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Abstract
We review in these lecture notes some of our recent work on mod-

elling the response of nematic elastomers to applied mechanical loads
and/or to electric fields, both in the static and in the dynamic regime.
Our aim is to compare theoretical results based on mathematical anal-
ysis and on numerical simulations with the available experimental
evidence, in order to examine critically the various recent accom-
plishments, and some challenging problems that remain open. Ne-
matic elastomers combine the electro-optical properties and rotational
degrees of freedom of nematic liquid crystals with the mechanical
propeties and translational degrees of freedom of entropic rubbery
solids. The rich behavior they exhibit, the interesting applications
they seem to make possible, the breadth and depth of recent break-
throughs at the experimental, theoretical, and computational level
make nematic elastomers an exciting model system for advanced re-
search in mechanics.
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1 Introduction

In these lecture notes we focus on the electro-mechanical behavior of one
specific material: nematic elastomers. It is a new material, so our under-
standing of it is still incomplete. Among its distinguishing features are large
spontaneous deformations, actuation by many different means including elec-
tric fields, and mechanical compliance. This makes it suitable for fast soft
actuators and, in particular, for new applications such as artificial muscles,
which are currently of great technological interest. The reader is referred to
the monograph [30] for a detailed account of the chemistry and physics of
nematic elastomers, and for an extensive list of references.

The mechanism for electro-mechanical coupling is the anisoptropy of di-
electric constants, as it is typical for liquid crystals. Nematic Liquid Crystal
Displays (LCDs), which represent one of the biggest market arenas for tech-
nological devices based on electro-mechanical coupling, exploit precisely this
mechanism. Indeed, a localized applied voltage is able to change the local
orientation of nematic molecules, which in turn results in a change of op-
tical properties: the material can change from being transparent to opaque
when sandwiched between crosssed polarizers, giving rise to a very reliable
optical micro-shutter. Individual pixels of LCDs are realized in this fash-
ion. We notice that the mechanism for electro-mechanical coupling based
on dielectric anisoptropy is different from those based on either permanent
or induced polarization, which occur in ferroelectric and piezoelectric mate-
rials, respectively. Indeed, nematic elastomers are neither ferroelectric nor
piezoelectric.

Nematic elastomers provide a counterpart in the world of rubbery solids
to nematic liquid crystals. Thanks to the coupling with nematic dgrees of
freedom, their entropic elasticity can be activated by temperature changes
(similarly to what happens in shape-memory alloys SMAs), electric fields
(like in electro-active polymers EAPs), or by irradiation with UV light. The
lessons one can learn by studying this fascinating model material may provide
very useful insight on the behavior of many other interesting systems.

2 Molecular structure and macroscopic re-

sponse

Nematic elastomers consist of cross-linked networks of polymeric chains con-
taining nematic mesogens. The three main chemical constituents of this
assembly are a polymer backbone, nematic mesogens, and cross-linkers.

The polymer backbone results from the repeat of monomers containing
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Figure 1: Basic chemistry of nematic elastomers. On the top row, some
typical polymer backbones: methil-siloxane, an example of polysiloxane (a),
a (CH2)n chain (b), and polyacrilate (c). On the bottom row, a bi-phenil
side-chain nematic mesogen (d) and a tri-functional cross-linker (e).

tetra-valent atoms, such as Carbon (C) or Silicon (Si), that are able to form
long and flexible chains. In these geometries, two bonds are used to contruct a
connected chain, while two more bonds are free and available for attachment
of side units (see Figure 1).

Nematic mesogens are rigid rod-like molecules containing benzenic rings.
They are responsible for the establishment of nematic order at sufficiently low
temperatures. The isotropic-to-nematic transition is a phase transformation
determined by the alignement of the nematic mesogens, and accompanied by
a change of the optical properties of the system (which becomes anisotropic).
At the same time, the material tends to become transparent. Nematic meso-
gens can either be part of the backbone (main-chain nematic elastomer) or
be attached sideways (side-chain nematic elastomers). The possibility of at-
tachment typically comes from the presence of a double carbon bond C=C
which can open up into -C-C- leaving the unsaturated ends free for bonding.

Depending on whether the C=C unit is at one end or in the central
part of the nematic mesogen, this will orient parallel or perpendicular to the
backbone giving rise to prolate or oblate structures. When the isotropic-
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to-nematic phase transition takes place, the alignment of nematic mesogens
causes a distortion of the polymer backbone to which they are attached. We
will be mostly concerned with the prolate case, in which the polymer chains
tend to elongate along the direction of alignment of the nematic mesogens.

Cross-linkers are flexible chains containing double C=C bonds at both
ends. Hence they are able to attach to two distinct polymer chains, con-
necting them. This is what turns an ensemble of disjoint polymer chains
(a polymeric liquid) into a percolating network able to transmit static shear
stresses (an elastomer, or rubbery solid). The combination of polymer back-
bone, nematic mesogens, and cross-linkers leads to a system in which the
orientational degrees of freedom and the associated optical-elastic properties
typical of nematic liquid crystals (dielectric anisotropy, Frank curvature elas-
ticity associated with spatial variations of nematic order) appear in combina-
tion with the mechanical properties and the translational degrees of freedom
exhibited by an elastic solid (deformation gradients, rubber elasticity, shear
moduli).

The coupling between nematic orientational order and rubber entropic
elasticity has profound consequences. The alignment of nematic mesogens in
a neighborhood of a point x along an average direction ±n(x), where n is a
unit vector field called nematic director, induces a spontaneous distortion of
the polymer chains described by

Vn = a1/3N + a−1/6(I−N) (2.1)

where a > 1 (prolate case), I is the identity, and

N = n⊗ n . (2.2)

Here a⊗b denotes the tensor product of the vectors a and b with components
(a⊗ b)ij = aibj. Tensor N is closely related to de Gennes’s order tensor Q.
Here we are using the framework of Frank-type theories, in which order is
constrained to be uniaxial and the degree of order is fixed. Then, one has Q =
s(N− (1/3)I), with s > 0 constant, and the descriptions of nematic order in
terms of either Q or N are equivalent. The material parameter a, which in the
oblate case is smaller than one, gives the amount of spontaneous elongation
along n accompanying the isotropic-to-nematic phase transformation. It is a
combined measure of the degree of order and of the strength of the nematic-
elastic coupling, and it is in principle a function of temperature. We will
ignore this, as we will be working at a fixed, constant temperature, well below
the isotropic-to-nematic transition temperature TIN . Tensor Vn represents a
volume-preserving uniaxial stretch along the current direction of the director
n.
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The spontaneous distortion (2.1) can be very large (up to 300% in some
main-chain elastomers) and it is easily observable when the temperature
of the elastomer is lowered below TIN starting from a temperature above
TIN (at which the material behaves like a standard rubber). Working at
fixed T < TIN , one way of observing (2.1) is to apply an electric field to a
mechanically unconstrained sample (e.g., a nematic gel surrounded by silicon
oil, inside a capacitor with transparent electrodes). As it is well known from
ordinary nematic liquids, due to the anisotropy of the dielectric tensor (we
assume here that the material has positive dielectric anisotropy: εa > 0), a
sufficiently strong applied voltage tends to align the director with the electric
field E, i.e., n = ±E/|E|. The quantitative details of this coupling will be
described later, see Section 7. Suffice it to say here that by rotating the
applied field one may induce rotations of n and observe the macroscopic
shape changes of the sample accompanying this process. Also, simultaneous
birefringence measurements can be used to determine directly the dependence
of n on the applied electric field. It turns out that the correlation between
observed deformations and measured n follows equation (2.1) to a remarkable
level of accuracy, see [20].

A more subtle consequence of (2.1) emerges in stretching experiments in
the absence of applied electric fields. Again, the temperature is fixed at a
constant value below TIN . The sample is prepared so that the director is
spatially uniform, say n aligned with e3, the third unit vector of the canon-
ical basis, and its initial state is the natural one corresponding to n = e3.
This means that polymer chains are elongated along the direction of e3,
with stretch a1/3 > 1 along e3 with respect to the reference configuration.
Imagine now that the sample, a thin film with thickness direction paral-
lel to e1, is stretched along e2, with rigid clamps applied on the two edges
perpendicular to e2. Experiments show that the force–stretch diagram is
unusally soft, with an extended flat plateau following a small region of ini-
tially hard response. We will refer in what follows to the idealized case in
which this initially hard regime is not present as the ideally soft case. The
interpretation of this unusual softness is that the sample accommodates the
externally imposed deformations by reorienting the director along the direc-
tion of maximal stretch, hence storing less elastic energy. This is confirmed
by optical microscopy under crossed polarizers, which reveals a texture of
opaque and transparent bands parallel to e2. The existence of this optical
contrast shows that the director reorientation process occurs in a spatially
nonuniform manner (stripe-domain patterns); in view of the coupling implied
by (2.1), oscillating shears are triggered by the oscillations of the nematic
director. This means that nematic elastomers exhibit material instabiliies
(co-operative elastic shear banding, which is fully reversible, see Sections 5
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Figure 2: A finite-dimensional model system.

and 6) as a consequence of the spontaneous distortion (2.1) accompanying
the symmetry breaking transormation from the high temperature isotropic
phase to the low temperature nematic phase.

3 Warm-up in finite dimensions

Consider the following model mechanical system, lying in the plane {0, e1, e2}.
It is made of two rigid links OQ′, and Q′Q, each of length r/2 > 0, and of
an extensible spring QP with stiffness k > 0. There are frictionless joints in
O, Q′, and Q, so that O is fixed and only relative rotations are allowed in
Q′ and Q. A force F = F1e1 + F2e2 acts on the free end P, and all points
are constrained to lie in the half-plane x2 ≥ 0.

We are interested in the following problem. Given an arbitrary force F
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with F · e2 ≥ 0, find the configurations of the system minimizing its energy

E(P,Q) =
k

2
|P−Q|2 − F ·P . (3.1)

Once this problem is solved for every F, we can imagine to fix the direction of
F, say, F = Fe and to vary its intensity F . By plotting the component along
e of the solution P−O of the minimization problem against the value F of
the corresponding force we may obtain a force-stretch diagram summarizing
the essentials of the mechanical response of the system to the prescribed
applied loads.

It is interesting to notice that, since OQ′ and Q′Q are inextensible, the
configuration of the whole system is uniquely identified by the position of
points P and Q. Point Q is, however, an internal variable in the sense that
no external force is directly applied to it. Moreover, in view of the constraints
present on the system, the set of admissible positions for point Q is

A := {Q ∈ R2 : |Q− 0| ≤ r ,Q · e2 ≥ 0} (3.2)

We may obtain the solution to the problem above in two steps. First we
minimize out the internal variable Q. Indeed

min
P,Q
E(P,Q) = min

P

(
min
Q

k

2
|P−Q|2 − F ·P

)
. (3.3)

We set

Eeff(P) = min
Q

k

2
|P−Q|2 =

k

2
|P−QP|2 (3.4)

where QP is the orthogonal projection of P onto the closed convex set A.
Notice that QP coincides with P if P ∈ A.

Granted (3.3) and (3.4), we can perform the second step in our minimiza-
tion problem

min
P,Q

E(P,Q) = min
P

(Eeff(P)− F ·P) . (3.5)

If we consider a stretching experiment starting from Q = O, an equilib-
rium configuration under zero force, we obtain a zero force response with Q
moving along a segment parallel to e until Q−O = re. The force response
to further extension is linear, given by k(|P −O| − r). In other words, we
can obtain the force response dy differetiating Eeff .

In spite of its simplicity, the model finite-dimensional system described in
this section provides some interesting guidance for our future developments.
For example, it shows that in spite of non-uniqueness of the minimal energy
configuration of the two rigid links in the determination of (3.4) (notice that
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Figure 3: Level curves of the energy (left) and the force repsonse (right) of
the finite-dimensional model system.



10

Q′ is not uniquely defined by QP in (3.5) if |P−O| < r), the effective energy
itself, Eeff , and (hence) the force-stretch diagram are unique. Moreover, the
example raises the question of dynamic accessibility of the energy-minimizing
states. Indeed, if after having reached the linear regime in the extension
experiment we reversed the sign of the force, a buckling instability would
occur at |Q−O| = r. Following one of the buckling branches one can return
to the initial configuration Q = O. Following the symmetric path we would
hit the constraint x2 ≥ 0 preventing us from reaching Q = O.

The notion of effective energy will appear in what follows in two dif-
ferent circumstances, in particular in Section 6. One is the energy density
Weff(F) arising from optimizing over the nematic degrees of freedom the en-
ergy density W (F,n), at fixed deformation gradient F. Another one is the
coarse-graining of the energy Weff over elastic degrees of freedom oscillating
at fine length-scales (microstructures), in order to compute its quasi-convex
envelope W qc

eff .

4 Elastic energy densities for nematic elas-

tomers

This section is mostly based on [15], to which the reader is referred for further
details. We will denote by F = ∇y the gradient of the deformation with
respect to the reference configuration, chosen as the one the sample would
exhibit if stress-free in the high-temperature isotropic state. Moreover, we
denote by J = det F the determinant of the deformation gradient F. In our
discussion we focus on the most basic (and fundamental) expression for the
elastic energy density stored by a nematic elastomer. This is based on the
trace formula of Bladon, Terentjev, and Warner [3] which, after a change of
variables first proposed in [11], becomes

W (F,N) =
1

2
µBe · I , det Be = J2 = 1 ,

Be(F,N) = B L−1 = F FT L−1(N) ,

(4.1)

where
L(N) := a

2
3 N + a−

1
3 (I−N) = V2

n (4.2)

and Vn is the spontaneous stretch definied in (2.1). The second line in (4.1)
emphasizes that, according to the trace formula, the part of the deformation
responsible for storage of elastic energy (the elastic part in a multiplicative
decomposition, in the same spirit of the Kroener-Lee multiplicative decom-
position in finite plasticity) is Be = BL−1. To the best of our knowledge,
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this seemingly obvious observation has not been made before [15], in spite of
the fact that it has profound implications.

Proposition 1 in Section 9 shows that, given an arbitrary current orien-
tation of the nematic director N, (4.1) is minimized at the energy level 3

2
µ,

which is independent of N, by any deformation p0 with ∇p0∇pT0 = L(N) .
By the polar decomposition theorem, ∇p0 is then of the form

∇p0 = L
1
2 (N)Q , (4.3)

where Q is an arbitrary rotation. Every pair (∇p0,N) is a natural, stress-free
state for a material described by the energy density W above.

Formula (4.1) lends itself to easy and useful generalizations. Expressions
for the energy density, which are more suitable to study the regime of high
stresses, can be obtained by replacing (4.1) with

W (F,N) = Wiso (Be(F,N)) , J = 1 , (4.4)

where one may choose for Wiso(B
e) any of the available functional forms

used to model isotropic incompressible elastic materials, which have a strict
global minimum at Be = I. Formula (4.1) corresponds to the Neo-Hookean
expression; a few other alternative examples are listed in [15]. We quote here,
in particular, the Ogden form∑N

i=1 ai tr (Be)γi/2 +
∑M

j=1 bj tr (cof Be)δj/2 =

=
∑N

i=1 ai (v
γi
1 + vγi

2 + vγi
3 ) +

∑M
j=1 bj

(
(v2v3)δj + (v3v1)δj + (v1v2)δj

)
where vk denotes the k-th principal stretch, i.e., the square root of the k-th
eigenvalue of Be.

Extensions of Formula (4.1) to the compressible case are also straightfor-
ward, by setting

W̃ (F,N) = Wiso (Be
s(F,N)) +Wvol(J) , Be

s = J−2/3 Be . (4.5)

Here Wvol(s) is a non-negative, strictly convex function which is finite only
for s > 0, vanishes only at s = 1, and diverges to +∞ as s tends to either 0 or
+∞. This modification leaves the energy-well structure unchanged, because
the minimizers of (4.5) are clearly the same of (4.1). Since in what follows
we will be only interested in the behavior of the energy in a neighborhood
of a natural state, a quadratic expansion of Wvol may suffice leading to the
following model expression for the compressible isotropic case

W̃ (F,N) =
1

2
µBs · L−1(N) +

1

2
κ
(√

det B− 1
)2

. (4.6)
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Another important generalization is discussed in detail in [15], and it con-
sists in adding some anisotropic corrections to the isotropic energies described
above. The two most basic ones are given below. The first one is

W̃β(F,N) =
1

2
µβCs · L−1

a + W̃ (F,N) , (4.7)

where Cs := (det C)−2/3 C and

La := L(Na) = a
2
3 Na + a−

1
3 (I−Na)

with Na := na ⊗ na and na a unit vector along the axis of anisotropy in the
reference configuration. The second model anisotropic expression is

W̃α(F,N) =
1

2
µα(1−N ·N∗(F)) + W̃ (F,N) , (4.8)

where

N∗ := n∗ ⊗ n∗ , n∗ = n∗(F) :=
Fna
|Fna|

, (4.9)

and n∗ gives the current orientation of the axis of anisotropy na. A somewhat
related model, based on the notion of nonlinear relative rotations has been
proposed in [26].

Finally, we consider the analogues of the energy densities decribed above
in the framework of a geometrically linear theory. These are derived in [15],
by Taylor expansion. Assume that a1/3 = 1 + γ, with 0 < γ � 1. We then
have

L−1(N) = I− 3γ(N− 1

3
I) + 3γ2N . (4.10)

Assume moreover that F = I +∇u, where u(x) = y(x) − x is the displace-
ment, and |∇u| = ε� 1. We then have B = I + 2E + o(ε2), where E is the
symmetric part of the displacement gradient (linear strain), and

Bs = (det(I + 2E))−
1
3 (I + 2E)

= I + 2Ed + 2
3

((
E · E + 1

3
(tr (E))2

)
I− 2tr (E)E

)
+ o(ε2) ,

(4.11)

where Ed is the deviatoric part of E, see [15]. It follows from (4.10) and
(4.11) that

Bs · L−1 = 3 + 2(Ed − E0(N)) · (Ed − E0(N)) + o(ε2, γ2, εγ) , (4.12)

where

E0(n) =
3

2
γ
(

n⊗ n− 1

3
I
)

(4.13)
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represents the small strain counterpart of the spontaneous strain Vn given
in (2.1). Finally, we have that

(
√

det B− 1)2 = (tr E)2 + o(ε2) . (4.14)

The calculations above show that, modulo additive constants, the small strain
counterpart of W̃ is given by the following expression

Φ̃(E,N) = µ|Ed − E0(N)|2 +
1

2
κ(tr E)2 . (4.15)

The incompressible version is obtained by formally setting κ = +∞, so that

Φ(E,N) = µ|Ed − E0(N)|2 , tr E = div u = 0 . (4.16)

It is worth comparing the expressions Be = BL−1(N) and Ee = E−E0(N),
which describe the relative deformation between the current one and the
preferred one associated with N. The first expression does this through the
composition with an inverse, as it should be expected in nonlinear kinematics;
the second one through a difference, as it is appropriate in linear kinematics.
In both cases, it is only this relative deformation (the elastic part of the
appropriate strain measure) that contributes to storage of elastic energy.
A rigorous proof that (the quasiconvexification of) (4.16) gives the correct
small-strain limit of (4.6) (in the sense of Gamma-convergence) is provided
in [1].

The expansion of Wβ works similarly, and one obtains

Φ̃β(E,N) = Φ̃(E,N) + µβ|Ed − E0(Na)|2 (4.17)

as the small strain counterpart of W̃β. The small-strain approximation of W̃α

is instead more complicated, and we only report here a simplified expression
valid in the regime where director rotations are large, while strains are small

Φ̃α(E,N) = Φ̃(E,N) +
1

2
µα(1−N ·Na) , (4.18)

where Φ̃ is given in (4.15). This energy has been used in [20] to analyze the
repsonse of a free-standing film of a swollen nematic elastomer, to which an
electric field is applied in order to drive the director away from its initial di-
rection n = na. In the experiments, a finite critical field needs to be overcome
in order trigger director rotation. Measuring the equilibrium angle between
n and na as a function of the applied electric field provides an experimen-
tal validation of (4.18) and a way of determining the value of the material
parameter µα. It turns out that, when the field is removed, the director
relaxes back to its preferred orientation na. When µα = 0, the spring-back
mechanism is suppressed and the critical field needed to start director reori-
entation is zero, see [20, Eq.(24)]. Interestingly, if one describes anisotropy
using (4.17) instead of (4.18), the spring-back mechanism is suppressed.
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5 Material instabilities

We choose a reference frame so that na is along the third coordinate axis and
set

n(θ) =

 0
sin θ
cos θ

 , na =

0
0
1

 , (5.1)

where θ is the angle between n and na. The state with θ = 0 and F = L
1/2
a

is a global minimizer for all the energies introduced above. We are interested
in the stability with respect to superposed shears of equilibrium states with
θ = 0, both in the initial configuration and in those obtained by (moderately)
stretching the material in a direction perpendicular to na. For this purpose,
we consider the deformations

F(δ;λ) =

 a−
1
6 0 0

0 λ δ

0 0 a
1
6/λ

 (5.2)

with λ a fixed stretching parameter varying in a right neighborhood of a−1/6.
More precisely, we will take λ ∈ [a−1/6, a1/12).

By substituting F(δ;λ) and n(θ) in the various expressions of the energy,
equations (4.6)–(4.8), we obtain three energies of the form f(δ, θ;λ). In all
cases ∂f/∂δ and ∂f/∂θ vanish at δ = θ = 0. Thus δ = θ = 0 is always an
equilibrium configuration (this is easily seen by symmetry under ±δ and ±θ)
and we obtain expansions to second order of the following form

f(δ, θ;λ) = f(0, 0;λ) +
1

2

(
Gδδδ

2 + 2Gδθδθ +Gθθθ
2
)
, (5.3)

where

Gδδ(λ) =
∂2f

∂δ2
(0, 0;λ) , Gδθ(λ) =

∂2f

∂δ∂θ
(0, 0;λ) , Gθθ(λ) =

∂2f

∂θ2
(0, 0;λ) .

(5.4)
The equilibrium value θ0 of θ as a function of δ is obtained from

Gδθδ +Gθθθ = 0⇒ θ0(δ) = −Gδθ

Gθθ

δ , (5.5)

and substituting this into (5.3) we get

f(δ, θ0(δ);λ)− f(0, 0;λ) =
1

2
G(λ)δ2 , (5.6)
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where we have set

G(λ) =

(
Gδδ −

G2
δθ

Gθθ

)
. (5.7)

Depending on whether G(λ) > 0, G(λ) = 0, or G(λ) < 0, we have that
the equilibrium state (δ = 0, θ = 0) is stable, neutrally stable, or unstable

with respect to superposed shears. The special case λ = a−
1
6 reproduces de

Gennes’ analysis in [9]: simple shear from the natural state corresponding to
N = Nr. Small shears superposed to large stretches have been considered
also in [32], and the case of small shears superposed to large deformations
arising in uniaxial extension experiments has been considered in [2].

We now compute G(λ) for the three model energies W̃ , W̃β, W̃α, given
by (4.6), (4.7), (4.8), respectively. In the isotropic case, inserting n(θ) and
F(δ;λ) into (5.3) (where we replace f by W̃ or by W : since det F(δ;λ) ≡ 1
this makes no difference), we obtain

Gδδ(λ) = µa1/3 ,

Gδθ(λ) = −µa1/3(
a− 1

a
)
a1/6

λ
,

Gθθ(λ) = µa1/3(
a− 1

a
)(
a1/3

λ2
− λ2) ,

(5.8)

Thus, by (5.7), we have

G(λ) = µa1/3 (1− g(λ)) (5.9)

where

g(λ) :=
a− 1

a

a1/3

a1/3 − λ4
. (5.10)

Since g(λ) = 1 for λ = a−1/6, and g(λ) is strictly increasing in the interval

[a−
1
6 , a

1
12 ), we conclude that

G(a−
1
6 ) = 0 , and G(λ) < 0 , for every λ ∈ (a−

1
6 , a

1
12 ) . (5.11)

Considering energy W̃β we obtain

Gβ
δδ(λ) = µa1/3 +

βµ

a2/3
,

Gβ
δθ(λ) = −µa1/3(

a− 1

a
)
a1/6

λ
,

Gβ
θθ(λ) = µa1/3(

a− 1

a
)(
a1/3

λ2
− λ2) ,

(5.12)

so that, by (5.7), we have

Gβ(λ) = µa1/3

(
1− g(λ) +

β

a

)
. (5.13)
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Since g(λ) is strictly increasing in the interval [a−
1
6 , a

1
12 ) starting form the

value g(a−
1
6 ) = 1, and it diverges as λ → a

1
12 , we conclude that there exists

λβc ∈ (a−
1
6 , a

1
12 ) such that

Gβ(λ) > 0 , forλ ∈ [a−
1
6 , λβc ) , and Gβ(λ) < 0 , forλ ∈ (λβc , a

1
12 ) .
(5.14)

The critical stretch λβc is obtained by solving g(λβc ) = 1 + β/a yielding

λβc = a
1
12

(
β + 1

β + a

) 1
4

. (5.15)

As β increases from 0 to ∞, λβc increases from a−1/6 to a1/12. Repeating the
same procedure for energy W̃α given by (4.8) we obtain

Gα(λ) = µa
1
3

[
1− a− 1

a

a1/3 + αa
2/3

a−1
λ2 + αa

1/3

a−1
λ6

a1/3 + αa
2/3

a−1
λ2 − λ4

]
. (5.16)

Again, it turns out that there exists λαc ≥ a−1/6 such that

Gα(λ) > 0 , forλ < λαc , and Gα(λ) < 0 , forλ > λαc . (5.17)

The critical stretch λαc is an increasing function of α and, as α increases from
0 to ∞, λαc increases from a−1/6 to the value

λαc =
1

(a− 1)
1
4

a
1
12 , α =∞ . (5.18)

The corresponding values of Gα(λ) are

Gα(λ) = µa
1
3

[
1− a− 1

a

a
1
3

a
1
3 − λ4

]
, α = 0 , (5.19)

Gα(λ) = µa
1
3

[
1− a− 1

a

a
1
3 + λ4

a
1
3

]
, α = +∞ . (5.20)

If the anisotropy parameter a is sufficiently large, say, a ≥ 2, then the value
of λαc for α = +∞ is not larger than a

1
12 and we have that λαc ≤ a

1
12 for all

α ≥ 0. Using the values α = 1 and a = 2 we obtain

0.89 = a−
1
6 < λαc = 0.9637 < a

1
12 = 1.06 , α = 1 , a = 2 . (5.21)

The shear moduli calculated above, which become negative for certain
values of the stretching parameter λ, show that the isotropic energy W leads
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to material instabilities: uniformly stretched states become unstable to su-
perposed shears. In other words, the stripe-domain instabilities discussed
in Section 2, and analyzed in detail in the leterature on nematic elastomers
(see, [29], the discussion in [30, Chapter 7] and the analysis in [14],[6], and
[8]) represent a form of elastic, reversible, shear band instability.

Indeed, consider the case of a sample which is uniformly stretched, start-
ing from the natural state corresponding to N = Na = e3 ⊗ e3, according to
the deformation gradient

F(0;λ) =

 a−
1
6 0 0

0 λ 0

0 0 a
1
6/λ

 , (5.22)

with λ ≥ a−1/6. The occurrence of shear-like instabilities can be detected
from the stability condition (5.11), which shows that the state (F(0;λ),Na)

is unstable for every λ > a−
1
6 .

The anisotropic corrections impart to the material a positive shear mod-
ulus up to a critical stretch λc. At this critical stretch, the modulus for
shearing in planes containing nr vanishes, and a stripe domain instability
with alternating shears becomes the mode of response of lowest energy to
further stretching. This scenario is consistent both with the theoretical anal-
yses in [21] and [30], and with the experimental results in [27]: with the
anisotropic corrections, the soft mode of response of the ideally soft limit is
latent in the initial configuration, and it is activated at a sufficiently large
imposed stretch.

It is interesting to observe that this very transparent picture emerges
naturally from a simple analysis of two fully nonlinear anisotropic energies,
and from the geometric structure of the associated energy landscape. Figures
4 and 5 provide a concrete representation of such energy landscapes through
the level curves of the functions

f(δ, λ) := min
θ
W̃ (F(δ;λ),N(θ))− 3

2
µ (5.23)

and

fβ(δ, λ) := min
θ
W̃β(F(δ;λ),N(θ))− 3

2
µ(1 + β) (5.24)

obtained by evaluating energies (4.6) and (4.7) on states described by (5.1)
and (5.2), and optimizing with respect to θ. The functions G(λ) and Gβ(λ)
used in this Section (and also in Section 8 for the interpretation of the key
experimental evidence available on nematic elastomers) give the curvature
of the graphs of (5.23) and (5.24) along the line δ = 0, and they enable
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Figure 4: Energy landscape for the (ideally soft) isotropic energy (5.23) with
a = 2 and µ = 1. Equally spaced level curves in a plane (λ, δ) (left); graph
of the section at λ = 1 (right). Energy minimizing states are shown by the
thick red curve (left) and the red dots (right).
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Figure 5: Energy landscape for the anisotropic energy (5.24) with a = 2,
µ = 1, and β = 1. Equally spaced level curves in a plane (λ, δ) (left); graph
of the section at λ = 1 (right). The unique energy minimizing state is shown
by the red dot; local minimizers at constant λ are shown by the thick purple
curve (left) and the purple dots (right).
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us to identify the material instabilities associated with the non-convexity of
energies (4.6) and (4.7).

The results discussed above are fully consistent with [32, 2], where the
effects of compositional fluctuations or of the aligning fields arising with the
cross-linking process are discussed. We notice in addition that the analysis
of the stability of equilibria with θ = π/2 in a neighborhood of λ = a1/3 (the
stretch defining the upper limit of the plateau in the ideally soft case, see
next section) is completely analogous to the one we have explicitly performed
here, leading to similar instabilities and to another critical stretch defined by
a vanishing shear modulus. Moreover, while our quantitative analysis is
based on some simple concrete energy expressions, the qualitative picture
that emerges is much more general, and it will be shared by a much larger
class of energies.

The energy landscapes in Figures 4 and 5 enable us also to unfold the bi-
furcation occurring at fixed imposed stretch λ, and to anticipate the ensuing
post-critical behavior. Indeed, the intersection of a vertical line through (λ, 0)
with the pitchforks in the graphs identify two co-operative shears ±δ(λ),
which are kinematically compatible and average to zero if occurring in bands
of equal width. With these two opposite shears, we can uniquely associate
two symmetric orientations ±θ(λ) of the nematic director, where θ(λ) is the
minimizer in (5.23) or (5.23) corresponding to F(δ(λ);λ). These two orienta-
tions of the nematic director give rise to the optical contrast observed in the
stripe-domain instability. A more complete analysis of this post-bifurcation
mode of response, based on co-operative elastic shear banding will be the
object of the next Section.

6 Effective energy: coarse-graining and quasi-

convexification

We return now to the basic expression (4.1) for the elastic energy density
in the incompressible case. For fixed F, we minimize with respect to n to
obtain the effective energy

Weff(F) = min
|n|=1

(
W (F,N)− 3

2
µ

)
. (6.1)

More explictly,

Weff(F) =

{
µ
2
a1/3

(
λ2

1(F) + λ2
2(F) + a−1λ2

3(F)− 3a−1/3
)

if det F = 1

+∞ else

(6.2)



20

where the λi(F) are the ordered principal stretches (in particular, λ3 = λmax).
We remark that, if one evaluates (6.2) on deformation gradients F(δ;λ) of
the form (5.2), one obtains precisely the graph of Figure 4. In other words,
Weff(F(δ;λ) = f(δ, λ), where f is given by (5.23). Moreover, the n that
achieves the minimum in (6.1) is the eigenvector nopt associated with the
largest eigenvalue of FFT :

FFTnopt = λ2
max(F)nopt (6.3)

The shear banding instabilities described in the previous section are re-
lated to the non-convexity of the energy landscape, as Figure 4 illustrates
rather clearly. A useful notion of material stability is the quasiconvexity of
the governing energy density. This is an infinite-dimensional analogue of the
patch-test for finite elements. It means that an affine state of deformation F
gives the minimmal energy state in a sample if one prescribes at its boundary
affine displacement boundary conditions compatible with F. As discussed in
the previous section, (6.2) cannot be quasiconvex because it can be lowered
by development of shear bands.

The quasiconvex envelope of Weff

W qc
eff (F) = inf

y

{
1

|Ω|

∫
Ω

Weff(∇y(x))dx : y(x) = Fx on ∂Ω, det∇y(x) = 1

}
,

(6.4)
coarse-grains the energetics of the system: it gives the minimum energy
needed to produce the macroscopic deformation F, optimized over all pos-
sible admissible microstructures y(x). The infimum in (6.4) is taken over
all functions y that are Lipschitz-continuous. Note also that the domain Ω,
whose volume we denote by |Ω|, plays here the role of a representative volume
element: it can be verified that W qc

eff does not depend on Ω. The use of W qc
eff

in numerical computations allows one to resolve only the macroscopic length
scale, with the (possibly infinitesimal) microscopic scale already accounted
for in W qc

eff . Clearly, this approach gives only average information on the fine
phase mixtures and focuses on the macroscopic response of the system.

An explicit formula for the quasi–convex envelope of (6.2) has been de-
rived in [14]. For volume-preserving deformation gradients it reads

W qc
eff (F) =


0 (phase L) if λ1 ≥ a−1/6

Weff(F) (phase S) if a−1/2λ2
3λ1 > 1

µ
2
a1/3

(
λ2

1 + 2a−1/2λ−1
1 − 3a−1/3

)
(phase I) else

(6.5)
while W qc

eff (F) = +∞ if det F 6= 1. Here the labels L, S, and I refer to the
fact that the resulting material response is liquid–like, solid–like, or of an
intermediate type, see the discussion below.
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Figure 6: Level curves of the energy Weff given by (6.2) (left) and of its
quasiconvex envelope W qc

eff given by (6.5) (right).
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The formula above gives a very precise picture of the macroscopic me-
chanical response resulting from our model, and of its microscopic origin.
There are three regimes in (6.5), arising from the collective behavior of ener-
getically optimal fine phase mixtures. They represent three different modes
of macroscopic mechanical response, corresponding to three different pat-
terns of microscopic decomposition of the macroscopic deformation gradient
F. Phase L describes a liquid-like response (at least within the ideally soft
approximation underlying expression (6.2) for the microscopic energy den-
sity; a more realistic semi–soft case is discussed in [7]). All gradients falling
in this region of the phase diagram, which is the zero level set of Wqc, can
be sustained at zero internal stress. To resolve microscopically the whole of
phase L (in particular, to resolve the deformation gradient F = Id) it is nec-
essary to allow for relatively complex microstructures (layers-within-layers).
Phase S describes a solid-like response in which fine phase mixtures are ruled
out. As a consequence, in this regime the coarse-grained macroscopic en-
ergy Wqc reproduces the microscopic energy Weff with no changes. Finally,
gradients in the intermediate phase I can transmit stresses (unlike phase L)
through microstructure formation (unlike phase S). The microscopic patterns
required to resolve phase I have a relatively simple geometry (laminates, or
simple-layers) Patterns of this kind have been frequently observed experi-
mentally after being first reported in [24]. The first attempt to explain them
through elastic energy minimization is in [29].

The expression (6.5) for the energy density has been used in [6] for the
numerical simulation of stretching experiments of sheets of nematic elastomer
held between two rigid clamps. The simulations are designed to reproduce
the classical experimental setting of Kundler and Finkelmann [24], where
stripe–domain patterns were first observed.

The specimen is a thin sheet of nematic elastomer. We choose a reference
frame with axis x1 parallel to the thickness direction. Moreover, we assume
that the specimen is prepared with the director uniformly aligned along x3,
and is then stretched along x2. By reorienting the director from the x3

to the x2 direction, the material can accommodate the imposed stretches
without storing elastic energy. As it is well known, see e.g. [30], a uniform
rotation of the director would induce large shears, which are incompatible
with the presence of the clamps. Director reorientation occurs instead with
the development of spatial modulations shaped as bands parallel to the x2

axis. This is the origin of the striped texture observed in the experiments.
The numerical simulations allow us to analyze the stretching experiments

in more detail. If the clamps do not allow lateral contraction, the reorienta-
tion of the director towards the direction of the imposed stretch is severely
hindered. This constraint is stronger near the clamps, and it decays away
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Figure 7: Numerical simulation of stretching experiments on thin sheets of
nematic elastomers: geometry (left) and force–stretch diagrams for several
aspect ratios AR (right). The panel on the left shows four configurations,
namely, reference, initial, and the two at stretches s=1.31 and s=1.57 for
the geometry with AR=3. On the corresponding force–stretch curve on the
right panel, full dots mark the representative points of configurations shown
in Figure 8 (adapted from [6]).

from them producing two interesting effects. On the one hand, the induced
microstructures are spatially inhomogeneous, with director reorientation oc-
curring more rapidly in the regions far away from the clamps. On the other
hand, the stress–strain response shows a marked dependence on the geome-
try of the sample, with the influence of the clamps becoming less pronounced
as the aspect ratio length/width increases. These effects are documented in
Figure 7 and Figure 8, which show good qualitative agreement with both
the experimental results from the Cavendish Laboratories [30], and with the
X-ray scattering measurements in [33].

The stripe domain patterns appearing in Figure 8 are all simple laminates,
either in phase L or in phase I. Focussing on the point at the center of the
sample (the bottom left corner in the plots of the deformed shape), the
material is in phase L as long as no force is transmitted at the clamps. The
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Figure 8: Numerical simulation of stretching experiments on thin sheets of
nematic elastomers, based on the coarse–grained energy W qc

eff , at stretches
s=1.31 (a), and s=1.38 (b). Only one–quarter of the sample is shown since the
rest of the solution can be obtained by symmetry. The circular insets display
energetically optimal microstructures at some selected locations within the
sample. The sticks give the local orientation of the principal direction of
maximal stretch, i.e., the orientation of the nematic director (adapted from
[6]).
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computed deformation gradient is

Fλ =

 a−1/6 0 0
0 λ 0
0 0 a1/6/λ

 (6.6)

with λ varying from a−1/6 to a1/3. This is resolved by a simple laminate in
which the deformation gradient oscillates between the values

F±λ =

 a−1/6 0 0
0 λ ±δ
0 0 a1/6/λ

 (6.7)

in stripes perpendicular to x3. The value of δ = δ(λ) is obtained from
δ2 = (a2/3 − λ2)(1− a−1/3λ−2), which ensures that F±λ has the characteristic
principal stretches giving Weff(F±λ ) = 0. Notice that the kinematic compat-
ibility condition F+

λ − F−λ = a ⊗ n̂, where n̂ is the reference normal to the
stripes and a is a shear vector, is satisfied with a = 2δ(λ)e2 and n̂ = e3. This
guarantees the existence of a continuous map y such that either∇y(x) = F+

λ ,
or ∇y(x) = F−λ , with ∇y constant in layers with normal e3. The deforma-
tion patterns given by (6.7) characterize the systems of shear bands resolving
the the post-critical behavior of the material following the shear band insta-
bility described in the previuos sections. Associated with that. one finds a
modulated pattern nopt(F

±
λ ) for the nematic director, where nopt is given by

(6.3).
Force starts being transmitted through the sample when the deformation

gradient in the central point moves to the region I of the phase diagram. The
computed deformation gradient is now of the form

F1(λ1) =

 λ1 0 0
0 1/λ1λ3 0
0 0 λ3

 (6.8)

where λ3 > a1/3 forces λ1 < a−1/6. This is resolved by simple laminates
similar to the ones above. The deformation gradient oscillates between the
values

F±1 (λ1) =

 λ1 0 0
0 1/λ1λ3 ±δ
0 0 λ3

 (6.9)

in stripes perpendicular to x3, and δ = δ(λ1) is computed by requiring
that the principal stretches be those giving the minimal energy at given λ1,
namely, (λ1, a

−1/4λ
−1/2
1 , a1/4λ

−1/2
1 ), see [6]. The associated nematic texture is

again obtained from nopt(F
±
1 (λ1)), with nopt given by (6.3).
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A relaxation result providing the small strain analog of (6.5) has been
obtained in [4]. Anistropic corrections leading to more realistic force-stretch
curves, in which the soft plateau occurs at small but finite levels of force are
discussed in [7].

7 Dynamics under an applied electric field

In order to move the first steps towards modeling the dynamic response
of nematic elastomers to applied electric fields, we follow [12] and use a
simpler, geometrically linear theory. This small-strain approximation has
been used to study the equilibrium repsonse to applied electric fields in [5].
The same approach has been used quite successfully in [20] to reproduce the
experimentally measured dynamic response of nematic gels to applied electric
fields.

We consider a sample of a nematic gel occupying a region B inside a
cell Ω. The part Ω \ B of the cell is occupied by an isotropic dielectric
(typically, silicon oil). We denote by u and n the displacement and the
nematic director in B, and by ϕ the electric potential in Ω. As usual, n is
parametrized through a rotation field R such that n = Rnr, where nr is a
(fixed) reference orientation.

The governing equations of our model are Gauss’ law for an anisotropic
dielectric, the standard balance of linear momentum for a viscoelastic solid,
and an evolution equation modeling a viscous-like dynamics for the director
rotation. They read as

div (d) = 0 (7.1)

in Ω, and
div (S) = 0 , (7.2)

ηn( ṘR>−Wu̇) = [ S ,E0 ] +
1

2
εo εa [∇ϕ⊗∇ϕ ,n⊗ n ]

+ skw (div (kF∇n)⊗ n) (7.3)

in B. They are supplemented by suitable initial and boundary conditions,
adapted to the specific experimental set-up one is trying to model. Here, in
(7.1), the electric displacement d is given by

d = −εo D∇ϕ , (7.4)

with

D∇ϕ =

{
ε⊥∇ϕ+ εa (∇ϕ · n) n in B ,
εc∇ϕ in Ω \ B ,

(7.5)
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where εo > 0 is the free space permittivity, ε‖ and ε⊥ are the relative permit-
tivities of the gel in the directions parallel and perpendicular to n, εa = ε‖−ε⊥
is the dielectric anisotropy, and εc is the relative permittivity of the isotropic
dielectric occupying the region Ω \ B.

Moreover, in (7.2) and (7.3), E0 = E0(n) is the spontaneous strain asso-
ciated with the isotropic-to-nematic transformation

E0(n) =
3

2
γ
(
n⊗ n− 1

3
I
)
, (7.6)

while the stress S is given by

S = C (Eu − E0) + ηgEu̇ , (7.7)

where

Eu =
1

2

(
∇u + (∇u)>

)
, (7.8)

Eu̇ =
1

2

(
∇u̇ + (∇u̇)>

)
, (7.9)

C is the (positive definite) tensor of elastic moduli, and ηg > 0 is the vis-
cosity of the gel. In principle, one would like to assume for C = C(n) the
symmetry of a transversely isotropic solid with distinguished axis n, so that
the Cartesian components of C are all described in terms of five independent
scalars. Since a detailed experimental characterization of these parameters is
not available, whenever quantitative information on them is needed for our
analysis, we make the simplifying assumptions C33 = C11, C12 = C13, and
C66 = C44 = (C11 − C12)/2 (see, e.g., [23, Ch. 3]; here we are using Voigt’s
notation for the components of C, and assuming that n is directed along the
third coordinate axis). In this case, C becomes isotropic, denoted by Ciso,
and the values of the Young modulus Y and the Poisson ratio ν suffice to
fully characterize Ciso.

Finally, in (7.3), ηn > 0 denotes a parameter describing the rotational
viscosity of the director, Ṙ denotes the time rate of R, Wu̇ is the skew-
symmetric part of the velocity gradient ∇u̇, kF is the Frank constant (giv-
ing the strength of curvature elasticity in the one-constant approximation
adopted here), skw(A) = (A − A>)/2 denotes the skew-symmetric part of
the matrix A, and [A,B] = AB−BA is the commutator of the matrices A
and B.

The model above is derived as follows. We introduce the total energy
functional

E =
1

2

∫
B

(
kF |∇n|2 + C (Eu − E0) · (Eu − E0)

)
− 1

2

∫
Ω

(
εo(D∇ϕ) · ∇ϕ

)
−
∫
∂sB

(sext · u) , (7.10)
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where the first summand contains Frank’s curvature energy and the elas-
tic energy the second one is the total electric energy including the energy
needed to maintain the constant voltage difference V across the cell, see [10,
eq. (3.67)] and [28, eq. (2.86)], and the third one is the potential energy of
the loading device exerting an external force per unit area, denoted by sext,
on the loaded part ∂sB of the boundary of B. When C = Ciso the elastic
energy term in (7.10) reduces to Φ̃ given by (4.15).

Equations (7.1) and (7.2) are standard. The first one arises by assum-
ing instantaneous relaxation to equilibrium of the electric potential and a
viscoelastic dynamics for the elastic displacement

0 =
δE
δϕ

, (7.11)

δD
δu̇

= −δE
δu

, (7.12)

where the operator δ is used to denote the variational derivatives of the
energy functional E with respect to ϕ and u, and the variational derivative
of the viscous dissipation D

D = ηn|ṘR> −Wu̇|2 + ηg|Eu̇|2 (7.13)

with respect to u̇. Straightforward manipulations show that (7.12) is equiva-
lent to (7.2) supplemented by the constitutive assumptions (7.6)–(7.7). Sim-
ilarly, (7.3) follows from

δD
δṅ

= −δE
δn

, (7.14)

(notice that ṘR>n = ṅ = ω × n, where ω is the director angular velocity)
which states that the dynamics is such that the “viscous” dissipation rate
accompanying the director evolution balances exactly the energy release rate
driving the process.

The structure of equation (7.3) reveals in a rather transparent way the
conditions such that a spatially uniform director field n be in equilibrium.
In particular, the condition [S,E0] = 0 is satisfied if and only if the stress
S and the spontaneous distortion E0(n) have the same principal directions
(see [22, p. 12]).

The model described above has been used in [20]to understand experi-
ments performed on a free-standing film in which an applied field perpendicu-
lar to the initial orientation of the nematic director is switched on suddenly,
mintained on until the system reaches equilibrium, and then switched off.
The comparison between the predicted relaxation times of n and u following
switch on and switch off and the experimental measurements is in Figure
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Figure 9: Characteristic relaxation times of n (optical) and u (mechanical)
following to switch-on and switch-off of an electric field. Adapted from [20].

9. In order for this agreement to be possible, we need to use for the elas-
tic energy the anisotropic expression Φ̃α (4.18) instead of either Φ̃(E,N) =
Ciso(E − E0) · (E − E0)/2 or Φ̃β(E,N) = Φ̃(E,N) + µβ|Ed − E0(Na)|2. In
spite of the anisotropic correction, this last expression does not provide a
spring- back mechanism pushing the director back to the initial orientation
na when the electric field is switched off.

The dynamic model can be used also in the absence od applied electric
fields to inestigate rate effects in the force-stretch curves, and whether the
repsonse curves obtained in Section 6 by global energy minimization are also
dynamically accessible in the limit of vanishingly small loading rates [16].
Interestingly, one may study in this way the dynamic patwhays originating
from an unstable state and leading to a new stable state. A stretching exper-
iment giving a dynamic analogue of the one shown in Figure 7 is presented in
Figure 10. A snapshot of dynamic simulations leading to formation of stripe
domains is shown in Figure 11.

8 Comparison with key experimental results

We now compare the predictions of the various models discussed above with
the experimental evidence coming from three benchmark experiments: purely
mechanical stretching and shearing, and electric-field-induced rotation of the
nematic director in a free-standing film.
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Figure 10: Dynamic force-strain response under purely mechanical stretch-
ing. The dashed line gives the repsonse curve corresponding to global energy
minimizers. Adapted from [16].
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Figure 11: A snapshot from numerical simulations of dynamic stretching
experiments at slow stretching rates, leading to formation of stripe domains.
Adapted from [16].
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8.1 Stretch

Consider a stretching experiment starting from the natural state correspond-
ing to N = Nr = e3 ⊗ e3 and described by the deformation gradient

F(0;λ) =

 a−
1
6 0 0

0 λ 0

0 0 a
1
6/λ

 , (8.1)

with λ ≥ a−1/6. Here nr denotes an arbitrary reference orientation when
dealing with the isotropic material; it will be chosen as nr = na when dealing
with one of the anisotropic ones. The deformation described by (8.1) is a
plane-strain extension or, in Treloar’s terminology, a pure shear. As long as
the state (F(0;λ),N = Nr) is a stable equilibrium, the stress response can
be obtained from W (F(0;λ),Nr) by differentiating with respect to λ. This
leads to

σ(λ) = µ

(
a

1
3λ− 1

a
1
3λ3

)
, (8.2)

where σ denotes the normal stress difference S22 − S33 measured in terms of
nominal (or first Piola-Kirchhoff) stresses.

As already discussed in the previous sections, the isotropic energy W
leads to a stripe-domain instability: already at λ = a−1/6, the homogeneous
state (F(0;λ),N = Nr) loses stability in favor of nonhomogeneous patterns
with alternating shears having the same average deformation as (8.1) but
lower energies than the uniformly deformed state (8.1). These alternating
shears play a crucial role in the calculation of the coarse-grained energy (the
quasiconvex envelope) performed in Section 6. The analogy between this
mode of response and mechanical twinning in materials exhibiting martensitic
transformations has been first pointed out in [11]. Formula (8.2) does not
apply and, thanks to the development of alternating shear bands of the form
(6.7), the system can accommodate any stretch λ ∈ [a−

1
6 , a

1
3 ] at zero stress

σ(λ) ≡ 0, thus exhibiting an ideally soft response.
Applying a similar argument to energy Wβ we obtain instead

σβ(λ) = µ(1 + β)

(
a

1
3λ− 1

a
1
3λ3

)
, λ ∈ [a−

1
6 , λβc ) . (8.3)

This implies that the material will show a hard response up to the critical
stretch λβc . Then a softer mode of response, accompanied by the emergence
of non-homogenous deformation patterns relying on alternating shears of
the form F(±δ;λ) given by (5.2), becomes energetically advantageous and
dynamically accessible. The value λβc is clearly an upper bound for the onset
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Figure 1: A sketch illustrating the change of reference configuration (??).
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Figure 2: Shear experiment corresponding to (??) on a sample of initial size
h× l × l.

3

Figure 12: Shear experiment corresponding to (8.5) on a sample of initial
size h× l × l.
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Figure 3: Shear experiment corresponding to (??) on a sample of initial size
h× l × l.

4

Figure 13: Shear experiment corresponding to (8.6) on a sample of initial
size h× l × l.

of the instability because, in a real system, imperfections may trigger the
instability well before λβc is reached. Applying the same argument to W̃α we
obtain exactly the same scenario of a hard response only up to a threshold
given by

σα(λ) = µ

(
a

1
3λ− 1

a
1
3λ3

)
, λ ∈ [a−

1
6 , λαc ) . (8.4)

Estimates of the critical stretches λβc , λαc for meaningful values of the mate-
rial parameters are given in (5.15) and (5.21). For stretches exceeding the
critical value for the stability of a homegenously stretched state, numerical
simulations are needed in order to resolve the complex, non-homogeneous
response.

8.2 Shear

We move now to simple shear experiments. Starting from the natural state
corresponding to N = Nr = e3⊗ e3, we consider simple shears of magnitude
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proportional to δ in a plane containing nr

F(δ; a−
1
6 ) =

 a−
1
6 0 0

0 a−
1
6 δ

0 0 a
1
3

 , (8.5)

and simple shears of magnitude proportional to ε in a plane perpendicular
to nr

F̃(ε; a−
1
6 ) =

 a−
1
6 0 0

ε a−
1
6 0

0 0 a
1
3

 . (8.6)

In this second case, it turns out that N = Nr is always an equilibrium and
we obtain energy expressions of the form

f(ε, 0;λ) = f(0, 0;λ) +
1

2
G̃ε2 , (8.7)

where
G̃ = µa

1
3 , (8.8)

G̃β = µ(1 + β)a
1
3 , (8.9)

G̃α = µa
1
3 . (8.10)

The moduli for shears in a plane containing nr (recall that nr = na in
anisotropic cases) follow from (5.9), (5.13), (5.16), and are given by

G = G(a−
1
6 ) = 0 , (8.11)

Gβ = Gβ(a−
1
6 ) =

βµ

a
2
3

, (8.12)

Gα = Gα(a−
1
6 ) = αµ

1

a
2
3 (1 + a2 − 2a+ aα)

. (8.13)

From (8.9) and (8.12) it follows that

Gβ =
1

a
(

β

1 + β
)G̃β (8.14)

so that, as β increases from 0 to +∞, Gβ increases from 0 to 1
a
G̃β. Using a

typical value a = 2 for a, we obtain that Gβ can be as large as half of G̃β,
provided that β is large enough. From (8.10) and (8.13) it follows that

Gα =
α

a+ a3 − 2a2 + a2α
G̃α (8.15)
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so that, as α increases from 0 to +∞, Gα increases from 0 to 1
a2 G̃

α. For

α = 1 and a = 2 we deduce from (8.15) that Gα = 1
6
G̃α.

These result show that the relatively large moduli reported in [27] for
shears in planes containing na are not incompatible with the theoretical es-
timates, provided that the anisotropy parameters α and β have large enough
values.

8.3 Electric field applied to a free-standing film

The experiments reported in [20] provide another important conceptual bench-
mark. By applying an electric field to a free-standing film of a swollen ne-
matic elastomer, in such a way that the electric field drives the director away
from its initial orientation nr = na, one obtains a very clean set-up where
many features of the mechanics of nematic elastomers can be addressed un-
ambiguously. The experiments confirm the power of formula (2.1) in reading
correctly the coupling between mechanical deformations and nematic order,
as shown by the good match between birefringence and strain at steady state
as functions of the applied voltage, see Figure 14. Moreover, the experiments
show that a finite critical field needs to be overcome in order to trigger direc-
tor rotation, and that the director springs back to the initial orientation when
the electric field is removed. Both these phenomena are a direct manifesta-
tion of anisotropy. Interestingly, of the two proposed anisotropic formulas,
only (4.18) seems capable of capturing spring-back while, with (4.17), the
spring-back mechanism is suppressed.

8.4 Discussion

Our analysis shows that the three experimental findings:

- existence of a finite threshold before the emergence of a softer mode of
response to stretching,

- absence of a vanishingly small shear modulus in simple shear exper-
iments starting from the natural state corresponding to the director
orientation at cross-linking,

- existence of a finite threshold in electric-field induced rotation of the
director in free-standing nematic gels,

are all related manifestations of the anisotropy imprinted in the material by
memory of the cross-linking state, where N = na ⊗ na. Simple anisotropic
corrections to the basic trace formula (4.1), which represents their isotropic,



36

Figure 14: Birefringence (a) and strain (b) at steady state as functions of
the applied voltage. Birefringence gives a direct measurement of n and the
correlation between the two curves is precisely the one implied by eq. (4.17).
Adapted from [20].
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or ideally soft limit, are able to reproduce (at least qualitatively) the available
experimental evidence, and hence “explain” it.

We close by emphasizing again that the model anisotropic energies dis-
cussed here should not be considered as immediate tools for the faithful
reproduction of the experimentally measured response of any specific sam-
ple. They are conceptual models. But, as a wise man once said, nothing is
more practical than a good theory.

9 Appendix: alignment energies

In this appendix we discuss some examples of alignment energies, namely,
energies whose minimization enforces alignment with a given vector n0 or a
given tensor L. In parametrizing the set of unit vectors it will be useful to
remember that an arbitrary unit vector n can be represented through the
action of a rotation R ∈ Rot acting on a fixed reference unit vector n (for
which one can take, e.g., one of the unit vectors of the canonical basis).

Let n0, with |n0| = 1, be a given unit vector, let n be an aritrary unit
vector, and consider the energy density

f(n) = −k
2
n · n0 = −k

2
cos2 θ , k > 0 , (9.1)

where θ is the smallest angle between ±n and ±n0. Since cos2 θ ≤ 1, we
have that f ≥ −k/2 with equality achieved only by n = ±n0. An important
example is provided by the electrostatic energy density of an anisotropic
dielectric in the case of positive dielectric anisotropy εa > 0. Indeed, the
electrostatic energy density reads

fele(n) = −εo|E|
2

2
(ε⊥ + εa(n · n0)) , n0 =

E

|E|
, (9.2)

where E is the electric field while εo, ε⊥, and εa are dielectric constants. For
εa > 0, fele(n) is minimized by n = ±E/|E|. This shows that energy (9.2)
enforces a quadrupolar coupling between director n and electric field E.

We now move to energies encoding the alignment effect on the state of
deformation F due to a spontaneous or an externally imposed uniaxial tensor
field L. The typical example is

L = RLrR
T , Lr = V2

r = a2/3Nr + a−2/6(I−Nr) (9.3)

where
Nr = nr ⊗ nr (9.4)

and nr is a fixed reference unit vector. We collect the relevant material in
the following proposition.
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Proposition 1. Let B and L be in the set of symmetric and positive definite
n× n matrices with determinant equal to d, denoted by Pd, and consider the
scalar function

f(B,L) := B · L−1 = tr (BL−1) .

Then, for every B and L in Pd,

f(B,L) ≥ n , with equality only if B = L , (9.5)

so that

min
B∈Pd

f(B,L) = f(B0(L),L) = n , where B0(L) = L . (9.6)

Assume further that L is of the form L = L(R) = RLrR
T , where R ∈ Rot

is an arbitrary rotation and Lr is (a constant matrix) of the form

Lr = a
2
n nr ⊗ nr + a−

2
(n−1)n (I− nr ⊗ nr) (9.7)

with a > 1, nr a fixed unit vector, and I the identity. Then

fopt(B) := min
R∈Rot

f(B,RLrR
T ) = f(B,R0(B)LrR

T
0 (B)) =

= a
2

(n−1)n

[
tr (B)− (1− a−

2
n−1 )λ2

max(B)
]

(9.8)

where the minimizer R0(B) is a rotation that maps nr onto the eigenvector
of B corresponding to its largest eigenvalue λ2

max(B). Finally,

min
B∈P1

fopt(B) = n , (9.9)

attained by any matrix B ∈ P1 whose largest eigenvalue is λ2
max(B) = a2/n

and whose other eigenvalues are all equal to a−2/(n−1)n.

Proof. Writing B and L−1 in spectral form we have

B · L−1 =
n∑
i=1

λ2
i (B)bi ⊗ bi ·

n∑
j=1

λ2
j(L

−1)lj ⊗ lj =

=
n∑

i,j=1

λ2
i (B)λ2

j(L
−1)(bi · lj)2 ≥

n∑
i=1

λ2
i (B)λ2

i (L
−1)(bi · li)2

with equality holding only if (bi · lj)2 = 0 for i 6= j, i.e., only if B and
L−1 share their eigenspaces, in which case they commute. Since we want to
minimize B · L−1, we restrict attention to this case in the rest of the proof.
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Let A := BL−1. Since B,L ∈ Pd and BL−1 = L−1B, then A ∈ P1. De-
noting by λ2

i (A) its eigenvalues, and using the well known inequality between
arithmetic and geometric means, we have

tr (A) =
n∑
i=1

λ2
i (A) ≥ n

(
n∏
i=1

λ2
i (A)

) 1
n

= n (det A)
1
n = n (9.10)

where the inequality is always strict unless λ2
i (A) = 1 for all i, or A = I.

This proves (9.5) and hence (9.6).
Observe now that

L−1(R) = RL−1
r RT , L−1

r = a
2

(n−1)n

[
I− (1− a−

2
n−1 )nr ⊗ nr)

]
, (9.11)

and therefore

B · L−1(R) = a
2

(n−1)n

[
tr (B)− (1− a−

2
n−1 )BRnr ·Rnr)

]
. (9.12)

Since 1−a−
2

n−1 > 0, this is minimized when BRnr ·Rnr is maximal, i.e., when
R maps nr onto the eigenvector corresponding to the maximal eigenvalue
λ2

max(B) of B. This establishes (9.8).
Finally, (9.9) follows by exchanging the order of minimization in B and

L, in view of (9.6). We also give a more direct proof, which is instructive.
To this end, we order the eigenvalues of B so that λ2

n(B) = λ2
max(B). Using

again the inequality between arithmetic and geometric means, we have

tr (B)− (1− a−
2

n−1 )λ2
max(B) = a−

2
n−1λ2

max(B) +
n−1∑
i=1

λ2
i (B) ≥

≥ n

(
a−

2
n−1

n∏
i=1

λ2
i (B)

) 1
n

= na−
2

(n−1)n

with equality only if a−
2

n−1λ2
max(B) = λ2

i (B), i = 1, . . . , n − 1. Since 1 =

det B = λ2
max(B)(λ2

i (B))(n−1), this is possible if and only if λ2
max(B) = a

1
n and

λ2
i (B) = a−

2
(n−1)n for i = 1, . . . , n − 1. This establishes (9.9) and completes

the proof.
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