Ultra-thin Carbon Fiber Composites: Constitutive Modeling and Applications to Deployable Structures

Lectures 3-4

Sergio Pellegrino
California Institute of Technology
sergiop@caltech.edu

Outline

- Homogenization theory and elastic constitutive model for TWF
- Experimental validation
- Thermo-elastic behavior of TWF

Linear-Elastic Constitutive Model

- Kirchhoff thin plate model
- Displacement components of mid-surface: u, v, w
- Kinematic variables: $\varepsilon_x =$

mid-plane strains $\varepsilon_y = \frac{\partial v}{\partial x}$

$$\varepsilon_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}$$

$$\kappa_x = -\frac{\partial^2 w}{\partial x^2}$$

mid-plane curvatures

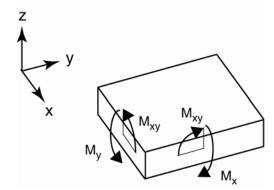
$$\kappa_y = -\frac{\partial^2 w}{\partial u^2}$$

$$\kappa_{xy} = -2 \frac{\partial^2 w}{\partial x \partial y}$$

Note:

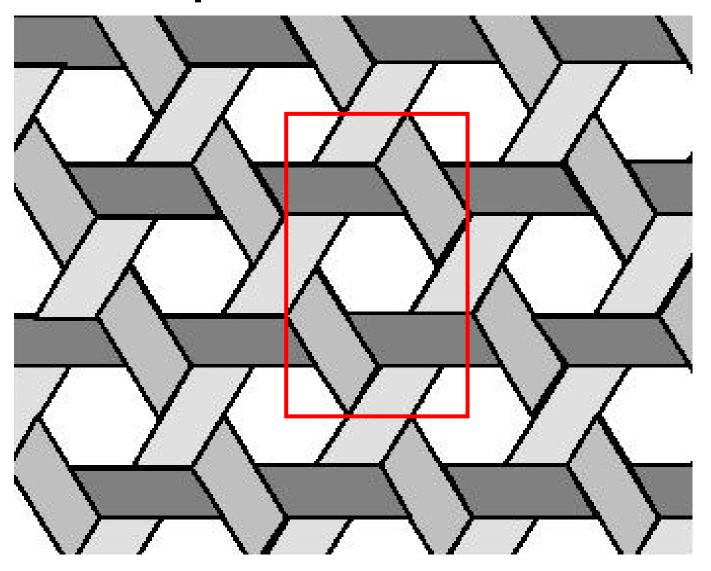
We use the engineering shear strain and twice the surface twist

ABD Matrix



- A_{ij}, B_{ij}, and D_{ij} represent the in-plane (stretching and shearing), coupling, and out-of-plane (bending and twisting) stiffnesses of the plate.
- ABD matrix is symmetric and so A and D are also symmetric. However (unlike the case of a laminated plate) in general B is not symmetric.

A Simple Cartesian Unit Cell



Periodic Boundary Conditions: an Engineering Approach (1)

Expand each displacement component into a Taylor's series

$$u = u_0 + \left(\frac{\partial u}{\partial x}\right)_0 x + \left(\frac{\partial u}{\partial y}\right)_0 y$$

$$v = v_0 + \left(\frac{\partial v}{\partial x}\right)_0 x + \left(\frac{\partial v}{\partial y}\right)_0 y$$

$$w = w_0 + \left(\frac{\partial w}{\partial x}\right)_0 x + \left(\frac{\partial w}{\partial y}\right)_0 y + \frac{1}{2} \left(\frac{\partial^2 w}{\partial x^2}\right)_0 x^2 + \left(\frac{\partial^2 w}{\partial x \partial y}\right)_0 xy + \frac{1}{2} \left(\frac{\partial^2 w}{\partial y^2}\right)_0 y^2$$

Then substitute the strain and curvature components

$$u = u_0 + \varepsilon_x x + \frac{1}{2} \varepsilon_{xy} y$$

$$v = v_0 + \frac{1}{2} \varepsilon_{xy} x + \varepsilon_y y$$

$$w = -\theta_{y0} x + \theta_{x0} y - \frac{1}{2} \kappa_x x^2 - \frac{1}{2} \kappa_{xy} x y - \frac{1}{2} \kappa_y y^2$$

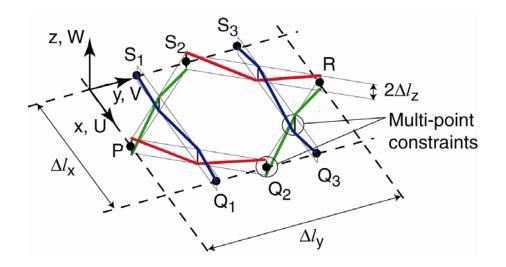
Periodic Boundary Conditions: an Engineering Approach (2)

Differentiate w to find expressions for the slopes

$$\theta_x = \frac{\partial w}{\partial y} = \theta_{x0} - \frac{1}{2}\kappa_{xy}x - \kappa_y y$$

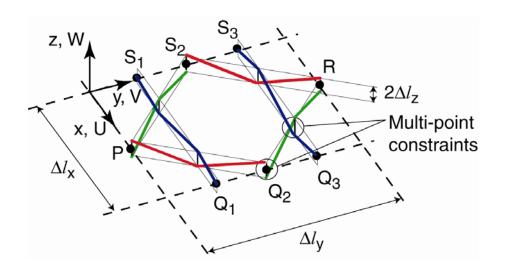
$$\theta_y = -\frac{\partial w}{\partial x} = \theta_{y0} + \kappa_x x + \frac{1}{2}\kappa_{xy} y$$

Now consider a finite element model of our unit cell



Periodic Boundary Conditions: an Engineering Approach (3)

Consider a general pair of nodes lying on boundaries of the unit cell.
The change in *in-plane displacement* between these two nodes is
set equal to the deformation of two corresponding points on the
homogenized plate.



$$u^{Q_i} - u^{S_i} = \varepsilon_x \Delta l_x$$

$$v^{Q_i} - v^{S_i} = \frac{1}{2} \varepsilon_{xy} \Delta l_x$$
for $i = 1, 2, 3$

$$u^R - u^P = \frac{1}{2} \varepsilon_{xy} \Delta l_y$$

$$v^R - v^P = \varepsilon_y \Delta l_y$$

Periodic Boundary Conditions: an Engineering Approach (4)

We follow the same approach for w

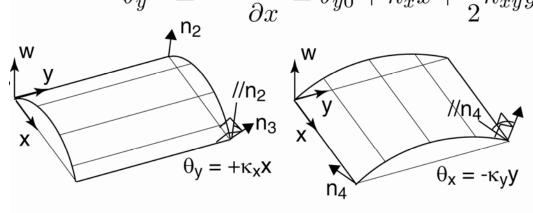
$$w = w_0 + \left(\frac{\partial w}{\partial x}\right)_0 x + \left(\frac{\partial w}{\partial y}\right)_0 y + \frac{1}{2} \left(\frac{\partial^2 w}{\partial x^2}\right)_0 x^2 + \left(\frac{\partial^2 w}{\partial x \partial y}\right)_0 xy + \frac{1}{2} \left(\frac{\partial^2 w}{\partial y^2}\right)_0 y^2$$

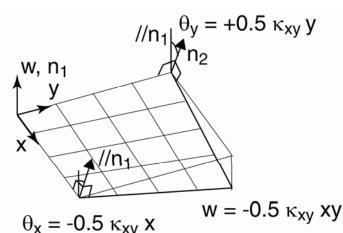
and again substitute the strain and curvature components

$$w = -\theta_{y0}x + \theta_{x0}y - \frac{1}{2}\kappa_x x^2 - \frac{1}{2}\kappa_{xy}xy - \frac{1}{2}\kappa_y y^2$$

$$\theta_x = \frac{\partial w}{\partial y} = \theta_{x0} - \frac{1}{2}\kappa_{xy}x - \kappa_y y$$

$$\theta_y = -\frac{\partial w}{\partial x} = \theta_{y0} + \kappa_x x + \frac{1}{2}\kappa_{xy}y$$





Periodic Boundary Conditions: an Engineering Approach (5)

 Substituting the coordinates of the relevant pairs of boundary nodes these compatibility equations yield

$$w^{Q_i} - w^{S_i} = -\frac{1}{2} \kappa_{xy} y_i \Delta l_x$$

$$w^R - w^P = -\frac{1}{2} \kappa_{xy} \frac{\Delta l_x}{2} \Delta l_y$$

$$\theta_x^{Q_i} - \theta_x^{S_i} = -\frac{1}{2} \kappa_{xy} \Delta l_x$$

$$\theta_y^{Q_i} - \theta_y^{S_i} = \kappa_x \Delta l_x$$

$$\theta_x^R - \theta_x^P = -\kappa_y \Delta l_y$$

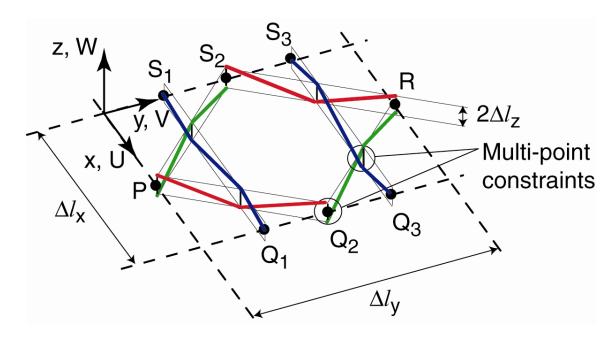
$$\theta_y^R - \theta_y^P = \frac{1}{2} \kappa_{xy} \Delta l_y$$

In addition, we set

and

$$\theta_z^R - \theta_z^P = 0 \qquad \theta_z^{Q_i} - \theta_z^{S_i} = 0$$

Unit Cell FE Model

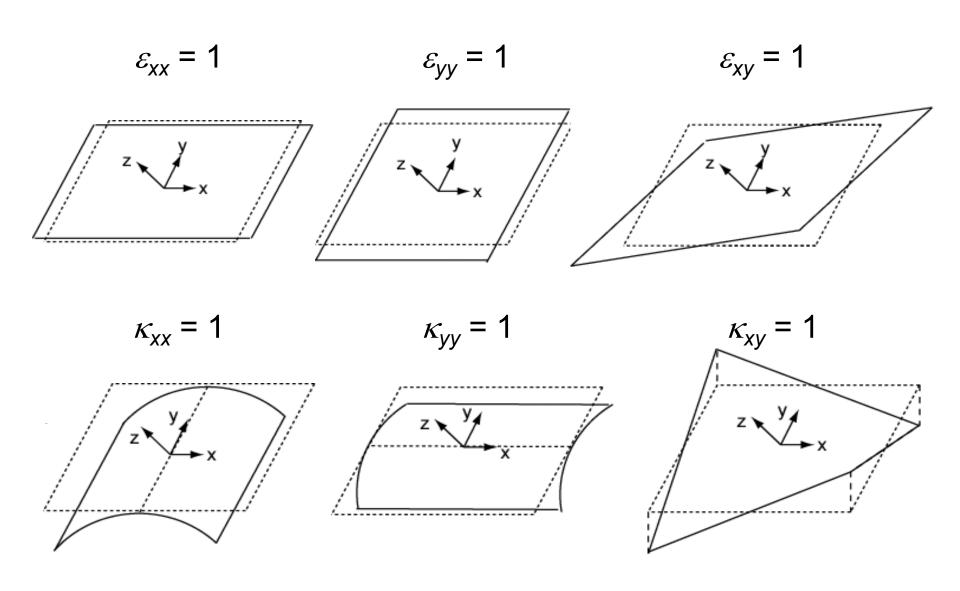


- Wavy beams with rectangular cross-section (0.803 mm x 0.078 mm)
- Rigid beam multi-point constraints (MPC)
- 8 boundary nodes on mid-plane
- Periodic boundary conditions: $\Delta u_i = \varepsilon_{ij} \Delta x_{j}$, $\Delta \theta_i = \kappa_{ij} \Delta x_{j}$

Calculation of ABD matrix

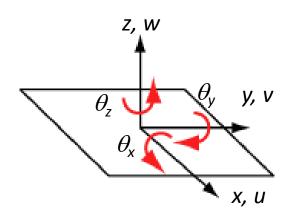
- To derive the ABD matrix six unit deformations are imposed on the unit cell, in six separate analyses.
- In each analysis a single average strain/curvature is set equal to one and all others are set equal to zero. For instance, in the first analysis, ε_x = 1 while ε_y = ε_{xy} =0 and ε_x = ε_y = ε_{xy} =0.
- Each of the six analyses provides one set of deformations, including displacement and rotation components at the 8 boundary nodes, and one set of corresponding constraint forces and moments at the same nodes.

Six Virtual Deformation Modes



Virtual work computation of ABD matrix

Entry [1,1] of ABD matrix, A₁₁



$$N_{xx}\varepsilon_{xx}\Delta l_x\Delta l_y = \sum_{b,n_x} (F_x u + F_y v + F_z w + M_x \theta_x + M_y \theta_y + M_z \theta_z)$$

• since $\varepsilon_{xx} = 1$,

$$A_{11} = \frac{\sum_{b.n.} (F_x u + F_y v + F_z w + M_x \theta_x + M_y \theta_y + M_z \theta_z)}{\Delta l_x \Delta l_y}$$

Results of 6 FE Analyses (A, B, C,...)

 u_{PF} u_{PB} u_{PC} u_{PD} u_{PE} v_{PA} v_{PB} v_{PC} v_{PD} v_{PE} v_{PF} w_{PA} w_{PB} w_{PC} w_{PE} w_{PF} w_{PD} Boundary θ_{PxB} $heta_{PxC}$ θ_{PxD} $heta_{PxE}$ θ_{PxF} node $egin{array}{ll} heta_{PyA} & heta_{PyB} \ heta_{PzA} & heta_{PzB} \end{array}$ $heta_{PyE}$ $heta_{PyC}$ θ_{PyD} θ_{PyF} displ. & $heta_{PzB}$ θ_{PzF} $heta_{PzC}$ $heta_{PzE}$ $heta_{PzD}$ rotns $u_{Q_1A} \quad u_{Q_1B}$ u_{Q_1C} u_{Q_1D} u_{Q_1E} u_{Q_1F} θ_{S_3zA} θ_{S_3zB} θ_{S_3zC} θ_{S_3zD} θ_{S_3zE} θ_{S_3zF}

Boundary F_{PxA} F_{PxE} F_{PxB} F_{PxC} F_{PxD} F_{PxF} F_{PyA} node F_{PyB} F_{PyC} F_{PyD} F_{PyE} F_{PyF} force & F_{PzF} F_{PzA} F_{PzB} F_{PzC} F_{PzD} F_{PzE} couples C_{PxA} C_{PxE} C_{PxB} C_{PxF} C_{PxC} C_{PxD} C_{PyB} C_{PyE} C_{PyC} C_{PyD} C_{PyF} C_{PzA} C_{PzB} C_{PzC} C_{PzD} C_{PzE} C_{PzF} F_{Q_1xA} F_{Q_1xB} F_{Q_1xC} F_{Q_1xF} F_{Q_1xD} F_{Q_1xE} C_{S_3zA} C_{S_3zB} C_{S_3zC} C_{S_3zD} C_{S_3zE} C

And the final outcome is...

• General expression:
$$ABD = \frac{U^T F}{\Delta l_x \cdot \Delta l_y}$$

And for TWF this gives:

where the units are N and mm

Symmetry Properties

Quasi-isotropic conditions

$$A_{11} = A_{22}, \quad A_{66} = (A_{11} - A_{12})/2$$

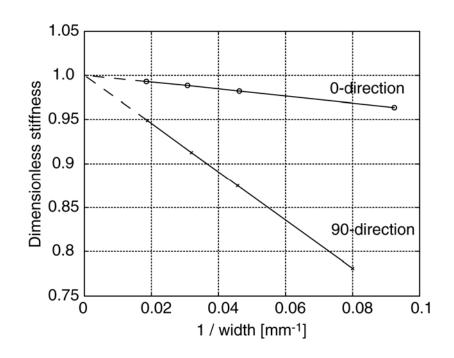
 $D_{11} = D_{22}, \quad D_{66} = (D_{11} - D_{12})/2$

Inverse of ABD Matrix

$$\left\{ \begin{array}{c} \varepsilon_x \\ \varepsilon_y \\ \varepsilon_{xy} \\ \kappa_x \\ \kappa_y \\ \kappa_{xy} \end{array} \right\} = 10^6 \times \left[\begin{array}{cccc|cccc} 473 & -284 & 0 & 0 & 0 & 614 \\ -284 & 473 & 0 & 0 & 0 & -614 \\ \hline 0 & 0 & 1515 & -614 & 614 & 0 \\ \hline 0 & 0 & -614 & 514086 & -143070 & 0 \\ \hline 0 & 0 & 614 & -143070 & 514086 & 0 \\ \hline 614 & -614 & 0 & 0 & 0 & 1314268 \end{array} \right] \left\{ \begin{array}{c} N_x \\ N_y \\ N_{xy} \\ \hline M_x \\ M_y \\ M_{xy} \end{array} \right\}$$

Experimental Validation of Constitutive Model

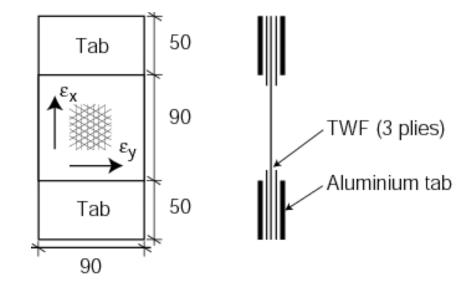
Size Effects



- Less sensitive in 0-direction, hence we test 0-direction specimens to obtain "material" characterization
- Edge effects in actual structures will need additional characterization

Tension Test - I

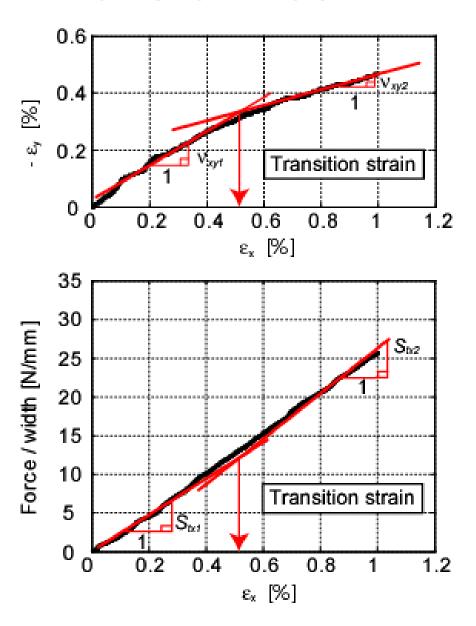
- Square test area
- Additional TWF layers act as reinforcement near tabs
- Loading rate: 1 mm/min
- Measure displacement of retro-reflective strips with laser extensometers



Front view Side view

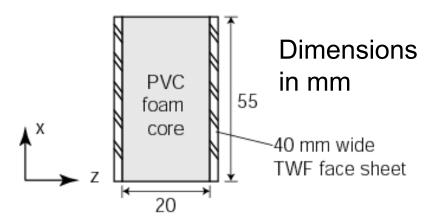
Dimensions in mm

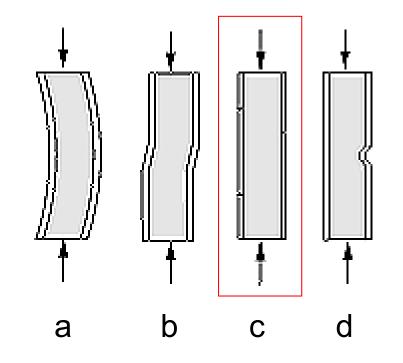
Tension Test - II



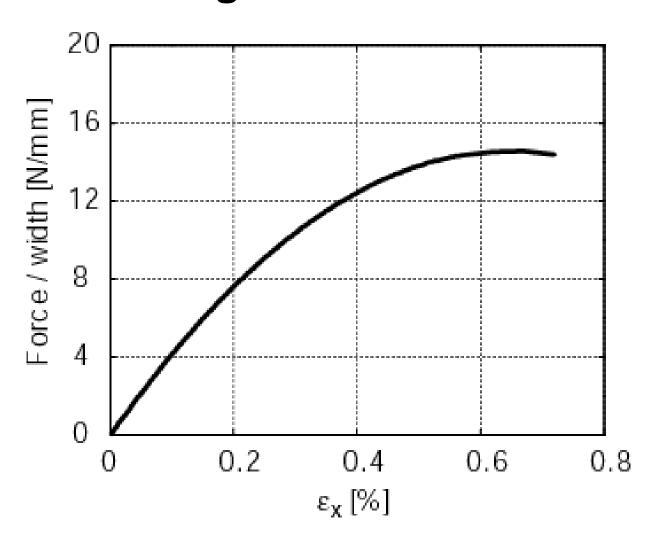
Compression Test

- Failure should be by fibre microbuckling
- Sandwich of 40 mm x 55 mm
 TWF and PVC foam core
- Loading rate: 1 mm/min
- Contraction along x-axis measured by laser extensometer

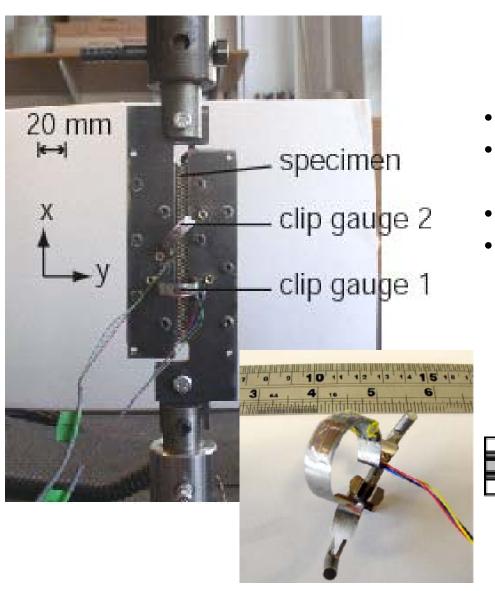




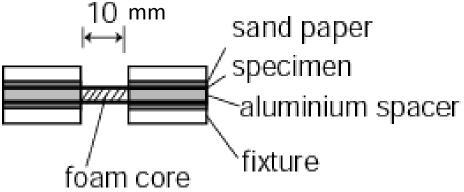
Compression Force/Width vs Longitudinal Strain



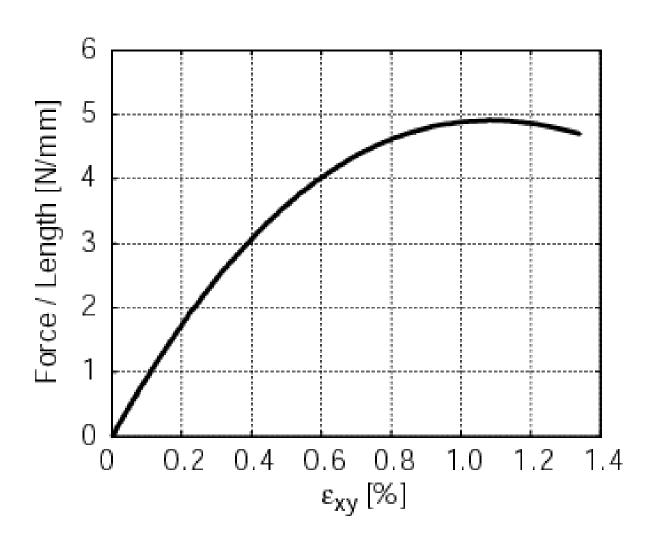
In-plane Shear Test



- Modified 2-rail shear rig
- 130 mm long sandwich specimen (PVC foam core)
- Loading rate: 0.5 mm/min
- Strains at 0° and 45° measured by clip gauges

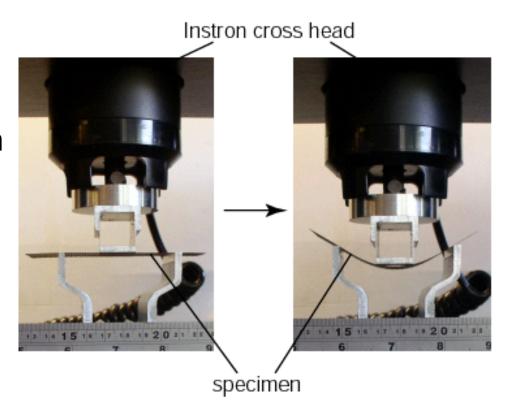


Shear Force / Length vs Shear Strain

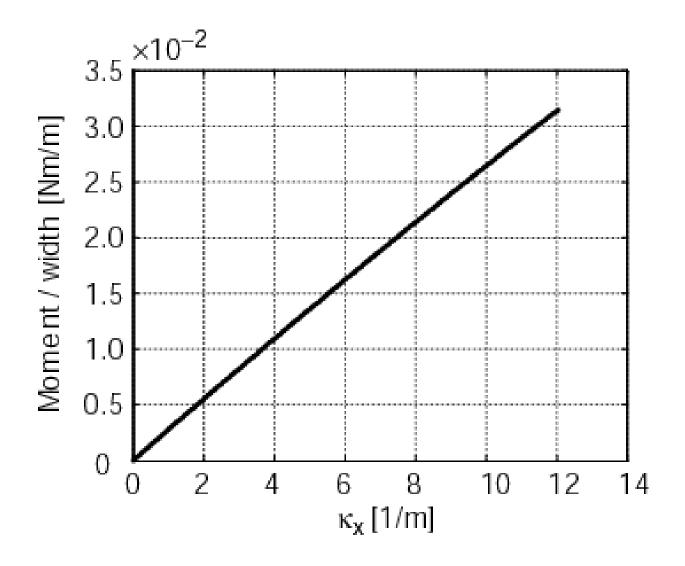


Bending Test

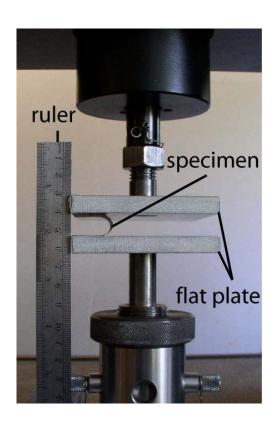
- 4-point bending to achieve uniform curvature
- 100 mm x 40 mm specimen
- Loading rate: 1 mm/min
- Mid-span deflection measured with laser extensometer



Moment / Width vs Curvature



Failure Curvature



- Tests on 40 mm wide by 50 mm long specimens
- Recorded with a video camera

	Minimum radius, [mm]
Average	2.636
Std. dev.	0.076

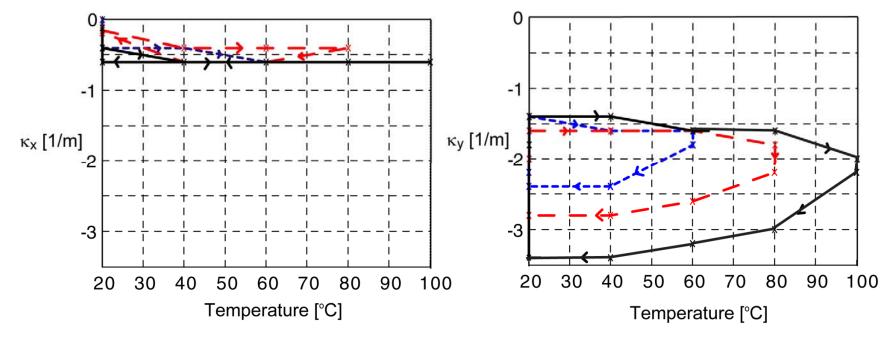
ABD Matrix Comparison

Property	Prediction	Measurement (average)	Deviation [%]
Extensional stiffness, S _x [N/mm]	2114	2178	1
Poisson's ratio, v_{xy}	0.601	0.6	3
Shear stiffness, S _{xy} [N/mm]	660	777	14
Bending stiffness, D _x [Nmm]	1.945	2.077	4

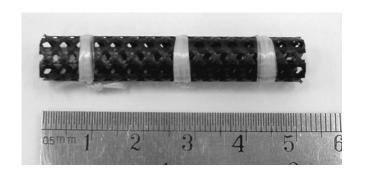
Thermo-Mechanical Behavior

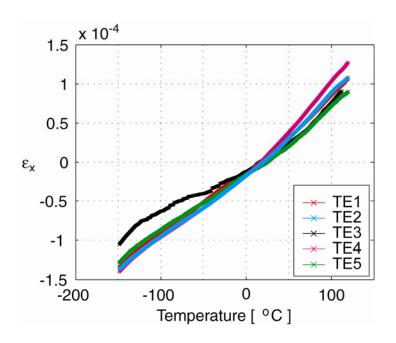
Background

- x axis is vertical, y axis is horizontal
- Thermal deformation tests on 200 mm x 90 mm specimens showed evidence of thermal buckling



CTE Tests

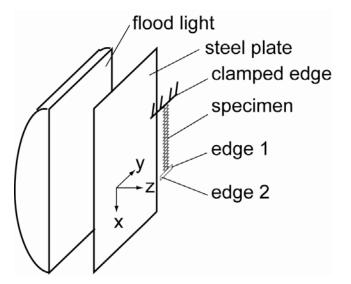


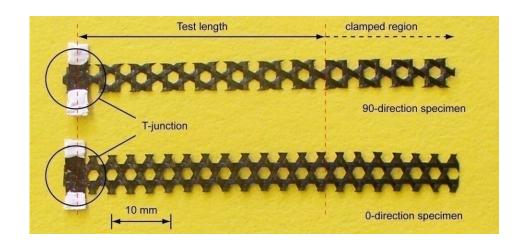


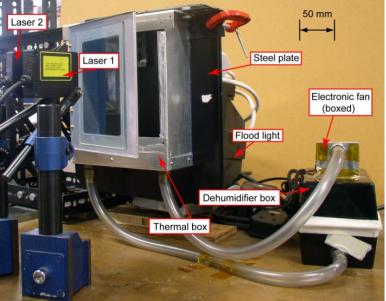
- 50 mm long cylindrical specimens wrapped with Kevlar cord
- WSK TMA 500 dilatometer
- Tests carried out by Dr Leri Datashvili at TU Munich

Specimen	$CTE \times 10^{-6} [/^{\circ}C]$
TE1	1.067
TE2	0.664
TE3	0.969
TE4	0.969
TE5	1.117
Average	0.957
Std. dev.	0.176
Variation [%]	18.38

Thermal Twist Tests

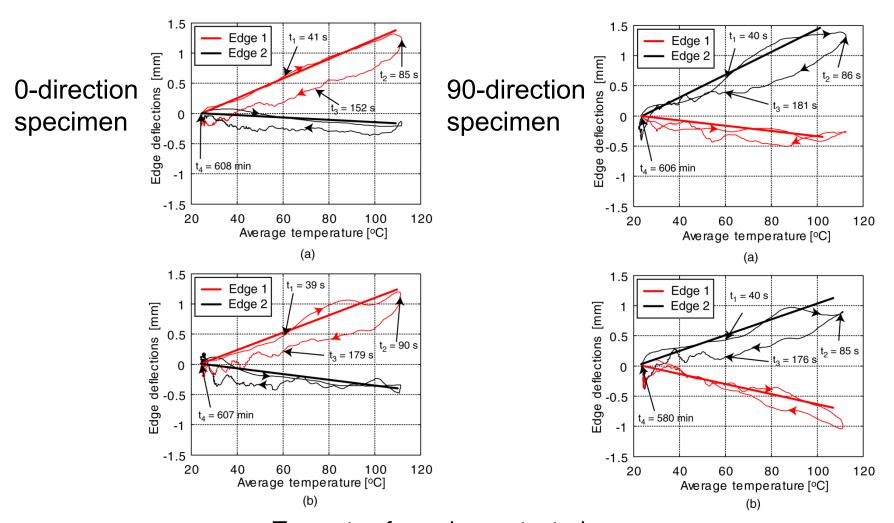






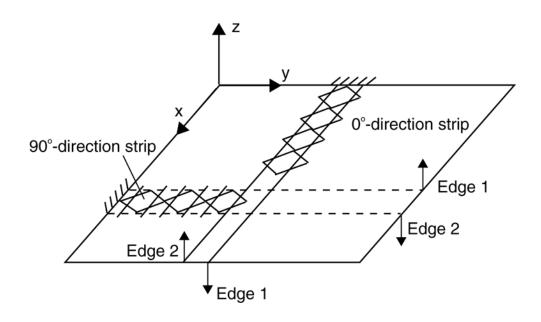
- Specimens held in vacuum for 24 hours
- Radiant heating
- Dry chamber

Tip Deflections



Two sets of specimens tested

Tip Deflections due to Positive Twisting Curvature



Coefficient of Thermal Twist

 The corresponding twist per unit length of each strip, or Coefficient of Thermal Twist, β, can be determined by dividing the twisting curvature

$$\kappa_{xy} = -2 \frac{\partial^2 w}{\partial x \partial y}$$

by the total temperature change, hence

$$\beta = -2\frac{\Delta w}{dL\Delta T}$$

 $\Delta w = \text{difference in out-of-plane deflection between two tip edges}$ d = distance between edge points measured by two lasers (9.1 mm in both strips)

L = strip length

 ΔT = change of temperature

Values of β

Specimen	eta_0	eta_{90}
TT1	-6.910E-05	-8.809E-05
TT2	-7.254E-05	-9.211E-05
TT3	-7.491E-05	-9.111E-05
Average	-7.218E-05	-9.044E-05
Std. dev.	2.921E-06	2.093E-06
Variation [%]	4.05	2.31

(units mm⁻¹ °C⁻¹)

CTE of a Single Tow

The longitudinal thermal expansion coefficient is derived from

$$\alpha_1 = \frac{E_{1f}\alpha_{1f}V_f + E_m\alpha_mV_m}{E_{1f}V_f + E_mV_m}$$

and the transverse thermal expansion coefficient from

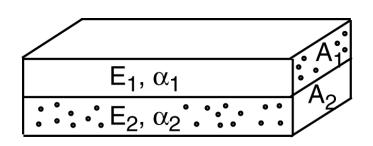
$$\alpha_2 = \alpha_3 = V_f \alpha_{2f} \left(1 + \nu_{12f} \frac{\alpha_{1f}}{\alpha_{2f}} \right) + V_m \alpha_m (1 + \nu_m) - (\nu_{12f} V_f + \nu_m V_m) \alpha_1$$

Substituting our tow properties we obtain

Longitudinal CTE, α ₁ [/ºC]	0.16 x 10 ⁻⁶
Transverse CTE, α_2 [/°C]	37.61 x 10 ⁻⁶

The longitudinal CTE we measured is 1 x 10⁻⁶. Out by a factor of 6.

Analytical Prediction of CTE of Woven Tow



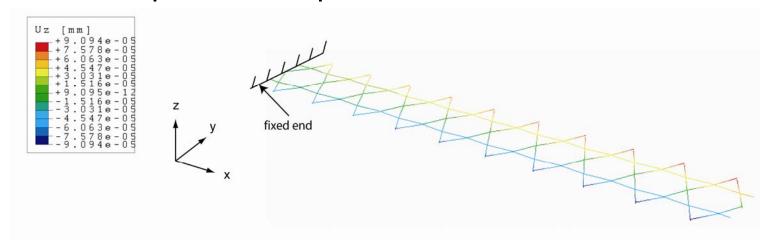
- Consider a straight tow with longitudinal CTE α_1 and modulus E₁, perfectly bonded to a series of perpendicular tows. Their CTE in the direction of the first tow is α_2 and the modulus E_2 .

• The CTE of this composite is
$$\alpha_c = \left[\alpha_1 + \frac{(EA)_2(\alpha_2 - \alpha_1)}{(EA)_1 + (EA)_2}\right]$$

 Assuming 2/3 coverage of each tow by a perpendicular tow, we predict α =2.2 x 10⁻⁶ /°C

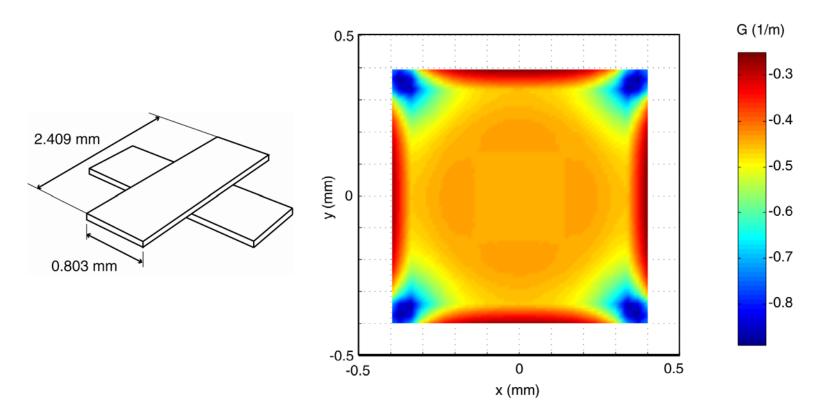
Analytical prediction of CTT

 The first attempt used the wavy beam model of a 0direction specimen to predict the thermal twist



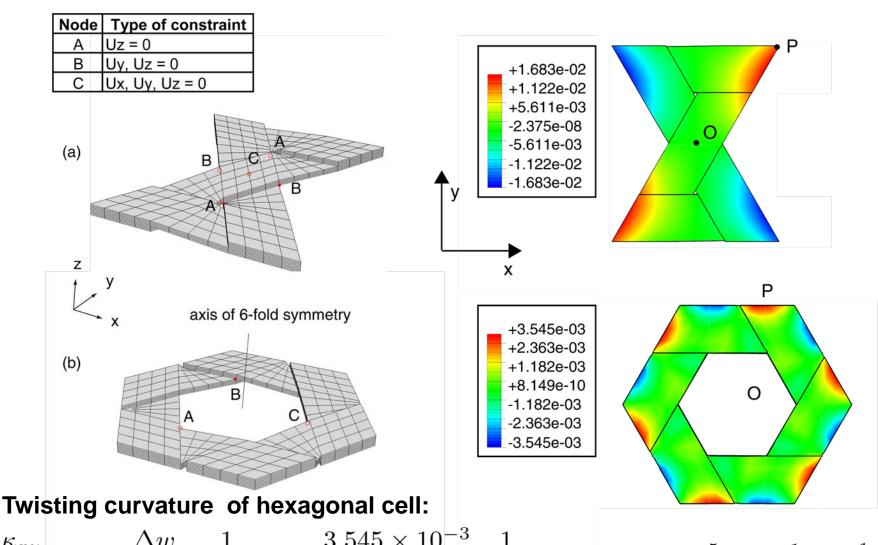
• This gave -1.136 x 10⁻⁸ /mm °C which is much smaller than the measured value.

Actual Deformation is 3D!



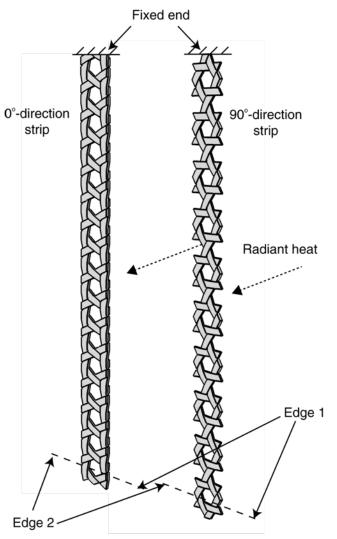
- Gaussian curvature of tow interface due to ∆T =100 °C
- Analysis of two straight tows at 90 degrees shows
 - contact region deforms into a saddle
 - tows become transversally curved

Some More Realistic Geometries



 $\frac{\kappa_{xy}}{\Delta T} \approx -2\frac{\Delta w}{\Delta x \Delta y} \frac{1}{\Delta T} = -2\frac{3.545 \times 10^{-3}}{0.58 \times 2.7} \frac{1}{100} = -4.53 \times 10^{-5} \text{ mm}^{-1} \, ^{\circ}\text{C}^{-1}$

Two kinds of strips

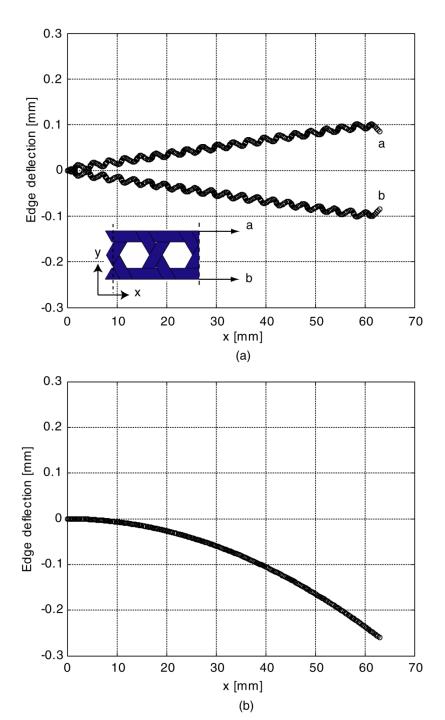


- Two load cases:
 - uniform temperature distribution or linearly varying through thickness
- First cell "clamped"
- Results insensitive to details of boundary conditions

Edge Deflections (0-direction)

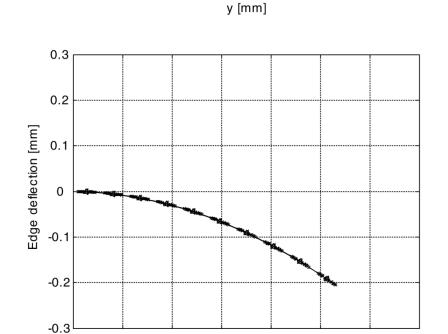
Uniform ∆T of 100°C

Gradient of +/- 2°C



Edge Deflections (90-direction)

Uniform ΔT of 100°C



30

y [mm]

40

50

60

70

30

40

50

a b

70

60

Gradient of +/- 2°C

0.3

0.2

-0.2

-0.3

0

10

20

10

20

Edge deflection [mm]

CTT Comparison

- Predicted values for 0- and 90-direction strips are
 - -7.168×10^{-5} / mm °C and
 - $-8.128 \times 10^{-5} \text{ /mm} ^{\circ}\text{C}$
- Measured values are
 - -7.082×10^{-5} / mm °C and
 - $-9.010 \times 10^{-5} / \text{mm} \, ^{\circ}\text{C}$