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LOW ENERGY DOMAIN PATTERNS IN SOFT
FERROMAGNETIC FILMS

A. DESIMONE, R.V. KOHN, S. MULLER, F. OTTO AND R. SCHAFER

ABSTRACT. Computations based on a two-dimensional model recently proposed
by the authors shed some new light on classical experimental observations of
permalloy films under in-plane applied magnetic fields.

Some quantities, such as the magnetic charge density or the magnetization in
the regions of the film where the external field penetrates the sample are easily
and robustly computable through energy minimization and are much less prone
to hysteresis than the underlying domain structures.

INTRODUCTION

Driven by the allure of spin electronics, soft ferromagnetic films are enjoying
renewed attention. Most current modelling is based on direct micromagnetic simu-
lation, which is the tool of choice for the study of hysteresis and dynamic switching.
It is however natural to try and complement this effort by seeking a more analytical
understanding of domain patterns, starting from the study of equilibrium configura-
tions. In this spirit, a two-dimensional variational model has been recently derived
from micromagnetics, and used by the authors for the computation of energy min-
imizing domain patterns in permalloy films with square cross-section subject to an
in-plane applied magnetic field [1]. Our results fall in two categories.

The first one concerns the structure of the energy functional of micromagnetics,
in the thin-film limit. This limit process reveals a hierarchical structure in the en-
ergy, which separates into low-order terms, “essential part”, and higher-order terms.
The low-order terms lead to constraints (e.g. the component of the magnetization
along the thickness direction must vanish), hence to the elimination of degrees of
freedom. The essential part is the term of second order in the film thickness: it
leads to a (new) reduced variational principle which sets the charge density. Wall
energies and anisotropy contribute only at higher order. The higher-order terms are
not irrelevant: they provide the energy barriers which are the source of magnetic
hysteresis. Moreover, they break the degeneracy in the reduced theory.

The second one concerns the quantitative tools at our disposal to analyze the
experimentally observed response of soft ferromagnetic films. There are some quan-
tities, such as the charge density and the magnetization in parts of the sample (the
regions of “penetration” of the external field, which grow larger with the strength
of the applied field), which are uniquely determined by energetics at leading order.
These quantities are easily and robustly computable, and seem to be less prone
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to hysteresis than the underlying domain patterns. Thus, they may play a signif-
icant role in the study of the microstructural origin of magnetic hysteresis in soft
ferromagnetic films.

MICROMAGNETICS IN THE THIN-FILM LIMIT

The free-energy functional of micromagnetics in units of J2L3/2u is

Ey(m) = (Kd)Q/Q |Vm|?dz + Q ; w(m)dx

(1) + / |hd|2dx—2/ Rl - mdz .
R3 Qg

Here m is the magnetization (in units of the saturation magnetization J;), a unit
vector field defined on the film €; with cross section w and thickness d, where all
lengths are measured in units of a typical lateral dimension L (the edge-length for w
a square). Moreover, « is the ratio between exchange length Dy, and film thickness,

where Dpr, = (2upA/ Jf)%, and A is the exchange constant; ) is the quality factor
measuring the strength of the magnetic anisotropy ¢ relative to that of dipolar
interactions; hgy is the stray field in units of Jg/ug, and the corresponding integral is
the magnetostatic energy; h, is the applied field in units of Jg/ug, which we assume
to be uniform and parallel to the film’s cross section. In what follows, a prime will
always denote a two-dimensional field or operator.

For d < 1 a hierarchical structure emerges in (1), which is summarized in Table
1. Variations of m of order one along the thickness direction x3 give rise to an
exchange energy per unit area (of the cross section) of order x?d. An out—of-plane
component mg of order one determines a magnetostatic contribution per unit area of
order d. The component of the in-plane magnetization m’ orthogonal to the lateral
boundary dw of the film’s cross section w leads to a magnetostatic contribution of
order d?In % per unit length. The same mechanism penalizes jumps [m’ - /] of the
normal component of the magnetization across a line of discontinuity of m' with
normal v/. These lines of discontinuity arise as sharp interface approximations of
domain walls. At order d?> we find the magnetostatic energy per unit area due to
surface “charges” proportional to the in-plane divergence div'm/’. Finally, the energy
per unit length of a Néel or asymmetric Bloch wall and the energy of a single vortex
are indicated in the table. In the regime

h! 1

(2) Hg:iNL %<<1, d<<ﬁ2<<m,
the low-order terms penalizing mg, g—g’;’; and [m'-v'] become hard constraints, forcing
the corresponding energy sources to vanish, while the energetic cost of anisotropy,
of the wall type of minimal energy, and of vortices become higher-order terms.
The energy is thus determined, at principal order, by the competition between the
aligning effect of H! and the demagnetizing effects due to div'm/.

In view of this separation of energy scales in the regime (2), the following reduced
theory emerges naturally. The magnetization should be such that m/(z’) minimize

(3) E(m') :/ |Hd|2dx—2/Hé-m'dx',
R3 w
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where Hy(z) = —VU is determined by
V2U = 0 in R? outside of w,

2]

among all in-plane vector fields m' of at most unit length

div'm' on w,

(4) Imy| <1 inw,

which satisfy [m' - '] = 0 across all possible discontinuity lines and at dw (we will
call regular all magnetizations satisfying this condition).

A rigorous proof justifying our theory beyond the heuristic arguments given above
will be published elsewhere. Here, we just remark that (3) extends the models of
van den Berg [2] and Bryant and Suhl [3] to arbitrary field strengths, it provides
them with a variational formulation, and it clarifies their relationship with micro-
magnetics.

COMPUTATIONS BASED ON THE REDUCED THEORY

To bring into focus our proposed algorithm for the computation of low-energy
domain patterns, let us first identify the quantities which can be uniquely determined
by minimizing (3). The functional F depends on m' only via the surface charge
o = —div'm/, and it is not hard to show that F is strictly convex in o. Thus, energy
minimization determines o uniquely and, through the scalar potential U, it also
gives the stray field H;. The magnetization is instead uniquely determined only in
some parts of the sample. To see this, observe that any minimizer m’ of (3) satisfies
the Euler-Lagrange equation

(5) H)+ H,=Xm' inw,

where A(z') is the Lagrange multiplier associated with the pointwise constraint (4).
There exists a finite critical field strength H.;;, in the following sense: when the
applied field is subcritical, A = 0 and the external field is completely expelled from
the sample, whereas when it is supercritical A\ is nonzero somewhere and the field
penetrates in that part of the sample. The critical field strength depends on the
geometry of w — for a circular disk of diameter one, its value is one. Since Hy is
uniquely determined, the region {H), + H] # 0} of w where the external field is not
expelled from the sample is uniquely determined. Within this penetrated region, m’
is also uniquely determined in view of (5), and it is of unit length.

Outside the regions of field penetration, the magnetization is not uniquely detem-
ined by energy minimization. Moreover, the energy (3) is insensitive to requiring
that minimizing magnetizations satisfy (4) or rather the unit length constraint

(6) |m'| =1 inw.

In fact, for any regular m(, of at most unit length there exist many regular m' of
unit length with the same surface charge: div'm’ = div'm(,. Indeed, we may write
m' = V1t + mf where Vi = (—=0¢/0z2,0/0x1) and the continuous function
(z') on w solves the boundary value problem

(7 Vi +my] = 1 inw,

)
(8) ¥ = 0 ondw.
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One can generate many solutions of this problem by imposing the additional condi-
tion ¢ = 0 on an arbitrary curve contained in w.

The considerations above suggest the following two-step scheme for the numerical
computation of energy minimizing domain patterns. The first step minimizes (3)
among all regular in—plane vector fields my, of length less than or equal to 1. This step
is used to identify all quantities that are uniquely predicted by energy minimization
(in particular, the region of field penetration and the magnetization within this
region). Note, however, that m{ typically violates (6) outside the region of field
penetration. Here, the unit length constraint is restored in the second step, which
postprocesses my, by solving (7,8) to obtain another minimizer m’ which also satisfies
(6). This m/' is used to identify a low energy domain pattern.

The first step is a convex variational problem. We solve it by using an interior
point method [4]. For the second step, we recall that the solution of (7,8) is not
unique. What we compute is a special solution 1, known as the “viscosity solu-
tion”, which has special mathematical properties [5], and which can be computed
efficiently using the “level set method” [6]. The selection principle implicit in this
scheme appears to pick a minimizer with as few walls as possible. The more physical
selection mechanism of minimizing wall energy will require to incorporate higher-
order corrections in the model.

EXPERIMENTS AS SEEN BY THE REDUCED THEORY

We have observed the response of two ac-demagnetized Permalloy (Nig;Fejg, J; =
1.0 T) square samples of edge lengths L = 30 and 60 pm and thicknesses D = 40
and 230 nm, respectively, in a digitally enhanced Kerr microscope. Starting from
the configuration of Fig. 1, a field applied along the diagonal, and pointing towards
the upper right corner, will push the central vortex towards the upper left corner.

The reduced theory seems to capture remarkably well the behavior observed under
monotonically increasing fields, both for the thin samples and for the thick ones
(these are the ones shown in Fig. 2). The most conspicuous difference in the
behavior exhibited by the two types of samples is in their hysteretic response. For
the thinner samples, the behavior is reversible upon subsequent reduction of the
field, at least up to the maximum field strength H 22 1.5 we applied. Here

S
and h, is measured in Tesla. In the thicker samples, the onset of hysteretic behavior
is well below H = 1.

From the point of view of domain patterns, there are two critical events which
seem to be related to the irreversibility exhibited by the thicker samples. The first
one is the expulsion of parts of the domain walls from the interior of the sample. Our
computations show that this phenomenon is related to the penetration of the external
field, see Fig. 3, where we have superimposed on each gray-scale plot (of the vertical
component of the magnetization) the level curves of the potential v of the penetrated
field, defined by —Vv = H], + H]. Regions where the field lines concentrate are
regions where Vo # 0, i.e., where the external field has penetrated the sample.
Within them, (5) implies that m' is parallel to Vu, i.e., the magnetization vector is
orthogonal to the circular arcs shown in the figures.

At higher fields, the vortex is expelled from the upper left corner, and the more
symmetric configuration of Fig. 4 is reached. Our computations show that, at these
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TABLE 1. Scaling of the relevant energy sources

g—;’; K2d
ms d
[m' - 1] In(3) d?
div'm/ d?
external field h.d
anisotropy Qd
asymmetric Bloch wall k2 d?
Néel wall (In(=35)) " d?
vortex In(-L) k% d®

field strengths, the annular regions of field penetration have merged, and the region
of field expulsion is no longer connected. Starting from the same energy-minimizing
charge distribution, (7,8) can be solved to give either the pattern of Fig. 4 or the one
observed in the thinner samples, Fig. 5. Thus, the energies associated with the two
configurations differ only by higher order terms. In the thinner samples, however,
the Néel character of the walls leads to a repulsive interaction with the edges, and
walls and vortex are never really expelled from the sample (at least up to H = 1.5).

Comparing the two types of observed behavior, one is led to conclude that the
micromagnetic origin of the hysteretic response of the thicker sample seems to lie
in some small differences. These differences are small in energy, because they are
due to the different mechanisms of interaction of walls and vortices with the lateral
boundary, and they are very localized in space. Nevertheless, they are at the root
of the dramatic differences between the domain patterns shown in Figures 4 and
5, which in turn determine whether or not hysteresis is triggered. The subtle and
elusive nature of these effect is, maybe, at the origin of the continuing fascination
they exert on the inquisitive mind.
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FIGURE 1. AC-demagnetized state. L = 60 ym, D = 230 nm, H = 0.



H =0.63 H =0.57

H =0.68 H=0."71

H=111 H=1.20

FIGURE 2. Observed domain patterns for L = 60 ym, D = 230 nm
(left column) compared with the predictions of the reduced theory
(right column).
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H =10.85 H =092

H =10.99 H =1.06

FiGurRE 3. The transition between expulsion and penetration
regimes: lines are level curves of the potential of the penetrated field.



FIGURE 4. Symmetric patterns. L = 60 pm, D = 230 nm, H = 1.25.



FIGURE 5. Non-symmetric patterns. L = 30 ym, D = 40 nm, H = 1.25.
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