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Abstract

We examine the singularly perturbed variational problem E.(¢) =
Je (1 —|V[?)2+€|VV|? in the plane. As € — 0 this functional fa-
vors |V4| = 1 and penalizes singularities where |VV1)| concentrates.
Our main result is a compactness theorem: if E(1).) is uniformly
bounded then V1), is compact in L?. Thus, in the limit € — 0 )
solves the eikonal equation |V1| = 1 almost everywhere. Our analysis
uses “entropy relations” and the “div-curl lemma,” adopting Tartar’s
approach to the interaction of linear differential equations and nonlin-
ear algebraic relations.
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1 Motivation, statement of the result and idea
of the proof

We consider the singularly perturbed functional

E) = ¢ [ 19V + - [ (1= [V ()

as € | 0. It arises as a model problem in connection with several physical
applications, including smectic liquid crystals (see Aviles & Giga [2]), thin
film blisters (see Ortiz & Gioia [8, 17]), and convective pattern formation (see
Ercolani et. al [7]). Physically (1) can be viewed as a simple Landau theory,
in which the order parameter is a curl-free vector field Vi) which prefers to
be of norm 1.

The functional analysis of (1) is still poorly understood, despite consider-
able attention. A natural goal is to find the “asymptotic energy” as € | 0,
represented by the I'-limit of E, (see for instance [6]). A formula for this
asymptotic energy was conjectured by Aviles and Giga [2]: it minimizes a
certain “fold energy,” as 1 ranges over almost-everywhere solutions of the
eikonal equation |V¢| = 1. To confirm their conjecture, one needs to show
(informally speaking) that:

(a) solutions of the eikonal equation are the appropriate admissible set;

(b) the proposed formula for the fold energy is correct, i.e. energetically
optimal folds are “locally one-dimensional;”

(c) the asymptotic energy lives only on the folds, i.e. lower-dimensional
singularities carry no energy.

All the analysis to date has been restricted to the case when space is two-
dimensional. Point (a) is demonstrated in the present paper. Point (b) is
substantially confirmed by the work of Jin & Kohn [9, 10] and Aviles &
Giga [3]. Point (c¢) is basically open. After this work was done but before
it was submitted for publication we learned of related progress by Ambrosio
et al. [1]. They also demonstrate (a), using a method entirely different from
ours, and they show by example that the admissible ¢)’s can be unexpectedly
complex.



Our functional (1) is an obvious generalization to gradient fields of the scalar
problem considered by Modica & Mortola (in [13], [14] and [12])

Fu) = G/Q|Vu|2+%/9(1—u2)2. 2)

Let us briefly review the compactness result associated with (2). The precise
statement is: if, for a {u,}jo, the energies { E.(uc) }¢0 are uniformly bounded,
then {u.} is relatively compact in L?(Q2). The essence of the argument is this

estimate for v. = u, (1 — 3 u?)

Vol = [0~ u)Vu,
L1ved = [10-u)vul

(fiee)’ ()’

< 5 fIvuleg f0-wf = B @

IN

The estimate implies the boundedness of {Vuv,}.jo in L*(€2), which provides
sufficient compactness. It is obvious that the above argument does not gen-
eralize to (1): There is no equivalent to (3), since there is no transformation
® such that D[®(V),)] = (1 —|V|?) D*).. The difference may also be seen
as follows: In case of (2), the favored values of u form a discrete set {—1,1}.
In case of (1), the favored values of f = V¢ form a continuum {|z|*> = 1}.
Hence in case of (1), the additional information that Vxf = 0 is essential for
compactness. We will have to investigate the combined effect of the linear
differential equation Vx f = 0 and the nonlinear relation |f|* = 1.

Proposition 1 Let 2 C R? open and bounded. Let the sequences {€, },100 C
(0,00) and {1, }reo C H*(Q) be such that

e 1% 0 and {Ee, W) }1o 08 bounded.

Then
{VY, oo C L*(Q)  is relatively compact.

Actually we prove a bit more than Proposition 1. To state the stronger re-
sult, we prefer to work with the divergence-free vector fields m, = RV,



where R denotes rotation by 7, that is R(Z) = (ZQ) This shift of perspec-
tive entails no loss of generality (our method seems intrinsically limited to
two space dimensions). Moreover it highlights the analogy between (1) and
the micromagnetic energy of an isotropic thin film, where m is only approx-
imately divergence-free, but |m| = 1 exactly. In truth, we first found the
arguments behind Proposition 2 while exploring the micromagnetics of thin
films. This paper focuses on (1) instead of micromagnetics, because that is
the more familiar and widely-studied problem. Our stronger result is:

Proposition 2 Let Q2 C R? open and bounded. Let the sequence {ml,}l/roo C
H'(Q) be such that

V-m, =0 a e inQ, (4)
1= o) 2% 0, (5)
{vaU”L?(Q) 11— |mu|2||L2(Q)}uToo is bounded. (6)
Then
{my} o0 C L*(Q) s relatively compact. (7)

The fact that this is a non trivial issue becomes apparent by the following
argument: Assume that (7) is true. Then there exists an m € L?(Q) such
that for a subsequence

my, 2% m in L*(Q).
Property (4) is conserved in the limit in a weak sense:
V.m = 0 in a distributional sense on €2, (8)
whereas (5) sharpens into
Im[* = 1 a.e. inQ. 9)

On the level of L?(Q)-functions, the combination of the linear partial dif-
ferential equation (8) and the nonlinear relation (9) is not enough to ensure
compactness in L?(2). On the level of differentiable functions, it is very rigid.
(This can be easily seen by going back to the original description m = RV
in which (8) is automatically fulfilled and (9) turns into the eikonal equation
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|V1|? = 1.) Hence in our compactness proof, we will have to combine the
linear partial differential equation (4), the increasing penalization of |m|* # 1
through (5), and the (fading) control of Dm through (6).

Let us sketch the basic idea of the proof of Proposition 2. For this, we
reconsider an m which satisfies both the linear partial differential equation
(8) and the nonlinear relation (9). Because of (9), we can write m = (‘;’53)
with a function € so that (8) turns into

01(cos ) + 0x(sinf) = 0. (10)

It is enlightening to think of (10) as a scalar conservation law for the quantity
s =~ cos f which depends on time ¢t ~ x; and a single spatial variable y ~ x4:

s+ 0,f(s) = 0. (11)

As a scalar conservation law (11), (10) would be highly nonlinear. As can be
seen by the method of characteristics, (11) with a nonlinear flux function f
generically does not admit differentiable solutions to the Cauchy problem. On
the other hand, there generically are infinitely many distributional solutions
to the Cauchy problem. The physically motivated notion of entropy solution
has been introduced; the Cauchy problem is well-posed in this framework,
see for instance [11].

What is the notion of an entropy solution? If the pair of nonlinear functions
(n,q) satisfies ¢ = 7' f’ (a so—called entropy entropy-flux pair) and if s is a
differentiable solution of (11), then

aun(s) + d,q(s) = 0. (12)

But if f is nonlinear and s is only a distributional solution of (11), then (12) is
generically not satisfied — even in a distributional sense. An entropy solution
s of (11) is defined as a distributional solution of (11) with the property that

om(s) +0yq(s) < 0

in a distributional sense for all entropy entropy—flux pairs (1, ¢) such that n
is convex. Even if 7 is not convex, we have for an entropy solution that

on(s) + 0yq(s) is a measure.
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By a lemma of Murat [16], this implies that if {s,},+» is a sequence of
uniformly bounded entropy solutions, then

dm(s,) + dyq(s,) is compact in H .

The latter allows for a judicious application of Murat and Tartar’s div—curl
lemma (a special case of compensated compactness, see [15] and [18]). Tartar
uses this to derive restrictions on the Young measure generated by {m, },100
[18]. This allows him to conclude that the set of uniformly bounded entropy
solutions is compact, provided f is sufficiently nonlinear. In fact, the scope of
his method is more general: It explores how the combination of linear partial
differential equations (like (8)) and nonlinear relations (like (9)) restricts and
may rule out oscillations. The general tool-box Tartar assembled is perfectly
suited for our situation.

In the first part of Section 2 (Lemma 1 and Lemma 2), we will identify all
(nonlinear) functions ® of m with the property that ®(m) satisfies a certain
linear partial differential equation, provided m satisfies the linear partial
differential equation (8) and the nonlinear relation (9). More precisely, we
will identify all ® such that

if m is differentiable with V-m = 0 and |m|*> = 1,
then V.[®(m)] = 0.

This is in the spirit of Tartar and mimics the tool of entropy and entropy—flux
pairs (1,¢). In the second part of Section 2 (Lemma 5), we will show that
the class of entropies is rich enough for our purposes. This doesn’t come as
a surprise, since the set of all entropy and entropy—flux pairs (7, ¢) is rich
enough for a scalar conservation law in one space dimension (11). In the first
part of Section 3, we will show that the control expressed in (6) is strong
enough to ensure that for our sequence {m,,},,Too

V - [®(m,)] is compact in H ' for above ®'s.

Then, in the second part of Section 3, we will apply Tartar’s program.

2 Entropies

Definition 1 A ® € C°(IR*)? is called entropy if
z:D®(z)Rz = 0 forallz and @(0) = 0, D®(0) = 0, (13)
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where D®; ; = gi? denotes the Jacobian of ® and R the rotation by %, that
J

is R(*) = (2).
Lemma 1 Let ® € CF(IR*)? be an entropy. Then there exists a U €
C°(IR*)? such that

D®(z) +2¥(2) ® z is isotropic for all z. (14)

Proof of Lemma 1. Componentwise, (14) is equivalent to the three equations

D11(2)+2W(2) 21 = Pya(2) +2TUy(2) 22 and (15)
D 5(2) +2W(2) 22 = 0, Dy1(2) +2Wy(2) 21 = 0. (16)

By continuity, (15) is equivalent to (15) multiplied with z; 25, that is
2120®@11(2) + 227 20U (2) = 21 20 Pao(2) + 22 25 Uy(2).
Hence the conjunction of (15) and (16) is equivalent to the conjunction of
2129 P11(2) — 27 @1 9(2) = 21 290 Pao(2) — 25 Pyi(2) (17)
and (16). But (17) is just (13) written in a componentwise fashion and (16)

can be satisfied by choosing

1 1
\Pl(Z) = —2—22 @1,2(2) and \1/2(2) = —2—21 @271(2).
We observe that by definition we have D®(0) = 0, which ensures ¥ €
Cee(IR*)2.
Lemma 2 Let ® € CP(IR*)? and ¥ € C§(IR*)? satisfy (14). Let m €
H'(Q)? satisfy
V-m =0 a e

Then
V- [@(m)] = ¥(m)-V(1—|m[}) a e inf.



Proof of Lemma 2. We have a. e. in Q2
V- [®(m)] = trD[®(m)] = tr(D®(m)Dm) = tr(DmD(m))
and
U(m) V(1 —|m|*) = —2m-Dm¥(m) = —tr(Dm(2¥(m) @m)),
so that
V- [@(m)] = ¥(m) - V(1 = [m[) = tr (Dm (D®(m) +2 ¥ (m) @ m)).
By assumption for a. e. z € €,

tr(Dm(z)) = (V-m)(z) = 0 :
D®(m(x)) +2¥(m(x)) ® m(z) is isotropic

and therefore
tr (Dm(x) (D®(m(x)) +2¥(m(z)) ® m(x))) = 0.

Lemma 3 There is a one—to—one correspondence between entropies ® €
Cs°(IR*)? and functions ¢ € C°(IR?) with ©(0) = 0 via

®(z) = ¢(z) 2+ Vp(z) - RzRe. (18)

Proof of Lemma 3. Let ¢ € C°(IR?) with (0) = 0 be given and ® defined
via (18). Obviously, ®(0) = 0. We have

D®(z) = 2® Vp(z)+¢(2)id
+ Rz® (D%p(z) Rz — RVy(2)) + Vo(z) - RzR

and therefore D®(0) = 0 and
z-D®(2)Rz = |2°Vy(z) - Rz + Vg(z) - Rzz- RRz = 0.
On the other hand, let ® € C§°(IR?*)? be an entropy. Since ®(0) = 0 and

D®(0) = 0,
2]*p(2) = @(2) -2 (19)



defines a ¢ € C§°(IR?) with ¢(0) = 0. Differentiating the identity (19) in the
direction Rz yields

22Vp(2) Rz = 2-D®(z) - Rz + ®(2) - Rz = ®(2)-Rz.  (20)

Hence

|22 ®(2) O(2) 22+ D(2) - Rz Rz
122 p(2) 2 + |2]* Vip(2) - Rz Rz

= |2]*(p(2) 2+ V(2) - RzRz2) .

(1

©
N

0)

By continuity, this implies (18).
Lemma 4 Fiz an e € St. Then

| |2)*e forz-e>0
@(Z)_{ 0 forz-e<O0

is a generalized entropy in the sense that there exists a sequence {®,},100 0f
entropies in C3°(IR?)? s. t.

(21)

{®,(2)}vre 15 bounded uniformly for bounded z, (22)
D, (2) v O(z) for all z. (23)

Proof of Lemma 4. Consider the function ¢
z-e forz-e>0
plz) = { 0 forz-e<0 }
and the map & given by
€ = {6 miezo)
Observe that £ is the gradient of ¢ wherever the latter is differentiable.
Obviously, there exists a sequence {¢,},100 in C°(IR?) s. t.
{(¢v(2), Veu(2)) }vteo  is bounded uniformly for bounded z,  (24)
(u(2). Vou(2)) % (p(2),€(2) for all =. (25)
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According to Lemma 3,
D,(2) = v, (2) 2+ Vp,(z) - RzRz
is an entropy. (24) implies (22) and according to (25),
D,(2) it o(z) 2+ &(2) - Rz Rz

z-ez+e-RzRz forz-e>0
0 forz-e <0

B |z]2e forz-e >0
o 0 forz-e<O0 [’

which turns into (23).

—N—

Lemma 5 Let pu be a probability measure on IR? supported on S*. Suppose
it has the property

/<I> ‘R® dp = /de,u : /Ré dp  for all entropies P, D.
Then p is a Dirac measure.

Proof of Lemma 5. According to Lemma 4, we are allowed to use the gener-
alized entropies of the form (21). As y is supported on S!, this yields

e-Rep({z-e>0tNn{z-é6>0}) = e-Repu({z-e>0}) pu({z-é>0})
for alle,é € S*

T ulze> 0hn (e e > 0) = wlfzee > 0))p({z- > 0])
for allé € S' — {e, —e} and all e € S'.
Sending € to e yields
p({z-e>0}) < u({z-e>0}) pu({z-e>0}) foralleec S!

or

(u({z-e>0}) =0 or u({z-e>0}) > 1) forallee S*
As p is a probability measure, this implies

(suppp C{z-e<0} or supppuC{z-e>0}) foralleec S
As the measure p is concentrated on S*, this forces it to be concentrated on

a single point on S*.
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3 Compensated compactness and Young mea-
sures

Proof of the Proposition. We may focus on Proposition 2, since as explained
in Section 1 it implies Proposition 1.
The first step is to show that for any entropy ® € C§°(IR?)?,

{V - [®(m,)]}v1eo is compact in H(Q). (26)

According to Lemma 1, Lemma 2 and (4), there exists a ¥ € O3°(IR?)? such
that
V- [@(m,)] = ¥(m,) V(1 —|m,]*) a. e inQ. (27)

Since ¥ is bounded and according to (5), {(1 — |m,|?) ¥(m,) },100 cOnverges
to zero in L*(Q). As a consequence, {V - [(1 — |m,|*) ¥(m,)]} 100 cOnverges
to zero in H~'(£2). Therefore, (26) would follow from

[V [®(m,) = (1= [my[2) W(m,)}opoe is compact in H(Q),  (28)
which we show now: Thanks to (27), we have
V- [@(my) — (1= ) W(m,)] = V-[¥(m,)] (1—m,[?) . e. in 9. (29)
We observe that since ® and ¥ are bounded and according to (5),
{®(m,) — (1 — |m,|*) ¥(m,)}1ee  is uniformly integrable. (30)
Since DV is bounded and according to (6),
{V-[¥(m,)](1—]m,1*)}10o is bounded in L*(Q). (31)

A lemma by Murat [16] now states that thanks to (30) and (31), the identity
(29) implies (28). This establishes the proof of (26).

In the second step, we apply the tools of Young measures and compensated
compactness in the spirit of Tartar [18]. According to L. C. Young’s theory
of generalized functions (also called Young measures), there exists a non
negative Borel measure p, such that for a subsequence

/Q/C(z,x) dug(z)de = lim [ ((my(z),z)dx (32)

vtoo JQ
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for all ¢ € C3°(IR? x ),
with the understanding that the function Q > z — [{(z, ) du,(z) is inte-
grable for any ¢ € Cg°(IR* x Q) (see [18], [4], [5]). The family {py}ecq is
called the Young measure associated to the subsequence {m, },100. According

to (5), {|mw|*}1100 is uniformly integrable. Therefore, (32) can be improved
to

/Q/((z,a:) dpig(z) de = lim [ ¢(m,(v),z)dv (33)

vtoo JQ
for all ¢ € C°(R? x I?) with  sup 220

(2,2)ER% x R? 1+ |Z|2

By choosing ¢ = ((x) in (33), we see that

< 0

/d,uz =1 fora.e ze€d (34)
Another generalization of (32) which comes for free is
| [ ¢y duz)de < timsup [ ¢(m,(2),2) do (33)
Q vtoo Q

for all non negative ¢ € C*(IR?* x IR?).
By choosing ((z) = (1 — |z|*)? in (35), we see that (5) implies

suppp, C St fora.e. x €. (36)
Let ®, ® be two entropies. According to our first step,
(V- [®(m,)], VX[R®(m,)] = V - [®(m,)]}s100  are compact in H™'(1).

Therefore by the div—curl Lemma of Murat and Tartar ([15] and [18]) the
weak—* limit of the product of ®(m,) and R®(m,) in L*() is the product
of the weak limits in L*(Q) of ®(m,,) resp. R®(m,). According to (32), these
weak limits can be expressed in terms of the Young measure { i, },cq; hence
on the level of the Young measure, we obtain the commutation relation

/@-R@dum _ (/cbdux>-</R<i>duw> for a. e. x € Q.

Because of this and (34), (36), we may apply Lemma 5 to the effect of

1z is a Dirac measure for a. e. x € €.
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This entails

/|z|2d,um(z) = |m(z)|* where m(z) = /zd,um(z) for all z € Q,
(37)
where according to (33), m is the weak-* limit of {m,},100 in L*(Q). As a
consequence of (5), {|m, |*},100 is uniformly integrable, so that m is the weak
limit of {m, },100 in L*(Q). According to (37) and (33) for {(z,z) = |2|?, we
have
Imllza@ = lim [jmy]lz2q).

As it is well-known, convergence of the norm strengthens weak convergence
to strong convergence in L*(Q), so that

IljiTroréHm,,—mHLz(Q) = 0.
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