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Abstract� We obtain an explicit formula for the relaxation of the free
energy density for nematic elastomers proposed by Bladon� Teren�

tjev�Warner �Phys� Rev� E �� ������� �������	
�� The proof is
based on a characterization of the level sets of the relaxed energy� In
particular� the construction uses only laminates within laminates and it
identi�es those deformations that correspond to simple laminates�

�� Introduction

Solid to solid phase transformations are often related to surprising me�
chanical properties of materials and their promising technological applica�
tions� Inspired by the success of the mathematical theory for crystalline
microstructure in shape memory alloys �BJ�� BJ�� CK	� we present in this
paper the analysis of a model of nematic elastomers� polymeric materials
that undergo an isotropic to nematic phase transformation� The local or�
der in the material that is established in the nematic phase gives rise to
a unique combination of elastic and optic features in the system with ap�
plications such as a novel design of bifocal contact lenses and light�guiding
substrates for integrated optics�
The macroscopic response of materials displaying 
ne internal structures

is governed by the so�called relaxed or e�ective energy W qc de
ned by

W qc�F � � inf
��W ������R��
��x��Fx on ��

�

j
j
Z
�
W �D��x��dx�

where W is the free energy of the system� because the material is free to
choose locally an �asymptotically� optimal microstructure to realize a given
deformation gradient F � For simplicity we assume in the following that
W � � and that K � fX � M

��� � W �X� � �g is not empty� The set of
all a�ne deformations with approximately zero energy is then characterized
by Kqc � fX � W qc�X� � �g� In this paper we derive an explicit formula
both for Kqc and for the e�ective energy of nematic elastomers� Our results

Date� June 
�� 


�
Accepted for publication in Arch� Rational Mech� Anal�

�



� ANTONIO DESIMONE AND GEORG DOLZMANN

follow from the analysis of the family of functions

W �F � �

���
��

�p��F �
�p�

�
�p��F �
�p�

�
�p��F �
�p�

� � if detF � ��

�� else�

���

which includes the free energy for nematic elastomers �BTW	 as a special
case for p � �� Here p � � ���� and ���F � � ���F � � ���F � are the singular

values of F � i�e� the eigenvalues �F TF ����� Moreover� ��� ��� �� � R are con�
stants that satisfy � � �� � �� � �� and ������ � �� The requirement that
the energy be in
nite if the determinant of the deformation gradient is dif�
ferent from one models �in mathematical abstraction� the incompressibility
of the elastomer� The main result in this paper is the following theorem�

Theorem ���� There exists a function � � R�� � R which is convex and
nondecreasing in its arguments such that

W qc�F � �

�
�
�
�max�F �� �max�cof F �

�
if detF � ��

�� else�

We provide an explicit formula for � in �����
The fundamental di�erence in the analysis of phase transformations in

crystalline materials and in the polymers we consider lies in the fact that�
due to material frame indi�erence and isotropy of the high temperature
phase� the energy density W and the set K depend for polymers only on
the singular values of the deformation gradient� In fact�

K �
�

fe��e��e�g�E

SO���
�
��e� � e� � ��e� � e� � ��e� � e�

�
�

�
�
F � M

��� � detF � �� �i�F � � �i� i � �� �� �
	
�

where E denotes the set of all orthonormal bases of R� � Thus the set K
is much larger than the corresponding sets in the analysis of crystalline
materials which are typically 
nite unions of sets of the form SO���U with
U � M

��� symmetric and positive de
nite�
The paper is organized as follows� We introduce important notation in

Section � and characterize all a�ne deformations with approximately zero
energy in Section �� The idea behind the proof of Theorem ��� is presented
for a two�dimensional model in Section � and the details are carried out in
the three�dimensional case in Section �� We 
nally present in Section � the
relaxation result for the free energy density describing nematic elastomers�

�� Preliminaries

We begin with some notation which we use throughout the paper� The n�
dimensional Euclidean space is denoted by Rn with scalar product hu� vi and
norm juj� � hu� ui� We write R� for the set of all nonnegative real numbers�
R � R�f��g� and M m�n for the space of all real m�n matrices� If m � n�
then cof F is de
ned to be the matrix of all �n� �� � �n� �� minors of F
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that satis
es F T cof F � �detF �I� where F T is the transposed matrix of F
and I the identity matrix in M n�n �
The following notions of convexity are fundamental for our analysis� A

function f � M m�n � R is said to be polyconvex if there exists a convex
function g which depends on the vector M�F � of all minors of F such that
f�F � � g�M�F ��� In particular� if m � n � �� then f�F � � g�F�detF ��
and if m � n � �� then f�F � � h�F� cof F�detF �� where the functions g �
R
	 � R and h � R�
 � R are convex� The function f is called quasiconvex�

if there exists an open domain 
 with j�
j � � such that the inequalityZ
�
f�F �dx �

Z
�
f�F �D��dx

holds for all F � M
m�n and all � �W ���

� �
�Rm �� whenever the right hand

side exists� It follows that the foregoing inequality holds for all domains e

with je
j � �� Finally� f is rank�one convex if t 	� f�F � tR� is a convex
function for all F � R � M

m�n with rank�R� � �� For extended valued func�
tions� polyconvexity implies both quasiconvexity and rank�one convexity�
but quasiconvexity does not imply rank�one convexity� If f is 
nite valued�
f � M m�n � R� then we have

f convex 
 f polyconvex 
 f quasiconvex 
 f rank�one convex�

If f is not polyconvex� then the polyconvex envelope fpc of f is the largest
polyconvex function less than or equal to f � The quasiconvex and the rank�
one convex envelope are obtained analogously and denoted by fqc and f rc�
respectively� Based on these notions of convexity� we de
ne semiconvex hulls
of compact sets K � M

m�n � The set

Kpc �
�
F � f�F � � sup

X�K
f�X� for all f � M m�n � R polyconvex

	
is called the polyconvex hull of K� The quasiconvex hull Kqc and the rank�
one convex hull Krc are de
ned analogously by replacing polyconvexity in
the de
nition ofKpc by quasiconvexity and rank�one convexity� respectively�
Finally� we de
ne the lamination convex hull of K by allowing all extended
valued� rank�one convex functions in the de
nition of Krc�

K lc �
�
F � f�F � � sup

X�K
f�X� for all f � M m�n � R rank�one convex

	
�

Equivalently� the lamination convex hull can be de
ned by successively
adding rank�one segments� i�e��

K lc �
��
i��

K�i��
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where K��� � K and

K�i��� � K�i� � �F � �F� � ��� ��F� �F�� F� � K�i��

rank�F� � F�� � �� � � ��� ��
	
�

The relations between the di�erent notions of convexity imply the inclusions

K lc � Krc � Kqc � Kpc����

We frequently use the two subsets K��� and K���� which we informally de�
scribe as barycenters of simple laminates and laminates within laminates
supported on K� respectively� See �Pe	 for the de
nition of laminates� �Dc	
and �M	 for a discussion of all the di�erent notions of convexity and their
relations� and �B�� B�	 for convexity and regularity properties of frame in�
di�erent and isotropic functions�
If W � M m�n � R is a given function and K � M

��� � then we say

that fW �F � is obtained by averaging W with respect to a simple laminate
supported on K if F � K��� and if there exist � � ��� �� and F�� F� � K
with rank�F� � F�� � � such that

F � �F� � ��� ��F� and fW �F � � �W �F�� � ��� ��W �F������

Similarly� we say that fW �F � is obtained by averaging W with respect to a

laminate within a laminate supported on K if F � K��� and if the following
assertion is true� There exist F�� � � � � F� � K and ��� � � � � �� � � �� � 	 such
that �� � �� 
� �� �� � �� 
� �� �� � � � � � �� � �� rank�F� � F�� � � and
rank�F� � F�� � �� Moreover� if we de
ne

G� �
��

�� � ��
F� �

��
�� � ��

F�� G� �
��

�� � ��
F� �

��
�� � ��

F��

then rank�G� �G�� � �� and

F �

�X
i��

�iFi and fW �F � �

�X
i��

�iW �Fi�����

Our relaxation result in Section � is based on the construction of optimal

laminates for which the resulting value for fW is minimal�

�� Affine deformations with approximately zero energy

We begin with the characterization of the setKqc� In the next proposition
we use the convention that �� � ��� �� � �� and �� � ��� �� � �� and we
write ��F � �

�
���F �� ���F �� ���F �g for the set of the singular values of F �

Theorem ���� Assume that � � �� � �� � �� with ������ � � and that

K �
�
F � M

��� � detF � �� �i�F � � �i� i � �� �� �
	
�
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Then the sets Mi de�ned by

Mi �
�
F � M ��� � detF � �� �i � ��F ��

��F � n f�ig � �minf�i��� �i��g�maxf�i��� �i��g 	
	

are contained in K��� for i � �� �� �� Moreover� we have

K��� �M� if �� � �� and K��� �M� if �� � ���

Remark ���� In general the inclusion M� �M� �M� � K��� is strict�

Proof� To prove the 
rst part of the theorem� we assume that i � �� and
we write M � M�� The argument is analogous for i � � and i � �� The
assertion of the proposition is now equivalent to M � K��� where

M �
�
F � M

��� � detF � �� ���F � � ��� ���F �� ���F � � � ��� �� 	
	
�

Let F � M � Since QFR � M � for all Q� R � SO��� and F � M � we may
suppose that F is diagonal� F � diag���� 	�� 	��� with 	�� 	� � � ��� �� 	� Note
that 	�	� � ���� since detF � �� There is nothing to prove if 	� � �� or
	� � ��� since the condition detF � � implies in this case that F � K�
Following �WT� DSD	 we show that there exists for 	�� 	� � ���� ��� a 
 � �
�which depends on 	� and 	�� such that

F� � diag���� bF�� � K where bF� �



	� �

� 	�

�
�

Then

F� � F� � �
e� � e� and F �
�

�
F� �

�

�
F� � K����

We de
ne

bC� � � bF��T bF� �



	�� �
	�
�
	� 	�� � 
�

�
�

The eigenvalues t� of bC� are the solutions of

det� bC� � tI� � t� � �	�� � 	�� � 
��t� 	��	
�
� � ��

and the requirement that t� de
ned by

t� �
	�� � 	�� � 
�

�
�
r�	�� � 	�� � 
�

�

�� � 	��	
�
�

be equal to ��� leads to


 �
�

��

q
��� � 	��

q
��� � 	�� � �����

Since t�t� � 	��	
�
� � ����

�
� � this choice of 
 also yields t� � ��� and we

conclude that for the value of 
 given in ��� the matrices F� are contained
in K and this proves the 
rst assertion of the theorem�
It remains to prove the characterization of K��� if two of the parameters

in the description of K coincide� Without loss of generality we assume that
�� � �� � ��� and we have to prove that K��� � M�� Suppose thus that
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F � K��� nK and choose F�� F� � K such that there exists a � � ��� �� and
a� n � R

� � a� n 
� � with

F � �F� � ��� ��F�� F� � F� � a� n�

Since QFR � K� for all Q� R � SO��� and F � K� we may choose Q and

R � SO��� such that eF� � QF�R � K is diagonal� eF� � diag���� ��� ����

We de
ne analogously eF� � QF�R � K� eF � QFR � K���� ea � Qa anden � RTn� Then eF � � eF� � ��� �� eF�� eF� � eF� � ea� en�
The intersection of the plane spanned by the unit vectors e� � ��� �� �� and
e� � ��� �� �� intersects the plane

�
w � R

� � hw� eni � �
	
with normal en

at least in a one�dimensional line through the origin parallel to some unit
vector v � S

�� This implies

� � hen� viea � �ea� en�v � � eF� � eF��v � ��v � eF�v�
and therefore v is an eigenvector of eF� and eF� with corresponding eigenvalue
��� Consequently� eFv � ��v and

��� eF � � �min� eF � � min
e�S�

j eFej � j eFvj � ���

To prove that �� is the smallest singular value of eF � let ���� denote the
convex� nondecreasing function t 	� �t�� � maxft� �g� Then the functions

g��F � �
�
sup
e�S�

jFej � ��
��
�

g��F � �
�
sup
e�S�

j cof Fej � �

��

��
are polyconvex� and since F � K��� � Kpc we deduce �i� eF � � � ��� �� 	�
Therefore

��� eF � � �� and �� � minf��� ��g � ��� eF � � ��� eF � � maxf��� ��g�
We obtain eF � M�� The matrices eF and F have the same singular values�
and hence F �M�� This concludes the proof of the theorem� �

The foregoing theorem implies immediately a formula for the set of all
approximately zero�energy deformations for the density ��� �see �DcT	 for
results for sets de
ned by singular values in arbitrary dimensions��

Corollary ���� Assume that � � �� � �� � �� with ������ � � and that

K �
�
F � M

��� � detF � �� �i�F � � �i� i � �� �� �
	
�

Then

K��� � K lc � Krc � Kqc � Kpc����

and these sets are given by�
F � M

��� � detF � �� �i�F � � � ��� �� 	� i � �� �� �
	
����
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Remark ���� A formula for the convex hull of K can be found in �Do	� Not
surprisingly� convK � fF � M

��� � detF � �g 
� Kpc� This is due to the
fact that the lower bound on the singular values in the description of Kpc

follows from the polyconvex condition j cof Fej � ���� for all e � S��
Proof� Let A be the set given in ���� Since detF � �� we have

�min�F � � ���F � �
�

�max�cof F �
�

�

���cof F �
����

and therefore we may rewrite the de
nition of A as

A �
�
F � M

��� � g��F � � �� g��F � � �� g��F � � �
	
�

where g� and g� were de
ned in the proof of Theorem ��� and

g��F � � �detF � ����

The functions gi are polyconvex� hence K
pc � A� It only remains to prove

that A � K���� We then obtain by the chain of inclusions ��� that Kpc �
K��� � Kpc and the equation ��� is thus an immediate consequence� Since
QFR � A� for all Q� R � SO��� and F � A we may assume that F � A is
a diagonal matrix� F � diag�	�� 	�� 	�� with �� � 	� � 	� � 	� � ��� If
�� � 	� � ��� then

��
	�

� � � ��
	�

and �� � ����
	�

� ���

By Theorem ����

M� �
�
F � M

��� � detF � �� ���F � � ���

���F � � minf����
	�

� 	�g� ���F � � maxf����
	�

� 	�g
	

is contained in K���� Now �� � 	� � 	� � ����
	� since

	� � ����
	�

� 	�	� � ���� � �� � 	��

If ���� � 	��� then ���F � � 	� for F � M� while for ���� � 	�� one has
���F � � 	� for F �M�� Another application of Theorem ��� with i � � or
i � �� respectively� implies that�

F � M
��� � �i�F � � 	i�

	 �M
���
� � K����

Suppose now that �� � 	� � 	� � 	� � ��� Then �� � ����
	�

� ��� and we

conclude from Theorem ��� that

M� �
�
F � M

��� � detF � �� ���F � � ���

���F � � minf	�� ����
	�

g� ���F � � maxf	�� ����
	�

g	
is contained in K���� In this situation�

����
	� � 	� � 	� � ��� since

����
	�

� 	� � ���� � 	�	� � 	� � ���
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and we can apply Theorem ��� once more �with i � � or i � �� to deduce�
F � M

��� � detF � �� �i�F � � 	i� i � �� �� �
	 �M

���
� � K����

This concludes the proof of the corollary� �

Corollary ���� Assume that � � �� � �� � �� with ������ � �� and leteK �
�
F � M

��� � detF � �� ���F � � ��� ���F � � ��� ���F � � ��
	
�

Assume that g � M ��� � R depends only on the singular values of its argu�
ment and that g is rank�one convex� Then

g�F � � g
�
diag���� ��� ���

�
for all F � eKpc�

Proof� Theorem ��� implies that F � eKqc if and only if F � eK���� We

now have from the de
nition of eK lc that

g�F � � sup
X� eK

g�X� � g
�
diag���� ��� ���

�
�

and this proves the assertion of the corollary� �

�� The construction for a two�dimensional model problem

Before we present the relaxation result in three dimensions� we describe
the ideas behind the construction for the corresponding two�dimensional
energy density given by

f�F � �

���
��

�p��F �
�p�

�
�p��F �
�p�

� � if detF � ��

�� else�

���

where � � �� � ��� ���� � �� and p � � ����� Since �� �
�
��

and �� �
�
��
�

we may rewrite the energy as

f�F � �

���
��

�p�
�p��F �

�
�p��F �
�p�

� � if detF � ��

�� else�

The key idea in the three�dimensional case is analogous� we 
rst eliminate
�� from the formulae by �� �

�
����

� and then use the identity ��� between

�min�F � and �max�cof F ��
The density ��� is only 
nite on the curve ���� � � in the ���� ��� plane

and converges to in
nity as �� tends to in
nity� It is easy to see that the
function

g��� �
���
�

�p
�
� �
��

�p � �

has a minimum at

�� � �� with
� �
��

�p���
����

�
���
�

�p���
����

� �����
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and g���� � �� Therefore

K �
�
F � M

��� � f�F � � �
	
�
�
F � M

��� � detF � �� �� � ��
	
�

The construction of the relaxed energy now proceeds in three steps�

�� Finding an upper bound ef for f rc�

�� Establishing that ef is polyconvex� this implies ef � f rc � fpc�

�� Showing that fqc � ef � fpc� since polyconvexity implies quasicon�
vexity for extended valued functions� we conclude that f rc � fqc �
fpc�

We brie�y discuss the 
rst two steps in the proof� since the calculations are
more transparent in the two�dimensional case and illustrate the strategy we
use in the demonstration of the three�dimensional result� The third step is
identical in the two�dimensional and the three�dimensional situation�

Step �� Finding an upper bound ef �
The arguments in the proof of Theorem ��� show that

K��� � Krc � Kqc � Kpc �
�
F � M

��� � detF � �� ���F � � ��
	
�

Moreover� for all F � Kqc nK there exist pairs �s� F�� and �� � s� F�� with
F�� F� � K and rank�F� � F�� � � such that

F � sF� � ��� s�F�� and f�F�� � f�F�� � ��

This implies

f rc�F � � sf�F�� � ��� s�f�F�� � ��

and suggests to de
ne

ef�F � �
�����
����

� if �� � ��� detF � ��

f�F � if �� � ��� detF � ��

�� if detF 
� ��

����

In the three dimensional situation we use an analogous construction also for

values of f di�erent from zero� and obtain an upper bound ef by character�
izing �parts of� its level sets�

Step �� Establishing that ef is polyconvex�

Motivated by ���� we de
ne

��s� �

��
� � if s � ������

s
�p
�
� s
��

�p � � if s � ���

It is easy to see that � is convex and nondecreasing since

���s� � � p�p�
sp��

�
psp��

�p�
� � � s � �� �

���
��

����
� ���
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This implies that the function ���F � � M
��� � R given by

���F � � ��sup
e�S�

jFej� � ���max�F ��

is convex on M
��� and therefore polyconvex �see the proof of Proposition

��� below�� We now de
ne the function �� � M
��� � R by

���F � � I��detF � where I��t� �

��
� � if t � ��

� else�

Then �� is polyconvex and

���F � � ���F � �

�����
����

� if �� � ��� detF � �����
��

�p
�
���
��

�p � � if �� � ��� detF � ��

�� else�

It follows from ���� � � for detF � � that ef � �� � �� is a polyconvex
function� The arguments in the proof of Theorem ��� in Section � apply

also in the two�dimensional setting and we rediscover that ef is in fact the
relaxation for the two�dimensional model� see �DSD	�

�� Construction of the relaxed energy

After these preparations� we describe in this section the analysis of the
three�dimensional case� The construction becomes particularly transparent
if one considers W on the set

�
detF � �

	
as a function of two variables

in the
�
�max�F �� �max�cof F �

�
�plane� see Figure �� In order to simplify no�

tation� we write s � �max�F � and t � �max�cof F �� With this abbreviation�
the region in the �s� t��plane� on which W is 
nite� is bounded by the two
curves t �

p
s and t � s�� This is due to the fact that detF � � implies

�max�cof F � �
�

�min�F �
� �max�F � � �

��min�F �
and �min�F � � �

��max�F �
�

In the three�dimensional situation� the single value �� in Section � is replaced
by two curves in the phase plane along which two terms in the energy are
equal� see ����� They are determined from���

��

�p
�
���
��

�p
�
� �

������

�p
and

���
��

�p
�
� �

������

�p
�
���
��

�p
�

and these two conditions are equivalent to

�max�cof F � �
���
��

����p
�max�F � or t �

���
��

����p
s

and

�max�cof F � �
��
��

��max�F � or t �
��
��

s��

respectively� In the sequel we write
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max ( F)cof

λmax(F)

I

I

1

3

λ

3γ1

1

S

L

E1

E0 E3

γ11/

Figure �� The phase diagram for the relaxed energy�

�� �
��
��

� � and �� �
��
��

� ������

We now de
ne the following sets of matrices�

L �
�
F � M

��� � detF � �� �max�F � � ��� �max�cof F � � �

��

	
�

I� �
�
F � M

��� � detF � �� �max�cof F � � �

��
�

����max�F � � �max�cof F � � ��max�F �
	
�

I� �
�
F � M

��� � detF � �� �max�F � � ���p
�max�F � � �max�cof F � �

p
���max�F �

	
�

S �
�
F � M

��� � detF � ��p
���max�F � � �max�cof F � � ����max�F �

	
�

These sets of deformation gradients correspond to deformations for which
the material has a liquid�like �L�� an intermediate� solid�liquid�like �I�� and
a solid�like �S� behaviour� respectively� see our discussion in Section �� With
some abuse of notation we denote by L� S� I�� and I� also the corresponding
subsets in the �s� t��plane which are formally given by replacing �max�F � by
s and �max�cof F � by t in the foregoing de
nition� See Figure � for a sketch
of these curves and domains in the phase plane�
We now deduce in Propositions ��� and ��� the results corresponding to

Steps � and � in Section ��
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Proposition ���� Suppose that W is given by ��� with � � �� � �� � ��
and ������ � �� Let

fW �F � �

�������������
������������

� if F � L�

���F �
��

�p
� �



��
���F �

�p��
� � if F � I��

W �F � if F � S�

���F �
��

�p
� �



��
���F �

�p��
� � if F � I��

�� else�

����

Then W rc � fW � Moreover� for all matrices F � L the function fW is
obtained by averaging with respect to laminates within laminates� and for all
matrices F � I� � I� by averaging with respect to simple laminates� In both
cases� we �nd pairs ��i� Fi�i�������N�F � with N�F � � � satisfying �	� or �
��

respectively� such that fW �F � � W �Fi�� i�e�� the matrix F and the matrices

Fi are contained in the level set fX � fW �X� �W �F��g�
Proof� The proof is based on several applications of Theorem ���� which

we describe for the regions L� I� and I� separately� There is nothing to show
for the region of solid behaviour since the relaxed energy coincides there with
the original energy� Moreover� the assertion is an immediate consequence of
Proposition ��� for F � L � Kqc� since W rc is rank�one convex and W � �
on K�
Suppose now that F � I�� We may assume without loss of generality that

F is diagonal� F � diag�	�� 	�� 	��� with � � 	� � 	� � 	� and 	� � ���
Consider the line parallel to the t�axis through the point �	�� ��	��� and

let �s� t� be the intersection point of this line with the curve
�
s�
p
��s
�
� i�e��

s � 	� and t �
p
��	�� This point in the phase plane corresponds to the

set eK of all matrices G with the corresponding singular values s and ��t�
namely

eK �
�
G � M

��� � detF � �� ���G� � ��� ���G� � ��� ���G� � 	�
	
�

where

�� �
�p
��	�

and �� �

p
��p
	�
�

The idea behind the subsequent estimates is to show� based on Theorem ����

that the matrix F is contained in the quasiconvex hull of eK� We 
rst observe
that

�p
��	�

� �� � �� �

p
��p
	�

�
���
��

���� �p
	�

� 	��
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since the last inequality is equivalent to ����� � 	��� Moreover� F � I� implies
that

�

	�
�
p
��	� � �p

��	�
� 	� � 	� �

�

	�	�
�
p
��p
	�
�

Consequently �� � 	� � 	� � ��� and we conclude from Theorem ��� and

Corollary ��� that F � eK��� and

W rc�F � �W
�
diag���� ��� 	��

�
� �

���
	�

�p��
�
�	�
��

�p � ��

as asserted�
It only remains to consider the case F � I�� where we may assume that

F � diag�	�� 	�� 	�� with 	� � ��� In this case we consider the line parallel
to the s axis through �	�� ��	�� and consider the intersection point of this
line with the curve

�
s� ��s�

�
at
�
��
p
��	�� ��	�

�
� Here the goal is to show

that F is contained in the quasiconvex hull of the set

eK �
�
G � M

��� � detF � �� ���G� � 	�� ���G� � ��� ���G� � ��
	
�

where

�� �

p
��p
	�

and �� �
�p
��	�

�

We now have that

	� �
���
��

���� �p
	�

�

p
��p
	�

� �� � �� �
�p
��	�

�

since the 
rst inequality is equivalent to 	�� � ���
�
� � In addition�

��	�� �
�

	�
�

p
��p
	�

� �

	�	�
� 	� � 	� � �p

��	�
�

Theorem ��� and Corollary ��� thus imply that F � eK��� with

W rc�F � �W
�
diag�	�� ��� ���

�
�
�	�
��

�p
� �
���
	�

�p�� � ��

The proof of the proposition is now complete� �

We can state the foregoing proposition equivalently by saying that

W rc�F � �
��
� �

�
�max�F �� �max�cof F �

�
if detF � ��

�� else�
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where � � R�� � R is given by

��s� t� �

����������
���������

� if �s� t� � E��� �
��t
�p
� ����t�

p�� � � if �s� t� � I� � E��� �
��t
�p
�
� t
��s
�p
�
� s
��

�p � � if �s� t� � S�� s
��

�p
� �
���
s
�p�� � � if �s� t� � I� � E��

����

Here we denote by E�� E�� and E� the following domains in the phase plane
�see Figure ���

E� � � �� �� 	� � ��
�

��
	 � L�

E� �
�
�s� t� � t � �

��
� t � s�

	
�

E� �
�
�s� t� � s � ��� t �

p
s
	
�

The next proposition is the key ingredient in the proof of the polyconvexity

of fW � since � is a 
nite extension of fW which coincides with fW for all
matrices in

�
F � M

��� � detF � �
	
�

Proposition ���� The function � de�ned in ��
� is convex and nondecreas�
ing in its arguments�

Proof� In order to simplify the notation we de
ne the three functions

g� � E� � I� � R� g� � S� R� g� � E� � I� � R

by

g��s� t� �
� �

��t

�p
� ����t�

p�� � ��

g��s� t� �
� �

��t

�p
�
� t

��s

�p
�
� s
��

�p � ��

g��s� t� �
� s
��

�p
� �
���
s

�p�� � ��

We 
rst prove that � is continuous� To see this� it su�ces to consider � on
��E� � I�� and ��E� � I��� If s � ��� then g����� t� � �� and along the curve

t �
p
��s we have

g��s� t� �
� �

����s

�p��
�
� �

����s

�p��
�
� s
��

�p � � � g��s� t��

Similarly� g��s�
�
��
� � � and along the curve s �

p
t��� we obtain

g��s� t� �
� �

��t

�p
�
� t

����

�p��
�
� t

����

�p�� � � � g��s� t��
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In order to prove that � is nondecreasing� we calculate

Dg��s� t� �
�
��� p

�p� t
p��

� p�
p��
� tp����

�
�

Dg��s� t� �
�� ptp

�p�s
p��

�
psp��

�p�
�� p

�p� t
p��

�
ptp��

�p�s
p

�
�

Dg��s� t� �
�� p�

p��
�

sp����
�
psp��

�p�
� �
�
�

We obtain from these formulae that

�tg��s� t� � � � t�p�� �

 �

��

��p��
�

�sg��s� t� � � � s�p �

 t

��

�p
�

�tg��s� t� � � � t�p � ���s�p�

�sg��s� t� � � � s�p�� � �
�p��
� �

All these inequalities are satis
ed in the domains of the functions gi� and we
conclude that � is nondecreasing in its arguments� We now show that � is
continuously di�erentiable� Since

�sg����� t� � �� �tg��s�
�

��
� � ��

we only need to check this along the curves t �
p
��s and t � ��s�� respec�

tively� A short calculation shows that

Dg�
�
s�
���
��

����p
s
�
� Dg��s� t�� Dg�

����
��

����p
t� t
�
� Dg��s� t��

and this establishes the di�erentiability of the function ��
It remains to prove the convexity of �� It is clear that g� and g� are

convex since the functions s 	� sq and s 	� s�q are convex on R� for q � ��
We obtain for g� that

D�g��s� t� �

�
BB�

p�p� ��tp

�p�s
p��

�
p�p� ��sp��

�p�
� p�tp��

�p�s
p��

� p�tp��

�p�s
p��

p�p� ��

�p�t
p��

�
p�p� ��tp��

�p�s
p

�
CCA

and thus the determinant of the matrix of the second derivatives is given by

p��p� ����p�
sp��t�

� p�t�p��

��p� s�p��
�
p��p� � ���p�s

p��

tp��
�
p��p� ����p�t

p��

s�
�

By assumption� �
s�
� ��

t and thus for p � � and �p� ��� � ��

p��p� ����p� t
p��

s�
� p�t�p��

��p� s�p��
� p��p� t

p��

s�
� p�t�p��

�p��
p
�t
ps�

� ��
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Since also �D�g��� � �� we conclude that g� is convex on its domain and
this 
nishes the proof of the proposition� �

Proposition ���� Assume that � � R�� � R is given by ��
�� Then the

function �� � M
��� � R� given by

���F � � �
�
�max�F �� �max�cof F �

�
is polyconvex�

Proof� By de
nition� �� is polyconvex if there exists a convex function

g � M ��� � M
��� � R � R

such that ���F � � g�F� cof F�detF �� We de
ne

g�X�Y� 
� � �
�
sup
e�S�

jXej� sup
e�S�

jY ej��
It follows that for all matrices X�� X�� Y�� Y� � M

��� � scalars 
�� 
� � R

and � � � �� � 	

g
�
��X�� Y�� 
�� � ��� ���X�� Y�� 
��

�
��

�
sup
e�S�

j��X� � ��� ��Y��ej� sup
e�S�

j��X� � ��� ��Y��ej
�

��
�
� sup
e�S�

jX�ej� ��� �� sup
e�S�

jY�ej� � sup
e�S�

jX�ej� ��� �� sup
e�S�

jY�ej
�

��
�
�
�
sup
e�S�

jX�ej� sup
e�S�

jX�ej
�
� ��� ��

�
sup
e�S�

jY�ej� sup
e�S�

jY�ej
��

���
�
sup
e�S�

jX�ej� sup
e�S�

jY�ej
�
� ��� ���

�
sup
e�S�

jX�ej� sup
e�S�

jY�ej
�

��g
�
X�� Y�� 
�

�
� ��� ��g

�
X�� Y�� 
�

�
�

Here we used the triangle inequality for the norm and the fact that � is
nondecreasing in the 
rst inequality� and the convexity of � for the second
inequality� This establishes the polyconvexity of �� and concludes the proof�
�

Theorem ���� The rank�one convex and the polyconvex envelope of W co�
incide and are given by

W rc�F � �W pc�F � �

��
� �

�
�max�F �� �max�cof F �

�
if detF � ��

�� else�

Proof� We de
ne

���F � � I��detF � where I��t� �

��
� � if t � ��

� else�
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Then cW �F � � ���F � � ���F � is a polyconvex function which is 
nite only
on the set

�
F � M

��� � detF � �
	
� This implies that

���F � � �min�F � �
�

�max�cof F �
and ���F � �

�

�min�F ��max�F �

whenever the energy is 
nite� In view of the de
nition of ��

cW �F � �

��������������
�������������

� if F � L���min�F �
��

�p
� �
� ��
�minF

�p�� � � if F � I��

W �F � if F � S���max�F �
��

�p
� �
� ��
�max�F �

�p�� � � if F � I��

�� else�

and a comparison with ���� shows that cW � fW �W rc� Therefore

W rc � fW � cW �W pc �W rc�

and hence equality holds throughout this chain of inequalities� This proves
the assertion of the theorem� �

The 
nal step is to prove that the quasiconvex envelope of W is equal to
the polyconvex and the rank�one convex hull� This does not follow automat�
ically since quasiconvexity does not imply rank�one convexity for extended
valued functions� To close this gap� we use an explicit construction based
on the following result by M�uller��Sver�ak�

Lemma ��� ��MS��	� Lemma ����� Let � be given by

� � fF � M m�n � M�F � � tg�
where M is a minor of F and t 
� �� Let V be an open set in �� let F � V rc�
and let 
 � �� Then there exists a piecewise linear map u � 
 � R

n � R
m

such that Du � V rc a�e� in 
 and�� fx � Du�x� 
� V g
�� � 
j
j� u�x� � Fx on �
�

Theorem ���� The quasiconvex envelope of W �

W qc�F � � inf
��W ������R��
��x��Fx on ��

�

j
j
Z
�
W �D��x��dx�

is equal to the rank�one convex and the polyconvex envelope and given by

W qc�F � �

��
� �

�
�max�F �� �max�cof F �

�
if detF � ��

�� else�

where � is given by ��
��
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Proof� We have to construct for all F � M
��� with detF � � and for all


 � � a function �F�� �W ����
�R� � such that �F�� � Fx on �
 andZ
�
W �D�F���dx � j
jW pc�F � �O�
��

where O�
� � � as 
 � �� This implies W qc�F � � W pc�F �� and since W pc

is quasiconvex� we conclude W qc �W pc�
We give the proof for the situation that W pc is obtained from W by av�

eraging with respect to laminates within laminates� If follows from Propo�
sition ��� that there exist pairs ��i� Fi�i�������� such that

F �

�X
i��

�iFi� and W pc�F � �W �Fi�� i � �� � � � � ��

Moreover� F � eK��� where eK � fF�� F�� F�� F�g� We choose

� �
�
F � M

��� � detF � �
	
�

and de
ne for 
 � �

V� �
�
F � � � dist�F� eK� � 


	
� �� � sup

�
W �X� � X � V�

	�W pc�F ��

SinceW is continuous on � we have �� � � as 
 � �� Lemma ��� guarantees
the existence of a piecewise linear map �F�� � 
� R

� with D�F���x� � V rc
�

a�e� and

�F���x� � Fx on �
� and
���x � 
 � D�F���x� 
� V�

	�� � 
j
j�
Therefore� if M is an upper bound for W on V��Z

�
W �D�F���dx �

���D�F���x� � V�
	���W pc�F � � ��

�
� 
M j
j

� j
jW pc�F � � j
j��� � 
M
�
�

The assertion of the theorem follows as 
 � �� �

�� Perspectives for nematic elastomers

Nematic elastomers are rubbery solids which combine the entropic elas�
ticity of a network of cross�linked polymeric chains with the peculiar optical
properties of nematic liquid crystals� see Figure � for a sketch� These features
have already attracted considerable attention in the chemical and physical
literature and more recently also in the mathematical literature from the
point of view of continuum mechanics� see �ACF� DS	�
The motivation behind the successful e�orts to synthesize nematic elas�

tomers �FKR� KpF	 was the attempt to reproduce the mesophases typical
of a liquid crystal within an amorphous� polymeric solid� The resulting
physical system has the translational order of a solid phase coupled to the
orientational order of a nematic phase� Soft deformation modes whose oc�
currence had been predicted by theory �GL	� were observed experimentally
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Figure �� Sketch of the isotropic�nematic phase transfor�
mation in nematic elastomers� They consist of cross�linked
backbone chains to which nematic elements �rigid� rod�like
molecules� are attached� The nematic mesogens have a ran�
dom orientation in the high temperature �isotropic� phase due
to thermal �uctuations� A local alignment of the mesogens in
the low temperature �nematic� phase causes a stretch of the
network in direction of n �indicated by the arrow in the right
�gure� and a contraction in the directions perpendicular to
it�

�KnF	� in association with the appearance of domain patterns with a char�
acteristically layered texture� The formation of these microstructures was
explained by energy minimization in the framework of continuum models in
�WB	� �WT	� One of the proposed models �BTW	 is based on minimization
of the free energy density�

WBTW �F� n� �

��
�

	

�



r���

� jF j� � r � �

r
jF Tnj� �� �

�
if detF � ��

�� otherwise�

Here 	 and r are positive� temperature dependent material constants� the
rubber energy scale and the backbone anisotropy parameter �i�e� the statis�
tical average of the ratio of the dimensions of a chain in directions parallel
and perpendicular to n�� and n is the director describing the local directional
order in the nematic phase� In the isotropic phase� r � �� and the system is
governed by the neo�hookean energy of the rubber� For temperatures below
the transformation temperature� r � �� and a minimization of the energy in
n leads to

W �F � � min
n�S�

WBTW �F� n� �

��
�

	

�



r���

�
��� � ��� �

�

r
���
�� �

�
� detF � ��

�� else�

Here we have chosen the stress�free state of the isotropic parent phase as
reference con
guration rather than one of the stress�free states of the product
uniaxial phase as it is done in �BTW� WT	�
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The mathematical interest in this energy lies in its nonconvexity caused
by the factor ��r � � in front of the largest singular value� Its expression is
up to the factor �

� identical to ��� with

�� � �� �
�

r��

� r��� � �� and �� �

�p
r
� �� � ��

where the parameters �� and �� have been de
ned in �����
Our results in Sections � and �� Theorems ��� and ���� imply immediately

the following result �see the phase diagram in Figure ���

Theorem ���� The relaxed energy W qc of the system is given by

W qc�F � �

��������
�������

� if F � L

	
�



�

r��
�min�F �
� r�����min�F �� �

�
if F � I��

W �F � if F � S�

�� else�

where

L �
�
F � M ��� � detF � �� �max�F � � r���

	
�

I� �
�
F � M ��� � detF � �� �min�F ��

�
max�F � � r���

	
�

S �
�
F � M ��� � detF � �� �min�F ��

�
max�F � � r���

	
�

The set Kqc of all a�ne� asymptotically zero�energy deformations is equal
to K���� Moreover� deformations in K��� and K��� can be realized by simple
laminates and laminates within laminates� respectively� and can be repre�
sented by

K��� �
�
F � M

��� � detF � �� �min�F � �
�

r��


	
�

K��� �
�
F � M

��� � detF � ��
�

r��

� �min�F � � �max�F � � r���

	
�

Finally� the relaxed energy in I� can be achieved by averaging with respect to
simple laminates�

From the expression of W qc it is clear that in the region �L� of the phase
diagram drawn in Figure � the response of the system is completely soft�
and only constrained by incompressibility� Thus� in the region �L�� the
material behaves essentially like a liquid� On the other hand� in the region
�S� of the phase diagram� the expression for the energy is very similar to
the one describing a neo�hookean rubber� hence the material behaves like an
elastic solid� In the intermediate region �I��� the energy depends only on the
smallest singular value of F �the dependence on the other two singular values
is indirect� through the incompressibility constraint�� Thus the material
response is intermediate between a liquid�like and a solid�like one�
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( F)cof

λmax(F)1/3

r1/6

r

1I

maxλ

1

1

S

L

Figure �� The phase diagram for nematic elastomers� The
phase boundary between the intermediate phase and the solid
phase is given by �min�F ��

�
max�F � � r����

The signi
cance of Theorem ��� from the point of view of Continuum
Physics is that it represents the 
rst explicit relaxation result for an SO����
invariant energy related to solid�solid phase transitions� In particular� it al�
lows one to explore analytically and numerically realistic loading conditions
and boundary value problems that involve microstructures whose character�
istic features are not spatially homogeneous� Numerical experiments with
a thin sheet of a nematic elastomer in a geometry for which experimental
results are available in the literature are presented in �CDD	�
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