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MACROSCOPIC RESPONSE OF
NEMATIC ELASTOMERS VIA RELAXATION OF
A CLASS OF SO(3)-INVARIANT ENERGIES

ANTONIO DESIMONE AND GEORG DOLZMANN

ABSTRACT. We obtain an explicit formula for the relaxation of the free
energy density for nematic elastomers proposed by BLADON, TEREN-
TIEV& WARNER (Phys. Rev. E 47 (1993), 3838-3840). The proof is
based on a characterization of the level sets of the relaxed energy. In
particular, the construction uses only laminates within laminates and it
identifies those deformations that correspond to simple laminates.

1. INTRODUCTION

Solid to solid phase transformations are often related to surprising me-
chanical properties of materials and their promising technological applica-
tions. Inspired by the success of the mathematical theory for crystalline
microstructure in shape memory alloys [BJ1, BJ2, CK], we present in this
paper the analysis of a model of nematic elastomers, polymeric materials
that undergo an isotropic to nematic phase transformation. The local or-
der in the material that is established in the nematic phase gives rise to
a unique combination of elastic and optic features in the system with ap-
plications such as a novel design of bifocal contact lenses and light-guiding
substrates for integrated optics.

The macroscopic response of materials displaying fine internal structures
is governed by the so-called relaxed or effective energy W9 defined by

W) = f / W (Dy())dz,
pewl=@r3) |2 Jo
p(x)=Fz on oQ
where W is the free energy of the system, because the material is free to
choose locally an (asymptotically) optimal microstructure to realize a given
deformation gradient F'. For simplicity we assume in the following that
W > 0 and that K = {X € M?*3 : W(X) = 0} is not empty. The set of
all affine deformations with approximately zero energy is then characterized
by K% = {X : W%(X) = 0}. In this paper we derive an explicit formula
both for K9 and for the effective energy of nematic elastomers. Our results
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follow from the analysis of the family of functions

P p p
Al(f) n Az(f) n As(f) —3 if det F =1,
(1) W(F) = Y1 Y2 T3

+00 else,

which includes the free energy for nematic elastomers [BTW] as a special
case for p = 2. Here p € [2,00) and A\ (F') < Xo(F) < A3(F) are the singular
values of F, i.e. the eigenvalues (FTF)/2. Moreover, 71, 72, 73 € R are con-
stants that satisfy 0 < v; <9 < 3 and y17y2y3 = 1. The requirement that
the energy be infinite if the determinant of the deformation gradient is dif-
ferent from one models (in mathematical abstraction) the incompressibility
of the elastomer. The main result in this paper is the following theorem.

Theorem 1.1. There exists a function i : Ri — R which is convexr and
nondecreasing in its arqguments such that

c ¥ (Amax(F'), Amax(cof F) if det FF =1,
W (F) = { +(oo ) else.

We provide an explicit formula for ¢ in (14).

The fundamental difference in the analysis of phase transformations in
crystalline materials and in the polymers we consider lies in the fact that,
due to material frame indifference and isotropy of the high temperature
phase, the energy density W and the set K depend for polymers only on
the singular values of the deformation gradient. In fact,

K = U SO(3) (’)’161 ®e1 + e ey + vy3e3 Q 63),
{e1,e2,e3}€€
={FeM”? . det F=1, \(F) =, 1i=1,2,3},

where € denotes the set of all orthonormal bases of R3. Thus the set K
is much larger than the corresponding sets in the analysis of crystalline
materials which are typically finite unions of sets of the form SO(3)U with
U € M?*3 symmetric and positive definite.

The paper is organized as follows. We introduce important notation in
Section 2 and characterize all affine deformations with approximately zero
energy in Section 3. The idea behind the proof of Theorem 1.1 is presented
for a two-dimensional model in Section 4 and the details are carried out in
the three-dimensional case in Section 5. We finally present in Section 6 the
relaxation result for the free energy density describing nematic elastomers.

2. PRELIMINARIES

We begin with some notation which we use throughout the paper. The n-
dimensional Euclidean space is denoted by R" with scalar product (u, v) and
norm |u|? = (u,u). We write Ry for the set of all nonnegative real numbers,
R = RU{+00}, and M"™*" for the space of all real m x n matrices. If m = n,
then cof F' is defined to be the matrix of all (n — 1) x (n — 1) minors of F'
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that satisfies FT cof F = (det F)I, where F' is the transposed matrix of F
and I the identity matrix in M™*".

The following notions of convexity are fundamental for our analysis. A
function f : M™*" — R is said to be polyconvex if there exists a convex
function g which depends on the vector M (F) of all minors of F' such that
f(F) = g(M(F)). In particular, if m = n = 2, then f(F) = g(F,det F),
and if m = n = 3, then f(F) = h(F,cof F,det F), where the functions ¢ :
RS — R and h : R — R are convex. The function f is called quasiconvex,
if there exists an open domain €2 with |02] = 0 such that the inequality

/Q f(F)d < /Q J(F + Dg)dz

holds for all ' € M™*™ and all ¢ € WO1 2°(Q; R™), whenever the right hand
side exists. It follows that the foregoing inequality holds for all domains Q
with || = 0. Finally, f is rank-one convex if ¢ — f(F + tR) is a convex
function for all ', R € M™*" with rank(R) = 1. For extended valued func-
tions, polyconvexity implies both quasiconvexity and rank-one convexity,

but quasiconvexity does not imply rank-one convexity. If f is finite valued,
[ M™*" - R, then we have

f convex = f polyconvex = f quasiconvex = f rank-one convex.

If f is not polyconvex, then the polyconvex envelope fP€ of f is the largest
polyconvex function less than or equal to f. The quasiconvex and the rank-
one convex envelope are obtained analogously and denoted by f9¢ and f*¢,
respectively. Based on these notions of convexity, we define semiconvex hulls
of compact sets K C M"™*"™. The set

KP ={F: f(F) < sup f(X) for all f: M™ " — R polyconvex }
XeK

is called the polyconvex hull of K. The quasiconvex hull K and the rank-
one convex hull K' are defined analogously by replacing polyconvexity in
the definition of KP° by quasiconvexity and rank-one convexity, respectively.
Finally, we define the lamination convex hull of K by allowing all extended
valued, rank-one convex functions in the definition of K¢,

K¢ = {F: f(F) < sup f(X) for all f:M"™ " — R rank-one convex }
XeK

Equivalently, the lamination convex hull can be defined by successively
adding rank-one segments, i.e.,

o0
ch _ U K(i),
=0
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where K(© = K and
Kt = KOUIF = AR + (1 - NPy F, F, € KU,
rank(F) — Fb) =1, A € (0,1)}.
The relations between the different notions of convexity imply the inclusions
2) K' C K™ C K9° C KP°,

We frequently use the two subsets K!) and K(?)| which we informally de-
scribe as barycenters of simple laminates and laminates within laminates
supported on K, respectively. See [Pe] for the definition of laminates, [Dc]
and [M] for a discussion of all the different notions of convexity and their
relations, and [B1, B2] for convexity and regularity properties of frame in-
different and isotropic functions.

If W : M™" — R is a given function and K C M?*3, then we say
that W (F') is obtained by averaging W with respect to a simple laminate
supported on K if F € K1) and if there exist A € (0,1) and F}, Fy € K
with rank(F; — Fy) = 1 such that

(3) F=AA+(1—-\NF, and W(F)=AW(F)~+(1—-NW(F).

Similarly, we say that W(F ) is obtained by averaging W with respect to a
laminate within a laminate supported on K if F € K? and if the following
assertion is true: There exist Fy,...,Fy € K and Ay,..., s € [0,1] such
that A1 + 22 #0, A3+ XM Z0, My +...+ A4 =1, rank(F1 —FQ) =1 and
rank(F3 — Fy) < 1. Moreover, if we define

)\1 )\2 >\3 >\4

= F + F, Go= F3 +
PYIEED VR VNI W D VNS Ui S VNI Wi

then rank(G; — G3) = 1, and

G1 F4a

4 4
(4) F=Y"NF and W(F) =Y \NW(F).
i=1 =1

Our relaxation result in Section 5 is based on the construction of optimal
laminates for which the resulting value for W is minimal.

3. AFFINE DEFORMATIONS WITH APPROXIMATELY ZERO ENERGY

We begin with the characterization of the set K9°. In the next proposition
we use the convention that Ao = A3, Ay = A\ and &y = &3, &4 = & and we
write A(F) = {A(F), A2(F), A3(F)} for the set of the singular values of F.

Theorem 3.1. Assume that 0 < & < & < &3 with £1€283 =1 and that
K={FeM*:detF =1, \(F)=¢,i=1,2,3}.
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Then the sets M; defined by
M;={F e M"*® : det F =1, § € A(F),
AF)\{&} C [min{&1, &} max{&i—1, &1} ]}
are contained in K for i =1,2,3. Moreover, we have
KW=M if =6 and KY=M; if &=6.

Remark 3.2. In general the inclusion My U My U M3 C KW s strict.

Proof. To prove the first part of the theorem, we assume that ¢ = 1, and
we write M = M;. The argument is analogous for ¢ = 2 and ¢ = 3. The
assertion of the proposition is now equivalent to M C K1) where

M={FeM”*: det F =1, \(F) = &, Mao(F), As(F) € [£,&3]}.

Let FF € M. Since QFR € M, for all @, R € SO(3) and F € M, we may
suppose that F' is diagonal, F' = diag (&1, pe, ps3), with po, us € [€2,&3]. Note
that pops = €€3 since det F' = 1. There is nothing to prove if us = & or
p3 = &3, since the condition det F' = 1 implies in this case that F' € K.
Following [WT, DSD] we show that there exists for ug, us € (£2,€3) a d >0
(which depends on ps and p3) such that

F* = ding(¢,, F*) € K where Pt — (’62 jf) .
3

Then

1 1
Ft —F =2fe;®e3 and F:§F++§F*EK(1>.

We define

9
St peT ot [ M5 +op2
GF — (F5TP _<i5m M§+52>.

The eigenvalues t* of C* are the solutions of
det(C*= — 1) =12 — (43 + i + %)t + p3p3 = 0,
and the requirement that ¢ defined by

2 2 52 2 2. 52
+_Matpz+d Py + s+ 0%\ 2

be equal to £2 leads to
_ 1 2 2 [¢2 2
(5) 5-{3\/53‘#2\/53‘#3>0-

Since tTt~ = p3pu3 = ¢2¢2, this choice of § also yields ¢t~ = £3 and we
conclude that for the value of § given in (5) the matrices F* are contained
in K and this proves the first assertion of the theorem.

It remains to prove the characterization of K if two of the parameters
in the description of K coincide. Without loss of generality we assume that
& = & < &3, and we have to prove that KM C M,. Suppose thus that
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F e KW\ K and choose Fi, Fy € K such that there exists a A € (0,1) and
a,n €R3, a, n # 0 with

F:AFl—f‘(l—)\)FQ, Fl—F2:a®n.
Since QFR € K, for all Q, R € SO(3) and F' € K, we may choose () and
R € SO(3) such that F; = QF1R € K is diagonal, F; = diag(&s,&1,&1).
We define analogously F» = QF5R € K, F = QFR € KW, & = Qa and
n = RTn. Then

F=MR+(1-\NF, F-F=a%n.
The intersection of the plane spanned by the unit vectors e = (0,1,0) and
es = (0,0,1) intersects the plane {w € R® : (w,n) = 0} with normal 7
at least in a one-dimensional line through the origin parallel to some unit
vector v € S?. This implies

0= (n,v)a=(@®n)v=(F — F)v=¢&v— Fu,

and therefore v is an eigenvector of Fy and F» with corresponding eigenvalue
&1. Consequently, F'v = &1v and

Al(ﬁ) = )\min(ﬁ) = mln|ﬁ€| < |ﬁfu| = £.
e€S?

To prove that &; is the smallest singular value of ﬁ, let ()" denote the
convex, nondecreasing function ¢ — (¢)* = max{t,0}. Then the functions

g1(F) = (sup|Fe| —3)",
ecS?
1
92(F) = (sup | cof Fe| — —)+
e€S? M
are polyconvex, and since F € K() C KP¢ we deduce \;(F) € [£1,&3].
Therefore
MEF) =& and & =min{&, &} < o(F) < X3(F) < max{é, &}

We obtain F € M;. The matrices F and F have the same singular values,
and hence F' € M;. This concludes the proof of the theorem. O

The foregoing theorem implies immediately a formula for the set of all
approximately zero-energy deformations for the density (1) (see [DcT] for
results for sets defined by singular values in arbitrary dimensions).

Corollary 3.3. Assume that 0 < y; < 9 < 3 with y1y9y3 = 1 and that
K={FeM"®:detF=1,\(F)=",i=1,23}.

Then

(6) K@ = Klc = gre = gac = fve

and these sets are given by

(7) {FeM”: detF =1, \i(F) € [1,73],i=1,2,3}.
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Remark 3.4. A formula for the convez hull of K can be found in [Do]. Not
surprisingly, conv K N {F € M?*3 : det F = 1} # KP°. This is due to the
fact that the lower bound on the singular values in the description of KP°
follows from the polyconvex condition | cof Fe| < ,),1—1 for all e € S2.

Proof. Let A be the set given in (7). Since det F' = 1, we have
1 1
®) Amin (F) = A1 (F) = Amax (cof F') - Az(cof F)’
and therefore we may rewrite the definition of A as
A={FeM>®: g(F) <0, g2(F) <0, g5(F) <0},
where g; and g2 were defined in the proof of Theorem 3.1 and
g3(F) = (det F — 1),

The functions g; are polyconvex, hence KP¢ C A. It only remains to prove
that A C K(®). We then obtain by the chain of inclusions (2) that KP¢ C
K@ C KP¢ and the equation (6) is thus an immediate consequence. Since
QFR € A, for all Q, R € SO(3) and F € A we may assume that F' € A is
a diagonal matrix, F' = diag(p1, pi2, p3) with y1 <y < g < pg < 3. If
Y2 < pg < 3, then
<1<
M3 M3

B and 72<w<73
M3

By Theorem 3.1,
= {F e MP3 i det F =1, M(F) =,
A9(F) = min ’YM_’Y’M?)} A3(F )_max{%,ug}}

is contained in K(M). Now 1 < 1 < pg < % since

273
M2<% < i3z <y2y3 S 71 < .

If yoy3 < p3, then A\3(F) = pg for F € M; while for 273 > p one has
Xo(F) = ug for F € M;. Another application of Theorem 3.1 with i = 3 or
1 = 2, respectively, implies that

{FeM”: \(F) =i, } € MY € KO,
1 <

Suppose now that v; < p1 < pe < pz < 9. Then 3%/— < 72, and we

conclude from Theorem 3.1 that
={FeM”? :det F =1, A\3(F) = 3,

. 172 172
A1 (F) = min{p, ’Yu—f}, Aa(F) = max{u, % Sl
is contained in K. In this situation, % < po < pg < 73, since

—<pur & My < pipr S uz < s,
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and we can apply Theorem 3.1 once more (with ¢ =1 or 7 = 2) to deduce
{FeMP : det F =1, \(F) = i, i = 1,2,3} C MY € K@,
This concludes the proof of the corollary. O
Corollary 3.5. Assume that 0 < & < &y < &3 with £16263 = 1, and let
K={FeM>3:det F =1, \(F)=¢&1, Ma(F) =&, A(F) =&}

Assume that g : MP*3 — R depends only on the singular values of its argu-
ment and that g is rank-one convex. Then

g(F) < g(diag(&1,62,&3)) for all F € K¥*.

Proof.  Theorem 3.1 implies that F' € K% if and ounly if F' € K® . We
now have from the definition of K that

g(F) < SUE g(X) = g(dia‘g(§17§27§3))7
XeK

and this proves the assertion of the corollary. 0

4. THE CONSTRUCTION FOR A TWO-DIMENSIONAL MODEL PROBLEM

Before we present the relaxation result in three dimensions, we describe
the ideas behind the construction for the corresponding two-dimensional
energy density given by

NE) | ()
9) f(F) = 7 7
+00 else,

—2 if detF =1,

where 0 < 71 < 72, 1172 = 1, and p € [2,00). Since \; = /\1_2 and 71 = 7%’

we may rewrite the energy as

P P
Y2 >‘2(F) : _
+ —2 ifdetF =1,
fEy =4 MNE) A
+o00 else.

The key idea in the three-dimensional case is analogous: we first eliminate
A9 from the formulae by Ay = and then use the identity (8) between
Amin(F') and Apax(cof F).

The density (9) is only finite on the curve A;j Ay =1 in the (A1, A2) plane
and converges to infinity as Ao tends to infinity. It is easy to see that the
function

1
A1z

Y2 \p A b
N=(5) + () -2
9 = ()" + ()
has a minimum at
. . A 72 ”‘ =
(10) A= Y2 with (72) ‘)\:)\* - ()\) A\ =
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and g(\*) = 0. Therefore

K={FeM>?: f(F)=0} ={F e M”?: det F =1, Ay =72 }.
The construction of the relaxed energy now proceeds in three steps:

1) Finding an upper bound f for fre.

2) Establishing that f is polyconvex; this implies f = fr¢ = fPC.

3) Showing that f9¢ < f: fP¢; since polyconvexity implies quasicon-
vexity for extended valued functions, we conclude that f° = f9° =
fPe.

We briefly discuss the first two steps in the proof, since the calculations are
more transparent in the two-dimensional case and illustrate the strategy we
use in the demonstration of the three-dimensional result. The third step is
identical in the two-dimensional and the three-dimensional situation.

Step 1: Finding an upper bound f
The arguments in the proof of Theorem 3.1 show that
KW = K= K9 = KP = {F e M2 : det F = 1, \o(F) < X*}.

Moreover, for all F' € K9\ K there exist pairs (s, F1) and (1 — s, Fy) with
Fy, Fy € K and rank(F; — F5) = 1 such that

F=sFi+(1-s)F, and f(F)=f(F)=0.
This implies
FEF) < sf(F1) + (1= ) f(F2) =0,
and suggests to define
0 if Ag <A, det F' =1,
(11) FEY =3 F(F) ifro> A", det F =1,
+oo if det F' # 1.

In the three dimensional situation we use an analogous construction also for
values of f different from zero, and obtain an upper bound f by character-
izing (parts of) its level sets.

Step 2: Establishing that f 15 polyconvex.

Motivated by (11) we define
0 if s < A¥,
Y2\P S \P :
It is easy to see that v is convex and nondecreasing since

P(s) =

p p—1
py bs Y2y1/2
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This implies that the function U (F) : M?*? — R given by

U1(F) = tp(sup |Fe|) = (Amax(F))
ecS!t

is convex on M?*2 and therefore polyconvex (see the - proof of Proposition
5.3 below). We now define the function ¥y : M2X? — R by

0 ift=1,
‘IJQ(F) = Il(det F) where Il(t) =
oo else.
Then Wy is polyconvex and
0 if dg < A%, det FF =1,
_ P (A2\P . *
V() + 0a(F) =4 ()" + (52)" =2 if a2 X' det F =1,
+00 else.

It follows from A1y = 1 for det F = 1 that f: WU, + Wy is a polyconvex
function. The arguments in the proof of Theorem 5.6 in Section 5 apply
also in the two-dimensional setting and we rediscover that f is in fact the
relaxation for the two-dimensional model, see [DSD].

5. CONSTRUCTION OF THE RELAXED ENERGY

After these preparations, we describe in this section the analysis of the
three-dimensional case. The construction becomes particularly transparent
if one considers W on the set {detF = 1} as a function of two variables
in the (Amax(F), Amax(cof F))-plane, see Figure 1. In order to simplify no-
tation, we write s = Apax(F') and ¢ = Apax(cof F'). With this abbreviation,
the region in the (s,t)-plane, on which W is finite, is bounded by the two
curves t = /s and ¢ = s?. This is due to the fact that det F = 1 implies

1 1 1
Ny e = gy A () 2 5y
In the three-dimensional situation, the single value A\* in Section 4 is replaced
by two curves in the phase plane along which two terms in the energy are
equal, see (10). They are determined from

A = (2 = ()" and ()= () = (2
M Y2 Y2A1A3 Y2 Y2A1A3 Y3
and these two conditions are equivalent to

Amax(cof F) = (E)l/2 Amax(F) or t= (2)1/2\/5
g n

Amax (cof F') =

)"

and

Y2 2
H(F) or t=-—=5s%,
V3 max(F) Y3

respectively. In the sequel we write

Amax (cof F) = 12 )2



MACROSCOPIC RESPONSE OF NEMATIC ELASTOMERS 11

Amax (cof F)
El II
S
13
1/Y1 /1 ,/
1 /
Eu EE

1 YS }\max(F)

FIGURE 1. The phase diagram for the relaxed energy.

(12) 'y*:ﬁ<1 and T*=2>1.

V3 !

We now define the following sets of matrices:

1
L ={FeM”* :det F =1, Apax(F) < 73, Amax(cof F) < —},

B!
1
I} ={F e M*? : det F = 1, Amax(cof F) > o
1
7 Mmax (F) < Amax(cof F) < A% (F)},

Iy ={F e M : det F = 1, Amax(F) > 73,

S ={FeM”®:detF =1,
T*Amax (F) < Amax (cof F) < y* A2 (F)}.

These sets of deformation gradients correspond to deformations for which
the material has a liquid-like (L), an intermediate, solid-liquid-like (T), and
a solid-like (S) behaviour, respectively, see our discussion in Section 6. With
some abuse of notation we denote by L, S, I;, and I3 also the corresponding
subsets in the (s, t)-plane which are formally given by replacing Apax(F) by
s and Apax(cof F') by ¢ in the foregoing definition. See Figure 1 for a sketch
of these curves and domains in the phase plane.

We now deduce in Propositions 5.1 and 5.3 the results corresponding to
Steps 1 and 2 in Section 4.
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Proposition 5.1. Suppose that W is given by (1) with 0 < 71 < 72 < 73
and y1y2y3 = 1. Let

[0 ifFel,
(A4 +2(524)" =3 iFen,
(13) W(F)=q W(F) if F €8,
(%)pw(ﬁ&,—))pﬂw if Fels,
o0 else.

Then W' < w. Moreover, for all matrices F' € L the function W is
obtained by averaging with respect to laminates within laminates, and for all
matrices F' € 11 U I3 by averaging with respect to simple laminates. In both
cases, we find pairs (Ni, F;)i=1,.. vy with N(F) < 4 satisfying (3) or (4),
respectively, such that W (F) = W (F}), i.e., the matriz F' and the matrices
F; are contained in the level set {X : W(X) = W(F)}.

Proof. The proof is based on several applications of Theorem 3.1, which
we describe for the regions L, I; and I3 separately. There is nothing to show
for the region of solid behaviour since the relaxed energy coincides there with
the original energy. Moreover, the assertion is an immediate consequence of
Proposition 3.5 for F' € L = K9, since W' is rank-one convex and W =0
on K.

Suppose now that F' € I3. We may assume without loss of generality that
F is diagonal, F' = diag(u1, p2, p3), with 0 < py < pe < p3 and pg > vs.
Consider the line parallel to the t-axis through the point (p3,1/p1), and
let (3,7) be the intersection point of this line with the curve (s, vVI*s), i.e.,
5 = pu3 and £ = /T*u3. This point in the phase plane corresponds to the
set K of all matrices G with the corresponding singular values 5 and 1/,
namely

K={GeM”: det F =1, \(G) =&, M(G) = &, As(G) = ps},

where

& = L and g—Vﬁ
VNI T Vs

The idea behind the subsequent estimates is to show, based on Theorem 3.1,
that the matrix F' is contained in the quasiconvex hull of K. We first observe
that

1 I'* 1
=6 <6 = £ = (E)I/Q— < ps3,

ps Vitis o omt s T
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since the last inequality is equivalent to y3y; < u3. Moreover, F' € I3 implies
that

1 1 1 VI*
— < VIMuy < <p S p= < .
1 VI ps Bip3 — /13

Consequently & < g < p2 < &2, and we conclude from Theorem 3.1 and
Corollary 3.5 that F € K1) and

W(F) < W (diag(ér, €2 13)) = 2(22)"2 + (E2)7 3,
M3 3
as asserted.

It only remains to consider the case F' € I;, where we may assume that
F = diag(p1, p2, p3) with g < ;. In this case we consider the line parallel
to the s axis through (us3,1/p41) and consider the intersection point of this
line with the curve (s,v*s?) at (1/v/y*p1,1/p1). Here the goal is to show
that F'is contained in the quasiconvex hull of the set

K={GeM”: detF =1, \(Q) = 1, 22(G) = &, M3(G) = &,

where
=YL and g=—_.
vV VYR
We now have that
Y2172 1 V¥ 1
m< (B = =YL —g <= ———
73 VBT M1 VYF
since the first inequality is equivalent to u3 < y,v5. In addition,
1 Nod 1 1
* 2
<— & —< =p2 = 3 < .
T Vi s =

Theorem 3.1 and Corollary 3.5 thus imply that F' € KW with

WY(F) < W(diag(yl,&’&)) - (%)P +2(£)P/2 _3

The proof of the proposition is now complete. O
We can state the foregoing proposition equivalently by saying that

W () < Y (Amax(F), Amax(cof F)) if det F =1,
| oo else,
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where 9 : Ri — R is given by

0 if (s,t) € Eo,
(14)  ¢(s,1) = (530" + 2t =3 if (s, 1) € I, UE,

(50)"+ (555)"+ ()" =3 i (s.p) €S,

| (55)" L) 3 £ (0.8) € T, UEs

Here we denote by Eg, E1, and E3 the following domains in the phase plane
(see Figure 1):

1
EO = [07’),3] X [07_] DL7
B!

E; = {(s,t): t> i, t> s},
71

E; = {(s,t) s>y, t < \/g}

The next proposition is the key ingredient in the proof of the polyconvexity
of W, since ¢ is a finite extension of W which coincides with W for all
matrices in {F € MP*3 : det F = 1}.

Proposition 5.2. The function v defined in (14) is convex and nondecreas-
g in its arguments.

Proof. In order to simplify the notation we define the three functions

g :EiUL - R ¢g:S—>R g¢g3:E3Ul3 >R

by
1
gi(s,t) = (=) +2(nt)?/? -3,
Y1t
1 \p l \p S\p
) =(—)+(—)"+ ()" -3,
g2(s,t) (%t) (723) (73)
g3(s,1) = (— )+2(73)p/2 3.
3

We first prove that 1 is continuous. To see this, it suffices to consider 1 on
0(E3 UI3) and O(E; ULy). If s = 73, then g3(v3,t) = 0, and along the curve

t = vI*s we have

L \p/2 L \p/2 S \p
1) = (—— + (——— +(—) —3= ,1).
g2(8 ) (71728) (71728) (73) g3(s )

Similarly, ¢; (s, ) = 0 and along the curve s = \/t/y* we obtain

1 \p L \p/2 L \p/2
1) = (— — — )2 3 = gy(s, ).
92(5,1) (71t) * (7273) * (7273) 91(s,1)
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In order to prove that v is nondecreasing, we calculate

Dagi(s,t) = (0, ——— + py?/2#/>71),

gt
pt? | psP! p_ ptr!
D92(57 t) =\~ T )
( fygsp+1 f)/g f)/ftp+1 ryggp )
p/2 p—1
P73 bs
D (- P Py
93(37 t) ( sp/2+1 + ’Yg ) 0)

We obtain from these formulae that

1 3p/2
0ig1(s,t) >0 & t3p/22(7—)pa
1

t\P
Dsga(s,t) >0 & 57> <—> :

Y
Oiga(s,t) >0 & % > (I™s)?,
dsg3(s,t) >0 o P2 > 7?z:)p/z_

All these inequalities are satisfied in the domains of the functions g;, and we
conclude that 1 is nondecreasing in its arguments. We now show that v is
continuously differentiable. Since

1
8593(’)’37” = 07 atgl(37 %) = 07
we only need to check this along the curves ¢t = v/I'*s and t = y*s?, respec-
tively. A short calculation shows that

Dga (s, (%)1/2\/5) — Dgs(s, 1), Dgz((%)m\/z, t) = Dgi (s, 1),

and this establishes the differentiability of the function 1.

It remains to prove the convexity of . It is clear that g; and g3 are
convex since the functions s — s? and s — s ¢ are convex on R for ¢ > 1.
We obtain for g, that

plp+ 1P p(p—1)sP> _prr!
D pt2 D D ptl
D?gy(s,t) = V2% B V2% _
92(5,1) _pr! pp+1)  plp—1)r—>
7§3P+1 7{’tp+2 r)/gsp

and thus the determinant of the matrix of the second derivatives is given by
P+ 1)y pP? PP’ - st pPp — 1)t

sP+242 7221’32p+2 tp+2 52

*

By assumption, % < j/t_ and thus for p > 2 and (p — 1)2 > 1,

= w

Q,thp—Z p2t2p—2 pQ,thp—2 p2t2p—2

P2(p —

2 2p = 2 T P Pip2
s o §2Pt2 s Y3 Yo tPs




16 ANTONIO DESIMONE AND GEORG DOLZMANN

Since also (D29)11 > 0, we conclude that go is convex on its domain and
this finishes the proof of the proposition. O

Proposition 5.3. Assume that ¢ : R2 — R is given by (14). Then the
function Uy : MP*3 — R, given by

U1 (F) = % (Amax(F), Amax (cof F))

18 polyconvex.

Proof. By definition, ¥, is polyconvex if there exists a convex function
g: MP? x M x R — R
such that Uy (F) = g(F,cof F,det F'). We define

9(X,Y,8) = (sup |Xe|, sup |Yel).
ecS?2 ecS?

It follows that for all matrices X1, Xo, Y3, Yo € M3*3 scalars 61, 9 € R
and A € [0,1]

g(A(X1,Y1,01) + (1 — A)(X2,Y3,02))
=9( sup2| (AX1 + (1 =X)Y)e], sup |(AX2 + (1 = X)Ya)e|)
e€S 2
<y(Asup [Xie| + (1 —N) sup |Yle| A sup |Xoe| + (1 — A) sup |Yae|)
e€S? e€S e€S? e€S?
= (A( sup2 | X1€], sup | Xae|) + (1= N)( sup |Yiel, sup Yae|))
ecsS
<\ (sup | X1e], sup [Yie]) + (1 = Ay (sup | Xael, sup Yae|)
ecsS ecS

:Ag(Xl’Yl’él) ( _A)g(X27Y2762)-

Here we used the triangle inequality for the norm and the fact that ) is
nondecreasing in the first inequality, and the convexity of v for the second
inequality. This establishes the polyconvexity of ¥; and concludes the proof.
O

Theorem 5.4. The rank-one convex and the polyconvex envelope of W co-
incide and are given by

WI‘C(F) _ Wp(:(F) _ T/)(Amax(F),AmaX(COfF)) if det F' =1,

400 else.

Proof. We define

0 ift=1,
‘IJQ(F):Il(detF) where Il(t):

oo else.
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Then W(F) = U (F) + Uy(F) is a polyconvex function which is finite only
on the set {F € MPX3 : det F = 1}. This implies that

1 1
_ d XM(F) =
)\maX(COf F) an 2( ) Amin(F)AmaX(F)

whenever the energy is finite. In view of the definition of ),

AM(F) = Apin(F) =

(

0 if FeL,
PoalPy s e,
W(F): W(F) ifFES,

(PoslBlyr 1 o( B

p/2 :
7 maX(F)) -3 if Fels,

+00 else,
\

and a comparison with (13) shows that W = W < W', Therefore
WTCSW:/WSWPCSWN,

and hence equality holds throughout this chain of inequalities. This proves
the assertion of the theorem. g

The final step is to prove that the quasiconvex envelope of W is equal to
the polyconvex and the rank-one convex hull. This does not follow automat-
ically since quasiconvexity does not imply rank-one convexity for extended
valued functions. To close this gap, we use an explicit construction based
on the following result by MULLER& SVERAK.

Lemma 5.5 ([MS99], Lemma 4.1). Let ¥ be given by
L={FeM"": M(F)=t},

where M is a minor of F' and t # 0. Let V be an open set in X3, let F € V¢,
and let € > 0. Then there exists a piecewise linear map u :  C R* — R™
such that Du € V"¢ g.e. in Q and

| {z: Du(z) ¢V} | <elQ, u(z) = Fx on 0.
Theorem 5.6. The quasiconvex envelope of W,
1
nf / W (Do(x))dz,
€2 Jo

i
peW Lo (Q;R?)
o(xz)=Fz on 02

W (F) =

15 equal to the rank-one conver and the polyconver envelope and given by

W () = ¥ (Amax(F), Amax(cof F))  if det F =1,

+00 else,

where 1) is given by (14).
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Proof. We have to construct for all F € M?*3 with det F = 1 and for all
§ > 0 a function ¢ps € WH®(Q;R?) such that ¢ps = Fa on Q and

/Q W (Ders)dz < [QWP(F) + O(8),

where O(§) — 0 as 6 — 0. This implies WI(F) < WPC(F'), and since WP
is quasiconvex, we conclude W9 = WPc,

We give the proof for the situation that WP is obtained from W by av-
eraging with respect to laminates within laminates. If follows from Propo-
sition 5.1 that there exist pairs (A, F});=1,... 4 such that

4
F=) MNF, and WP(F)=W(F),i=1,...,4
=1

Moreover, F' € K® where K = {Fy, Fy, F5, Fy}. We choose
Y ={FeM”*: detF =1},
and define for § > 0
Vs={Fex: dist(F,K) < 6}, ws =sup {W(X) : X € V;} — WP¢(F).

Since W is continuous on ¥ we have ws — 0 as 6 — 0. Lemma 5.5 guarantees
the existence of a piecewise linear map ¢ps : @ — R® with Depps(z) € Vi©
a.e. and

¢rs(z) =Fzon 0Q, and |{z € Q: Dops(z) ¢ Vs}| <69
Therefore, if M is an upper bound for W on V7,

/QW(D(,DF,g)d:E < {Dgrs(z) € Vs }[(WPH(F) 4 ws) + M9

< [QWPY(F) + |9 (ws + 6M).

The assertion of the theorem follows as § — 0. O

6. PERSPECTIVES FOR NEMATIC ELASTOMERS

Nematic elastomers are rubbery solids which combine the entropic elas-
ticity of a network of cross-linked polymeric chains with the peculiar optical
properties of nematic liquid crystals, see Figure 2 for a sketch. These features
have already attracted considerable attention in the chemical and physical
literature and more recently also in the mathematical literature from the
point of view of continuum mechanics, see [ACF, DS].

The motivation behind the successful efforts to synthesize nematic elas-
tomers [FKR, KpF] was the attempt to reproduce the mesophases typical
of a liquid crystal within an amorphous, polymeric solid. The resulting
physical system has the translational order of a solid phase coupled to the
orientational order of a nematic phase. Soft deformation modes whose oc-
currence had been predicted by theory [GL], were observed experimentally
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F1GURE 2. Sketch of the isotropic-nematic phase transfor-
mation in nematic elastomers. They consist of cross-linked
backbone chains to which nematic elements (rigid, rod-like
molecules) are attached. The nematic mesogens have a ran-
dom orientation in the high temperature (isotropic) phase due
to thermal fluctuations. A local alignment of the mesogens in
the low temperature (nematic) phase causes a stretch of the
network in direction of n (indicated by the arrow in the right
figure) and a contraction in the directions perpendicular to
it.

[KnF], in association with the appearance of domain patterns with a char-
acteristically layered texture. The formation of these microstructures was
explained by energy minimization in the framework of continuum models in
[WB], [WT]. One of the proposed models [BTW] is based on minimization
of the free energy density,
ﬁ<r1/3[|F|2 Y EY 3) if det F = 1,
Werw (Fyn) = 2 r
+00 otherwise.

Here p and r are positive, temperature dependent material constants, the
rubber energy scale and the backbone anisotropy parameter (i.e. the statis-
tical average of the ratio of the dimensions of a chain in directions parallel
and perpendicular to n), and n is the director describing the local directional
order in the nematic phase. In the isotropic phase, r = 1, and the system is
governed by the neo-hookean energy of the rubber. For temperatures below
the transformation temperature, » > 1, and a minimization of the energy in
n leads to

I 1/3 2 2 1 2 B
—\|r A + A =+ Ml =3 , det F = 1’
W(F) = min Wprw (F,n) = 2( [AT+A3 , ] )

" +00 else.

Here we have chosen the stress-free state of the isotropic parent phase as
reference configuration rather than one of the stress-free states of the product
uniaxial phase as it is done in [BTW, WT].
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The mathematical interest in this energy lies in its nonconvexity caused
by the factor 1/r < 1 in front of the largest singular value. Its expression is
up to the factor 5 identical to (1) with

_ _ 1 1/3 _ * 1 *
71_72_m<’r =73 and V_War_la

where the parameters v* and I'* have been defined in (12).
Our results in Sections 3 and 5, Theorems 3.1 and 5.6, imply immediately
the following result (see the phase diagram in Figure 3):

Theorem 6.1. The relazed energy W9 of the system is given by

(0 if F €L
—— Sy 7 NalF) =3) T F e,
W(F) if F es,
( 00 else,
where
L ={FeM”3: det F = 1, Apax(F) < 7/3},
I, = {F e M : det F = 1, Apin(F)A2 0 (F) < r1/2}
S = {FeM”3: det F =1, Apin(F)N2 0 (F) > r/2}.

The set K% of all affine, asymptotically zero-energy deformations is equal
to K. Moreover, deformations in K and K@ can be realized by simple
laminates and laminates within laminates, respectively, and can be repre-
sented by

1

KO = {FeM>®: det F =1, Apin(F) = m}’

1
K@ ={FeM>?®: det F =1, 75 < Amin(F) < Amax(F) < ri/31.
Finally, the relaxed energy in 11 can be achieved by averaging with respect to
simple laminates.

From the expression of W4° it is clear that in the region (L) of the phase
diagram drawn in Figure 3 the response of the system is completely soft,
and only constrained by incompressibility. Thus, in the region (L), the
material behaves essentially like a liquid. On the other hand, in the region
(S) of the phase diagram, the expression for the energy is very similar to
the one describing a neo-hookean rubber, hence the material behaves like an
elastic solid. In the intermediate region (I;), the energy depends only on the
smallest singular value of F (the dependence on the other two singular values
is indirect, through the incompressibility constraint). Thus the material
response is intermediate between a liquid-like and a solid-like one.
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Amax (cof F)

716

p

Lor Amax(F)

FiGURE 3. The phase diagram for nematic elastomers. The
phase boundary between the intermediate phase and the solid
phase is given by Amin(F)N2, (F) = /2.

max

The significance of Theorem 6.1 from the point of view of Continuum
Physics is that it represents the first explicit relaxation result for an SO(3)-
invariant energy related to solid-solid phase transitions. In particular, it al-
lows one to explore analytically and numerically realistic loading conditions
and boundary value problems that involve microstructures whose character-
istic features are not spatially homogeneous. Numerical experiments with
a thin sheet of a nematic elastomer in a geometry for which experimental
results are available in the literature are presented in [CDD].
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