ pT

B = {x0
1, . . . ,x

0
NB

} iid⇠ pB

xi,x
0
i 2 RD

number of nearest neighbors
number of permutations

> NN2ST: Summary



K-NN density

ratio estimation

Test Statistic

permutation test

p value

TS distribution 

-|TSobs|

TSobs
Benchmark sample

Trial sample

|TSobs|
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> NN2ST: Summary

github.com/de-simone/NN2ST [DS, Jacques - 1807.06038]
Python code: Paper:

https://github.com/de-simone/NN2ST


> NN2ST: Summary
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✓  general, model-independent 
✓   fast, no optimization
✓   sensitive to unspecified signals 
✓   useful when no variable can separate sig/bkg 
✓   helps finding signal regions, optimal cuts, … 
 
✘    need to run for each sample pair 
✘    permutation test is bottleneck 
✘    limited by sample accuracies



> Outline 
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1. Machine Learning in Science 
 

2. Open problems in High-Energy Physics (HEP) 
 

3. Statistical test of dataset compatibility
 

4. Applications to HEP



> Standard Analysis Pipeline 

A. De Simone        

Bkg & Signal
Simulation

Events Selection

Statistical Significance
(    ,  likelihood ratio, …)

Histograms

Observed countsExpected counts

�2

57

Variables Selection

Data



> Our Method
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Reject  
null hypothesis?

NN2ST

58

Bkg
Simulation Data

yes hint of 
new physics!

select regions 
to explore

(Trial)(Benchmark)

noNo signal 
in data



• “proof-of-principle” study 

• bkg:                                   
sub-leading bkgs not included 

• no full detector effects 
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mDM = 100 GeV
mZ' = 1.2, 2, 3 TeV
gDM = 1, gq = 0.1

DM + Z’ 
vector mediator

Z’

proton

proton

jet

DM

DM

> DM search @ LHC 

p
s = 13 TeV

Z ! ⌫⌫̄ + (1, 2) j

Benchmark:  BKG1 
          Trials:  BKG2 + SIG 
                K = 5       
           Nperm = 3000

8 features:
    - n. of jets
    -          of 2 leading jets
    - 
    - 

Emiss
T , HT

pT , ⌘

��Emiss
T ,j1
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  B:  BKG1 (20k events) 
T1:  BKG2 (20k events) + SIG1 (2010 events)
T2:  BKG2 (20k events) + SIG2 (375 events)
T3:  BKG2 (20k events) + SIG3 (59 events)

Sample MZ’ !signal Z

T1 1.2 TeV 20.4 pb >15 !

T2 2 TeV 3.8 pb 10 !

T3 3 TeV 0.6 pb 0.13 !

• in real world:  
expect degradation of results  
(uncertainties) 

• the method has value,  
it is worth exploring

Nsig = NB ⇥ �signal

�bkg

> DM search @ LHC 

Expt. Collab. at CERN interested in applying this test



Nsig = NB ⇥ �signal

�bkg

A. De Simone        61

NB = 20 000

NT = NB +Nsig

more data, 
more power

stronger signal
easier to discover

> DM search @ LHC 



> Outlook
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- inclusion and impact of uncertainties 

- adaptive choice of K 

- identifying discrepant regions in realistic situations 
  (with Z-score method) 
 
- validation tool for bkg:  
  compatibility between MC sims. and data in control regions

- scalability

Directions for future work:



1. Golden age of Machine Learning    
                        Big Data are everywhere 
 

2. Innovative Statistical Test for New Physics 
                  - Powerful and model-independent discovery tool 
                        - Guidance for experimental searches 
 

3. ML for science in germinal stage
      Pioneering developments waiting ahead!

> Take-Home Messages 
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