Self-similar folding patterns and energy scaling in compressed elastic sheets

Sergio Conti a, Antonio DeSimone b, Stefan Müller a, *

a Max-Planck-Institute for Mathematics in the Sciences, Inselstr. 22-26, 04103 Leipzig, Germany
b SISSA-International School for Advanced Studies, Via Beirut 2-4, 34014 Trieste, Italy

Received 13 January 2004; received in revised form 3 May 2004; accepted 20 July 2004

Abstract

Thin elastic sheets under isotropic compression, such as for example blisters formed by thin films which debonded from the substrate, can exhibit remarkably complex folding patterns. We discuss the scaling of the elastic energy with respect to the film thickness, and show that in certain regimes the optimal energy scaling can be reached by self-similar folding patterns that refine towards the boundary, in agreement with experimental observations. We then extend the analysis to anisotropic compression, and discuss a simplified scalar model which suggests the presence of a transition between a regime where the deformation is governed by global properties of the domain and another one where the direction of maximal compression dominates and the scale of the folds is mainly determined by the distance to the boundary in the direction of the folds themselves.

© 2005 Elsevier B.V. All rights reserved.

Keywords: Self-similar folding patterns; Energy scaling; Compressed elastic sheets

1. Introduction

Debonding from the substrate and subsequent blistering is a mechanism by which a film can release compressive stresses. This happens for example upon cooling films deposited at high temperature on a substrate with a larger thermal expansion coefficient, see [36] for a review of the experimental context and of the technological applications. The complexity of the resulting patterns have generated interest spanning the mechanics [10,56,36,4], physics [53,46,7,63,62,3,12] and mathematics [2,40,8,28,41,42,9] literature. Experimentally, typical observed configurations exhibit folds perpendicular to the boundary, which often coarsen...
in the interior of the debonded region, see for example [1,36]. In many cases even the debonded region itself has a complex shape, as for example in the so-called telephone-cord blisters [56,36]. Theoretically, the analysis of such phenomena is typically based on a separation of time scales. A fast elastic relaxation determines the folding pattern of the debonded region. The debonded region itself arises and grows by means of a slower fracture process whose driving force is given by the solution of the elasticity problem. We focus here on the first, elastic, problem, and assume the debonded region to be fixed. Our results show that oscillations spontaneously form close to the boundary, even if the boundary itself is straight. This implies that the driving force for boundary propagation is oscillatory, and therefore that straight boundaries will tend, after propagation, to become wavy. This argument indicates that the waviness of the boundary is a consequence of the formation of oscillations in the elastic problem in the interior, and not vice versa, as often assumed in the literature on the subject. This effect, which had already been mentioned in [56], was studied within a linear stability analysis by Audoly in [3].

The multiscale nature of the patterns formed in thin-film blistering makes a direct numerical resolution of the elastic deformation, for example by finite elements, very difficult. Most numerical studies so far are restricted to small blisters with simple geometries, and focus on the formation of the oscillatory telephone-cord shapes [55,24,59,39]. This is a complex process which depends on the mentioned interaction between the the debonding process and the elastic deformation, and which couples modes I and II fracture. Telephone-cord blisters can indeed be used in order to determine debonding parameters [37]. Methods to study effectively the interplay of strain and bending energies by finite elements have been proposed and applied to cylinder pinching [19] and airbag inflation [18]. The presence of folding over a large number of different length scales makes the blistering problem very demanding. For a very recent report on numerical simulation and a discussion of the difficulties encountered in these problems, see [64]. We discuss here approximate solutions, which are analytically known and not only furnish a qualitative understanding, but also give good initial conditions for subsequent numerical optimization [23].

We briefly review in Section 2 several simplified two-dimensional models for elasticity of thin sheets and their derivations from three-dimensional elasticity. Then, in Section 3 we discuss the patterns expected for isotropically compressed films. The heuristic discussion is based on a two-dimensional vectorial model, but all results hold for the full three-dimensional elasticity theory. Section 4 contains our main new result, namely, the energy scaling for the case of anisotropic compression, within a restricted scalar model.

2. Reduced two-dimensional models

Let \(\omega \subset \mathbb{R}^2 \) be the region where the film detached from the substrate, which we assume to be smooth and bounded, and \(h > 0 \) be the film thickness. Then, the deformation \(\phi : \omega \times (0,h) \to \mathbb{R}^3 \) is determined by minimization of the elastic energy

\[
I^h_{3D}(\phi) = \frac{1}{h} \int_{\omega \times (0,h)} W_{3D}(\nabla \phi) \, dx,
\]

where the free-energy density \(W_{3D}(F) \) behaves qualitatively as the squared distance of the deformation gradient \(F \in \mathbb{R}^{3 \times 3} \) from the set \(SO(3) \) of rotations (our more general precise assumptions are stated below). The boundary conditions are set by the part of the film which is still bound to the substrate, and are given by

\[
\phi(x) = \begin{cases}
(1 - \epsilon_x)x_1 \\
(1 - \epsilon_y)x_2 \\
x_3
\end{cases} \quad \text{on} \quad (\partial \omega) \times (0,h),
\]

where \(\epsilon_x \) and \(\epsilon_y \) are the strain in the x and y directions, respectively.
where \(\epsilon_s > 0 \) is a small parameter representing the amount of compression. As usual in thin-film elasticity
boundary conditions are imposed only on the lateral boundary, not on the top and bottom faces of the sheet.

2.1. A director ansatz

The history of the theory of thin sheets and shells is paved with a number of simplifications of the general
elasticity functional (1) aiming at a direct description of the behavior of the sheet as a two-dimensional
object, without resolving explicitly the third dimension. The model of choice for the blistering problem
is the von Kármán functional, where both stretching and bending of the film are included. This can be
heuristically derived by means of an ansatz, due to Kirchhoff, which enslaves the three-dimensional deformation \(\phi \) to the behavior of the mid-plane section \(\psi \). Namely, given \(\psi : \omega \to \mathbb{R}^3 \), one writes

\[
\phi(x_1, x_2, x_3) = \psi(x_1, x_2) + \left(x_3 - \frac{h}{2} \right) b(x_1, x_2),
\]

and then optimizes locally over all vectors fields \(b \in \mathbb{R}^3 \). Within a formal asymptotic expansion, and up to
multiplicative coefficients, the optimal choice for \(b \) is the normal \(v \) to the surface described by \(\psi \), defined
according to

\[
v = \frac{\psi_1 \wedge \psi_2}{|\psi_1 \wedge \psi_2|}.
\]

In materials with a nonzero Poisson’s ratio the energy can be further reduced by including the second-
order term in \(x_3 \). Since it does not change the energy scaling, for simplicity we neglect this correction. A
formal asymptotic expansion leads then to the reduced energy (again, up to inessential multiplicative factors of order unity)

\[
I_{2D}^h[\psi] = \int_{\omega} W_{2D}(\nabla \psi) + h^2|\nabla v|^2 \, dx,
\]

where \(|\nabla v|^2 = |\partial_1 v|^2 + |\partial_2 v|^2 \). The new potential \(W_{2D}(a|b|c) \) is obtained from \(W_{3D}(a|b|c) \) by optimizing over all
possible choices for the third column \(c \) of the argument,

\[
W_{2D}(F) = \min_{c \in \mathbb{R}} W_{3D}(F|c), \quad F \in \mathbb{R}^{3 \times 2}.
\]

Here \((F|c) \) denotes the \(3 \times 3 \) matrix obtained extending \(F \) with \(c \) in the third column, \(Fe_1 \otimes e_1 + Fe_2 \otimes e_2 + c \otimes e_3 \). This definition is, for low-energy and smooth deformations, equivalent to the one
obtained by simply assuming that \(c \) is a unit vector normal to the first two columns of \(F \), i.e. \(c = v \). The function \(W_{2D}(F) \) is therefore equivalent to the squared distance of \(F \) from the set \(O(2, 3) \) of linear isometries
from \(\mathbb{R}^3 \) to \(\mathbb{R}^2 \).

2.2. Rigorous results on membrane and plate theories

The method of choice for the mathematical derivation of reduced variational theories is \(\Gamma \) convergence, a
criterion for convergence of functionals which is naturally coupled to convergence of minimizers, developed
by De Giorgi and his school in the 70s ([26]; see also [25,11]). Recent progress in the mathematical theory of
thin elastic bodies has shown that each of the two terms that form the model (3) can be, separately and in
different regimes, justified by means of \(\Gamma \) convergence. No such result exists, however, for \(I_{2D} \), and indeed
this approach by \(\Gamma \) convergence seems unable to derive a functional such as (3) where the small parameter
does not disappear in the limit, but is still present in front of a term with higher derivatives (mathematically,
a problem with a singular perturbation). We briefly review here the existing results since they give a rigorous justification of the two terms of the functional (3), on which part of the following analysis is based.

The first term in (3), called the stretching term, is characteristic of membrane theories, which are written in terms of the first gradient of the deformation. Convergence of the three-dimensional problem to a membrane theory was proven by LeDret and Raoult [49–51], who (under some technical growth conditions on \(W_{3D} \)) showed that the \(I \)-limit of \(I_{3D}^h[\phi] \), as \(h \to 0 \), is given by

\[
I_{\text{membrane}}[\psi] = \int_\omega W_{2D}^e(\nabla \psi) \, dx,
\]

where \(\psi : \omega \to \mathbb{R}^3 \) is the limit of the vertical averages of \(\phi \), in the sense that

\[
\frac{1}{h} \int_0^h \phi(x_1, x_2, x_3) \, dx_3 \to \psi(x_1, x_2)
\]

in \(L^2 \). The reduced energy density \(W_{2D}^e : \mathbb{R}^{3 \times 2} \to \mathbb{R} \) is the quasiconvex envelope of the reduction \(W_{3D} \) to two dimensions. Precisely, it corresponds to optimizing \(W_{2D} \) over all possible oscillations which can be realized by gradient fields with affine boundary data, according to

\[
W_{2D}^e(F) = \inf \left\{ \int_{(0,1)^2} W_{2D}(F + \nabla v) \, dx : \, v \in C_0^\infty((0,1)^2) \right\}.
\]

A simple computation shows that since the function \(W_{3D} \) vanishes on \(SO(3) \), the two-dimensional energy \(W_{2D} \) vanishes on \(O(2,3) \), and the envelope \(W_{2D}^e \) vanishes on convex hull of \(O(2,3) \), which is given by the set of all short matrices, i.e. of all matrices \(F \in \mathbb{R}^{3 \times 2} \) such that \(F^T F \leq \text{Id} \) (equivalently, the nonlinear strain is compressive, i.e. both singular values of \(F \) are less than or equal to 1). This behavior is remarkably different from what happens in the first term of the reduced theory defined in (3): the latter only vanishes on gradients of isometric maps, not on all compressive strains. This difference arises from the fact that in the scaling regime considered by LeDret and Raoult fine-scale oscillations which can absorb compressive strains can be generated at no energetic cost, since no bending term is present. Mechanically, this reflects the fact that the sheet cannot withstand compression. The resulting tension-field theory had been discussed earlier by Pipkin [61,60].

The second term in (3), called the bending term, is characteristic of plate theories, and it was considered by Friesecke et al. [33,34] and by Pantz [57,58]. They have shown that the \(I \)-limit of \(h^{-2} I_{3D}^h[\phi] \), as \(h \to 0 \), is given by a functional which had been proposed with a heuristic derivation by Kirchhoff in 1850 [43], namely,

\[
I_{\text{plate}}[\psi] = \begin{cases} \int_\omega Q_2(\nabla \psi) \, dx & \text{if } \psi \in W^{2,2}(\omega, \mathbb{R}^3), \quad \nabla \psi \in O(2,3) \\ \infty & \text{else.} \end{cases}
\]

Here \(\nabla \psi \) denotes the second fundamental form of \(\psi \), which can be defined as the projection on the tangent space to the surface described by \(\psi \) of the gradient of the normal to such surface, i.e.,

\[
\nabla \psi = (\nabla \psi)^T \nabla v, \quad v = \frac{\psi_1 \wedge \psi_2}{|\psi_1 \wedge \psi_2|}.
\]

The quadratic form \(Q_2(G) \) is defined on \(\mathbb{R}^{2 \times 2} \) by

\[
Q_2(G) = \frac{1}{24} \min_{b \in \mathbb{R}^3} Q_3(G|b), \quad Q_3(F) = \frac{\partial^2 W_{3D}^e}{\partial F^2} (\text{Id})(F, F).
\]
The components of the quadratic form Q_3 are the elastic constants of the material, and the optimization in h is analogous to the one that leads from W_{3D} to W_{2D} in the membrane theory. The resulting model I_{plate} is very rigid. In fact, the energy is infinite for all deformations which are not $W^{2,2}$-smooth local isometries, which leaves rather little freedom.

Both mentioned results, namely, the rigorous derivation of membrane and plate theories, have represented substantial progress in the mathematical understanding of thin elastic bodies. However, none of them permits to make any prediction for the blistering problem of interest here. Precisely, the functional I_{membrane} vanishes on all maps which are short, such as for example the affine continuation of the boundary data. The functional I_{plate} instead is infinite on all maps that satisfy the boundary conditions. None of the two gives useful information on the blistering patterns. In particular, the functional I_{2D} defined in (3) is not equivalent to $\tilde{I} = I_{\text{membrane}} + h^2 I_{\text{plate}}$: the latter is indeed finite only on locally isometric maps, whereas I_{2D} is finite on all twice differentiable fields ψ. In particular, for the affine map $\psi_a(x) = ((1 - \epsilon_a)x, 0)$, which satisfies the boundary conditions of the blistering problem, we obtain that $I_{2D}(\psi_a)$ behaves as $c|\omega|^3\epsilon_a^3$, whereas $\tilde{I}(\psi_a) = \infty$.

The reduced model (3) still contains the small parameter h. In mathematical terms, the bending correction, which corresponds to a term depending on the second derivative of ψ, represents a singular perturbation. From the point of view of elasticity, the peculiarity of the blistering problem is that both the stretching term—depending on $\nabla \psi$—and the bending term—depending on $\nabla^2 \psi$—are present and relevant, but they appear with very different coefficients. We remark that the geometrically linearized version of the model (3), corresponding to the von Kármán model, has been derived first formally by asymptotic expansion [16,17] and then rigorously by Γ convergence [32,31] and alternatively by a subtle application of the implicit function theorem [54] in a scaling regime where both terms have the same behavior, hence in which no small parameter appears in the limit. This corresponds to energies scaling as the fifth power of the film thickness, and is not relevant for the blistering problem.

2.3. The scalar ansatz

The functional I_{2D} can be further simplified by assuming that the deformations are small, which leads to a geometrically linear model which we do not discuss here. Ortiz and Gioia proposed in 1994 [56] a more drastic simplification, namely, they assumed that only the component of ψ normal to the plane is active, in the sense that

$$\psi(x) = \begin{pmatrix} (1 - \epsilon_a)x \\ w(x) \end{pmatrix},$$

where $w : \omega \to \mathbb{R}$ is a scalar deformation field. This leads to a simplified scalar model, which after suitable rescaling (see below) takes the form

$$I_{\text{Eik}}[u] = \int_\omega \left[(\nabla u)^2 - 1 \right]^2 + \sigma^2 |\nabla^2 u|^2 \, dx,$$

where $\sigma = h/(2\epsilon_a)^{1/2}$ is the natural length scale of the problem. Minimization of the functional I_{Eik} corresponds to solving a regularization of the eikonal equation $|\nabla u| = 1$, and also plays a role in models of liquid crystals [5], of micromagnetism in thin films [28,29], and of convection patterns in fluids [30]. In spite of recent progress (see [2,6,40,28,27]) the Γ limit of I_{Eik} as $\sigma \to 0$ remains to be identified. The natural candidate low-energy state of I_{Eik} is obtained setting $u(x)$ equal to the distance of x from the boundary of ω, and then smoothing it where the gradient jumps. This approximate solution, that was first proposed by Gioia and Ortiz, leads to a scaling of the total elastic energy per unit thickness of the form $c|\omega| + ch\epsilon_a^{3/2}$. We shall show later that this energy is not optimal, in the sense that inclusion of the in-plane components permits to relax the energy down to order $ch\epsilon_a^{3/2}$, eliminating the constant term. Further, the mentioned scalar
approach and its solution \(w(x) \simeq \text{dist}(x, \partial \omega) \) indicate that the folding patterns in the interior of the domain arise as a consequence of the waviness of the boundary. In particular, in a domain with smooth boundaries very few folds on a long length scale are expected; for example, only a segment in an ellipse, or the two diagonals in a square (see Fig. 1). We shall argue later that inclusion of the tangential components permits to identify the formation of a large number of additional folds on a much finer length scale, which refine towards the boundary. For the case of anisotropically compressed films, however, our discussion is restricted to the simplified scalar model.

3. Folding patterns in compressed thin films

We study the qualitative properties of low-energy states of the three-dimensional elasticity problem (1) under compressive affine boundary conditions as specified in (2). The heuristic discussion will be phrased in terms of the more explicit two-dimensional reduced functional (3). We remark that all results presented here apply to the full problem (1) (see [9]), the reduction to two dimensions is only used for the purpose of a more explicit heuristic derivation and a simpler pictorial illustration. As mentioned above, the three-dimensional energy density \(W_{3D} \) is locally comparable to the squared distance from the set \(SO(3) \) of rotations, and the two-dimensional energy density \(W_{2D} \) is locally comparable to the squared distance from the set \(O(2,3) \) of linear isometric maps from \(\mathbb{R}^2 \) to \(\mathbb{R}^3 \). For simplicity of notation we shall formulate our statements under the assumption that the reduced two-dimensional energy takes the specific form

\[
W_{2D}(F) = \text{dist}^2(F, O(2,3)).
\]

The entire argument applies, however, to general energy densities which satisfy the growth conditions stated in (9) and (10) below. In Eq. (5) above \(F \in \mathbb{R}^{3 \times 2} \), and the distance of a matrix \(F \) from a set \(K \) is defined by \(\text{dist}^2(F, K) = \inf\{|F - G|^2 : G \in K\} \), where \(|F|^2 = \text{Tr} F^T F = \sum F_{ij}^2 \).

A first approximation to the solution, which corresponds to the scalar model discussed in the introduction, can be obtained by relaxing only the vertical component, i.e. optimizing over all deformations of the form

\[
\psi_{\text{scal}}(x) = \left(\begin{array}{c}
(1 - \epsilon_v) x \\
\frac{w(x)}{w(x)}
\end{array} \right) .
\]

Here and below we use \(x \) to denote two-dimensional coordinates, \(x = (x_1, x_2) \in \omega \subset \mathbb{R}^2 \). Computing the gradient of \(\psi_{\text{scal}} \) we get

\[
\nabla \psi_{\text{scal}}^T \nabla \psi_{\text{scal}} = (1 - \epsilon_v)^2 \text{Id} + \nabla w \otimes \nabla w.
\]

Matrices \(F \) in \(O(2,3) \) are characterized by the fact that \(F^T F = \text{Id} \), and, indeed, \(W_{2D}(F) \) behaves as \(|F^T F - \text{Id}|^2 \) for matrices \(F \) close to the identity. Therefore the energy density \(W_{2D}(\nabla \psi_{\text{scal}}) \) is comparable to

![Fig. 1. (a) Piecewise affine deformation relaxing an isotropic biaxial compression to a uniaxial one in the unit square. (b) The gradient of \(w \) in the three pieces. In each triangle, compression parallel to the corresponding part of the boundary is unrelaxed.](image)
\[|\nabla (\psi^T \psi) - \text{Id}|^2 = |\nabla w \otimes \nabla w - (2\varepsilon_+ + \varepsilon_0^2) \text{Id}|^2. \]

No multiple of the rank-one matrix \(\nabla w \otimes \nabla w \) can equal the rank-two matrix \((2\varepsilon_+ + \varepsilon_0^2) \text{Id} \), hence no choice of \(w \) permits to relax locally the energy to zero. However, writing \(w(x) = (2\varepsilon_+ + \varepsilon_0^2)^{1/2} u(x) \) the expression above takes the simplified form
\[|\nabla (\psi^T \psi) - \text{Id}|^2 = (2\varepsilon_+ + \varepsilon_0^2)^2 \left[1 + (|\nabla u|^2 - 1)^2 \right], \]
hence compression in one direction is relaxed if \(|\nabla u| = 1 \). This condition corresponds to the eikonal equation, and a solution to it which satisfies the required boundary condition \(u = 0 \) on \(\partial \omega \) is obtained by setting \(u(x) = \text{dist}(x, \partial \omega) \). This shows that optimization within this restricted class permits to relax an isotropic compression to a uniaxial one, thereby reducing the stored energy by a factor two, in the sense that a deformation of the form (6) with \(|\nabla u| = 1 \) has half the energy of the one with \(u = 0 \). The resulting deformation is illustrated for the case of a square in Fig. 1. Here the gradient of \(u \) is a unit vector parallel to \(e_1 \) or \(e_2 \), constant in four parts of the domain. The corresponding symmetrized strain takes the form
\[\nabla (\psi^T \psi) = \begin{pmatrix} 1 - (2\varepsilon_+ + \varepsilon_0^2) & 0 \\ 0 & 1 \end{pmatrix} \text{ or } \begin{pmatrix} 1 & 0 \\ 0 & 1 - (2\varepsilon_+ + \varepsilon_0^2) \end{pmatrix} \]
in the different parts of the domain, corresponding to a uniaxial compression. Note that the remaining compression is uniaxial everywhere, but it is not everywhere in the same direction, therefore it has to be treated separately in the different parts of the domain. The procedure just described corresponds to the Gioia–Ortiz approximation [56]. In the next sections we refine this construction, showing how the remaining uniaxial compression in the orthogonal direction can be relaxed.

3.1. Energy relaxation by one-dimensional folds and a boundary layer

Uniaxial compression in a flat domain can be relaxed by means of a cylindrical deformation containing smooth fine-scale oscillations, as illustrated in Fig. 2. If the oscillation scale is fine enough, it is possible to insert a small-energy boundary layer to achieve Dirichlet boundary conditions and/or to patch together oscillations with different orientations. To give a precise construction of the oscillatory map we choose a smooth curve \(\gamma : \mathbb{R} \to \mathbb{R}^2 \) which is parameterized by arc length (i.e. \(|\gamma'| = 1 \) everywhere) and satisfies
\[\gamma(t + 1) = \gamma(t) + \begin{pmatrix} 1 - \varepsilon_+ \\ 0 \end{pmatrix} \]
(see e.g. Fig. 2a). It is easy to see that the function \(\gamma \) can be chosen so that the distance from a straight line is controlled by
\[|\gamma_1(t) - (1 - \varepsilon_+ t)| \leq c\varepsilon_+, \quad |\gamma_2(t)| \leq c\varepsilon_+^{1/2}, \]

![Fig. 2. One-dimensional periodic profile, corresponding to uniaxial compression, as in Euler buckling. (a) The curve \(\gamma(t) \), (b) the corresponding deformation \(\psi_p \).](image)
and analogous bounds on the first and second derivatives, much as in the analysis of Euler buckling of compressed rods. Given a period $p > 0$ to be chosen later, we set

$$
\psi_p(x) = \begin{pmatrix} x_1 \\ p y_1(x_2/p) \\ p y_2(x_2/p) \end{pmatrix},
$$

where we assumed for definiteness that the uniaxial compression is in the x_2 direction. The resulting deformation is illustrated in Fig. 2b. The map ψ_p achieves on average the uniaxial compression

$$
F = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 - \epsilon_s \\ 0 & 0 \\ \end{pmatrix}
$$

in the sense that the average over one period of $\psi_p(x) - Fx$ vanishes. In addition, it is crucial that ψ_p has exactly zero stretching energy, i.e. $\nabla \psi_p \in O(2,3)$ everywhere. Moreover, we have the bounds

$$
|\psi_p(x) - Fx| \leq c \epsilon_s^{1/2}, \quad |\nabla \psi_p(x) - F| \leq c \epsilon_s^{1/2}, \quad |\nabla^2 \psi_p(x)| \leq c \epsilon_s^{1/2}.
$$

The energy per unit area is proportional to $h^2 \epsilon_s / p^2$, and is entirely determined from the bending term in I_{2D}. Such oscillatory maps do not, however, satisfy the affine Dirichlet boundary condition. Therefore one inserts a boundary layer, as illustrated in Fig. 3. Precisely, we fix a small parameter ξ representing the width of the interpolation layer, and define

$$
\psi(x) = \theta(x) \psi_p(x) + (1 - \theta(x)) Fx.
$$

Here θ is a smooth interpolation function which equals zero outside ω, one on all points inside ω whose distance from the boundary is larger than ξ, and obeys the bounds $0 \leq \theta \leq 1$, $|\nabla \theta| \leq c \xi$, $|\nabla^2 \theta| \leq c \xi^2$ everywhere, for some constant c which depends only on the domain ω. This generates a boundary layer whose area is controlled by ξ. There, the deformation gradient takes the form

$$
\nabla \psi(x) = \nabla \theta(x) (\psi_p(x) - Fx) + \theta(x) \nabla \psi_p(x) + (1 - \theta(x)) F,
$$

and its stretching energy density is controlled by

$$
\text{dist}^2 (\nabla \psi, O(2,3)) \approx c c_s^2 \left(1 + \frac{p^2}{\xi^4} \right).
$$

To see this, observe that the second and third term in (7) correspond to an average between $\nabla \psi_p \in O(2,3)$ and F. Since $\text{dist}(F, O(2,3)) = \epsilon_s$, $|F - \nabla \psi_p| \leq c \epsilon_s^{1/2}$, it follows that the average is at a distance of order ϵ_s from $O(2,3)$. Further, the first two components of the first term in (7) are of order $p \epsilon_s \xi$, and the third one of order $p^2 \epsilon_s^2 / \xi$. Therefore the first term modifies the distance from $O(2,3)$ only at order $\epsilon_s (p \xi + p^2 \xi^2)$.

![Fig. 3.](image-url) Relaxing a uniaxial compression in a square. (a) Resulting three-dimensional construction, (b) subdivision of the domain. The construction is p-periodic plus affine in the interior, and is given by the smooth interpolation in a ξ-neighborhood of the boundary.
A similar analysis applies to the bending energy, which turns out to be of order $h^2 |\nabla^2 \psi|^2 \simeq c_\epsilon h^2 (1/\epsilon^2 + 1/p^2)$. The total energy of this construction can be therefore estimated as

$$E^{1D} \leq c_\epsilon \frac{h^2}{2} \left(\frac{\epsilon}{\epsilon} + \frac{p^2}{\epsilon^2} \right) + c_\epsilon h^2 \left(\frac{1}{\epsilon} + \frac{\epsilon}{p^2} \right) + c \frac{\epsilon_0 h^2}{p^2},$$

where the last term is the bulk contribution $h^2 |\nabla^2 \psi|^2$. The optimal value of ϵ is p, and gives for the total energy the estimate

$$E^{1D} \leq c_\epsilon p + c_\epsilon h^2 \frac{1}{p} + c \frac{\epsilon_0 h^2}{p^2}. \tag{8}$$

The optimal value of p is then determined by balancing the first and the last term, and results in $p = h^{2/3}/\epsilon^{1/3}$. The final energy estimate is

$$E^{1D} \leq c h^{2/3} \epsilon_{s/3}.$$

Combining this construction with the previous one leads to a candidate solution for the problem of isotropic compression whose energy is proportional to $h^{2/3}$. To see this, consider for definiteness the unit square $\omega = (0,1)^2$. The map obtained with the scalar approximation, i.e. (6) with $w(x) = (2\epsilon_n + \epsilon_n^{1/2}) \text{dist}(x, \partial \omega)$, is affine on each of four pieces, as illustrated in Fig. 1. In each of those triangles, the remaining uniaxial compression can be relaxed by fine-scale oscillations, which disappear by smooth interpolation approaching the boundary of the triangle. This ensures a smooth matching between the four pieces, and at the same time fulfillment of the boundary conditions. The resulting deformation is illustrated in Fig. 4.

3.2. Optimal patterns beyond the one-dimensional construction: fold branching

The key competition determining the optimal total energy for the construction presented in the previous section is between the first term in (8), representing strain in the boundary layer and favoring fine-scale oscillations (i.e. small p), and the last one, representing bending energy in the bulk, and favoring coarse-scale oscillations (i.e. large p). This kind of competition is very common in problems in materials science where nonconvex bulk energies, with a regularizing singular perturbation (such as a wall energy or any higher-gradient term) compete with the boundary conditions. A pattern that makes an ubiquitous appearance in such problems is oscillation refinement towards the boundary, or, equivalently, coarsening towards the interior. Starting with the discussion of branched domains in the intermediate state of type-I superconductors by Landau back in 1938 [47,48], and of magnetic domains by Lifshitz in 1944 [52], self-similar
constructions with a series of period-doubling steps have been used to construct low-energy states for a variety of models, and have in many cases found experimental confirmation. A heuristic one-dimensional model for the magnetic case was formulated by Hubert in 1967 [38], and the first mathematical results in this direction have been obtained for the case of shape-memory alloys by Kohn and Müller in 1992–1994 [44,45], and later refined in [20,21]. Their work originated a large amount of related mathematical investigations of pattern-formation problems in materials; similar domain branching has been demonstrated, beyond the blistering problem of interest here, in models of uniaxial ferromagnets [13,15] of flux domain structures in the intermediate state of type-I superconductor plates [14], and dislocation walls in crystal plasticity [22,21]. In the case of compressed thin films such branching patterns have been first used by Pomeau and Rica [63,62], based on heuristic scaling estimates for the folding energies, followed by mathematical results in [8,41,42,9].

The general idea is that fine-scale oscillations close to the boundary should be coupled to coarse-scale oscillations in the interior. The interpolation between the two can be achieved by means of a suitable period-doubling step, which for the blistering problem can be constructed as illustrated in Fig. 5. Combining several such period-doublings at different scales one achieves deformations which interpolate between oscillations on very different length scales, as for example the one illustrated in Fig. 6. In comparison to the estimate in (8), this construction permits to reduce substantially the last term (representing bending in the bulk) so that it disappears from the global energy balance. Then, the crucial competition is between the first two terms of (8), i.e. bending and stretching in the boundary layer, and gives $p = h/\epsilon_1^{1/2}$ and an energy scaling proportional to $\epsilon_1^{3/2}h$. This shows that the energy in the branching construction resides essentially in the boundary layers, which are localized both in a p-neighborhood of the exterior boundary $\partial\Omega$ and in a p-neighborhood of the interior boundaries, given by the set of discontinuity points of $V\text{dist}(x,\partial\Omega)$.

The construction sketched above can be made precise and extended to the full three-dimensional elasticity problem, for details see [9,21]. We simply quote here the final result, which holds for smooth domains Ω under the assumption that W_{3D} has globally at least quadratic growth, in the sense that

$$W_{3D}(F) \geq c\text{dist}^2(F,SO(3)) \quad \text{for any } F \in \mathbb{R}^{3\times 3}, \quad (9)$$

and locally no more than quadratic growth, in the sense that there is $\delta > 0$ such that

$$W_{3D}(F) \leq c'\text{dist}^2(F,SO(3)) \quad \text{for } \text{dist}(F,SO(3)) \leq \delta. \quad (10)$$

![Fig. 5. The period-doubling step of the construction. The period on the right is twice that on the left, the entire deformation is smooth and has small energy.](image)
Here $F \in \mathbb{R}^{3 \times 3}$, and the distance is defined as stated after (5).

We remark that since the upper bound (10) is only assumed to hold locally, the assumptions (9) and (10) are compatible with the behavior $W_{3D}(F) \to \infty$ as $\det F \to 0$ and the constraint $\det F > 0$.

Theorem 1. Let $\omega \subset \mathbb{R}^2$ be a bounded piecewise C^4 domain, and W_{3D} satisfy (9, 10). Then, there are constants c_ω and C_ω depending only on ω such that for any $\epsilon_* \in (0, 1)$ and sufficiently small h one has

$$c_\omega \epsilon_*^{3/2} h \leq \inf \frac{1}{h} \int_{\omega \times (0, h)} W_{3D}(\nabla \phi) \, dx \leq C_\omega \epsilon_*^{3/2} h,$$

where the infimum is taken over all maps $\phi : \omega \times (0, h) \to \mathbb{R}^3$ which satisfy the boundary condition

$$\phi(x) = \begin{pmatrix} (1 - \epsilon_*) x_1 \\ (1 - \epsilon_*) x_2 \\ x_3 \end{pmatrix},$$

for $(x_1, x_2) \in \partial \omega$, and $x_3 \in (0, h)$.

The proof of the upper bound is based on the extension of the construction discussed above to generic domains, and on a precise bookkeeping of all different energy contributions. Theorem 1 also contains a lower bound, which does not depend on any specific assumption on the deformation ('ansatz-free lower bound'). The proof of the lower bound builds upon the idea mentioned above, i.e., that the leading-order energy contribution is completely determined by the boundary layer alone, which corresponds to the first two terms in (8). To make this idea precise, one needs a rigidity result, that was derived by Friesecke, James and Müller in [34]. Precisely, one argues by contradiction, and shows that if there was a sequence of deformations with energy scaling less $h \epsilon_*^{3/2}$, then in the limit they would converge, in suitable subdomains close to the boundary, to an affine isometric deformation. But the latter cannot satisfy the boundary condition, giving the sought contradiction. Details of the proof are given in [9,21].

We finally remark that the same scaling estimate holds with the three-dimensional elasticity replaced by the geometrically linear and geometrically nonlinear von Kármán energy, see [8,9,21]. A similar energy-scaling result has been independently obtained, for a related problem with partially Dirichlet and partially periodic boundary conditions, by Jin and Sternberg [41,42] within the geometrically linear von Kármán model.
4. Anisotropic compression

In this section we extend the analysis to the case of anisotropic compression, restricting ourselves to the simplified scalar model. In 1994 Ortiz and Gioia [56] proposed to study the two-dimensional von Kármán energy by means of scalar deformations of the form (6), and obtained the simplified model \(I_{\text{Eik}} \), as defined in (4), for the case of films under isotropic compression. The same approach can be extended in a natural way to the case of anisotropic compression, and indeed a first discussion in this direction appeared in [35], where experiments on compressed paper and plastic sheets have been presented, showing an interesting change in behavior between isotropically and uniaxially compressed sheets, see Fig. 7.

We choose coordinates which diagonalize the average in-plane compression, and neglect possible superimposed rotations. Further, we focus from the beginning on the reduced two-dimensional problem. Precisely, we replace the boundary condition (2) with

\[
\psi(x) = \begin{pmatrix} (1 - \epsilon^{(1)})x_1 \\ (1 - \epsilon^{(2)})x_2 \\ 0 \end{pmatrix} \quad \text{on } \partial \Omega,
\]

where the small parameters \(\epsilon^{(2)} \geq \epsilon^{(1)} \geq 0 \) represent compression in the \(x_2 \) and \(x_1 \) direction respectively. The one-dimensional ansatz, which now reads \(\psi(x) = ((1 - \epsilon^{(1)})x_1, (1 - \epsilon^{(2)})x_2, w(x)) \), leads to

\[
I_{2D}[\psi_{\text{scal}}, \omega] \simeq (2\epsilon^{(1)})^2 |\omega| + (2\epsilon^{(2)})^2 I_{\sigma, \beta} \left[\sqrt{2\epsilon^{(2)}} w, \omega \right],
\]

where the reduced functional

\[
I_{\sigma, \beta}[u, \omega] = \int_{\partial \Omega} \left[(\nabla u)^2 - 1 \right]^2 + 2\beta u_1^2 + \sigma^2 |\nabla^2 u|^2 \, dx
\]

depends on the rescaled deformation \(u = w\sqrt{2\epsilon^{(2)}} \) and on the parameters

\[
\beta = \frac{\epsilon^{(2)} - \epsilon^{(1)}}{\epsilon^{(2)}}, \quad \sigma = \frac{h}{(2\epsilon^{(2)})^{1/2}}.
\]

(Here and below, \(u_1 = \partial u/\partial x_1 \).) For the case of isotropic compression, i.e. \(\beta = 0 \), this functional reduces to the Gioia–Ortiz eikonal functional \(I_{\text{Eik}} \) defined above.

The most interesting regime in the study of \(I_{\sigma, \beta} \) is the one where both parameters are small, i.e., the limit in which the film is compressed in an almost isotropic way. We stress, however, that the results obtained

Fig. 7. Experimental pictures of compressed paper sheets, from [35]. (a) An isotropically compressed sheet, with \(\epsilon_s = 0.04 \) and \(h/\text{diam} = 10^{-3} \). Folds start from the boundary and coarsen for various lengths towards the interior in a rather unstructured way. (b) A uniaxially compressed sheet, with \(\epsilon^{(1)} = 0, \epsilon^{(2)} = 0.04, \) and \(h/\text{diam} = 0.5 \cdot 10^{-3} \). Folds are essentially normal to the direction of maximal compression, and coarsen in the interior.
with the scalar model should be seen only as a first approximation to the experimental situation, due to the
mentioned differences in behavior between the scalar and the more realistic vectorial model.

For concreteness we shall consider a simple geometry, in which the domain is a rectangle,
\(R = (0, l_1) \times (0, l_2) \), with \(l_2 \geq l_1 \). As boundary condition, we shall impose \(u = 0 \) on the boundary \(\partial R \). At this
stage the problem has four independent real parameters: \(\sigma, \beta, l_1 \) and \(l_2 \). One of them (say, \(l_1 \)) can be eliminated by rescaling. Indeed, if we let \(u^\prime(r) = \lambda u(r/\lambda) \) we get

\[
I_{\sigma, \beta}[u, R] = \frac{1}{\lambda^2} I_{\sigma, \beta}[u', \lambda R].
\]

Furthermore, for large \(l_2 \) we expect the limiting energy to be linear in \(l_2 \), hence we seek a phase diagram
in the plane \((\beta, \sigma l_1) \), and expect optimal energy scalings of the form \(\inf I_{\sigma, \beta} \propto l_1 l_2 (\sigma l_1, \beta) \), which are valid
for \(l_2 \geq l_1 \).

Fig. 8 shows the resulting phase diagram, and Fig. 9 illustrates the different patterns and energy scalings. If \(\sigma \) is large, precisely, if \(\sigma > l_1 \) and \(\beta \sigma^2 > l_1^2 \) (region A), the bending energy dominates and the trivial solution \(u = 0 \) gives the optimal scaling of the energy, which is proportional to the area \(l_1 l_2 \). For \(\sigma l_1 < \beta < (\sigma l_1)^{-2} \) (region B) a complex folding pattern develops. In the central part of the sample low-energy states have regions of alternating \(u_2 \sim \pm 1 \), whose width scales as \(\sigma^{1/3} \beta^{-1/3} \), separated by walls of width \(\sigma \). Approaching the boundary the oscillation period decreases. This construction is essentially the same used in the previous section to relax the uniaxial compression. Finally, for \(\beta < \sigma l_1 < 1 \) (region C) the functional behaves as \(I_{\text{Eik}} \), and the optimal energy scaling is given by the smoothed distance to the boundary. The different patterns are illustrated in Fig. 9. These results can be summarized in the following theorem.

Fig. 8. Phase diagram in the \((\sigma l_1, \beta) \) plane as obtained from Theorem 2. Three regimes are present: in A the affine deformation is optimal, in B the branching pattern, in C the roof-type construction. See Fig. 9 for the patterns and energy scalings. The two marked points \(a = (0.004, 0) \) and \(b = (0.002, 1) \) represent the position on this diagram of the experimental results of Fig. 7.

Fig. 9. Illustration of the three different types of patterns found in the phase diagram of Fig. 8, and corresponding energy scalings. (a) \(l_1 l_2 \), (b) \(\sigma^{2/3} \beta^{1/3} l_1^{1/3} l_2 \) and (c) \(\sigma l_2 \).
Theorem 2. There are universal constants c and C such that in any rectangle $R = (0,l_1) \times (0,l_2)$ with $l_2 \geq l_1$ one has

$$cf \left(\frac{\sigma}{l_1}, \beta \right) l_1 l_2 \leq \inf I_{\sigma, \beta}[u, R] \leq Cf \left(\frac{\sigma}{l_1}, \beta \right) l_1 l_2,$$

where the infimum is taken over functions $u \in W^{2,2}(R, \mathbb{R})$ which satisfy $u = 0$ on ∂R, and

$$f(x, y) = \min \left(1, \max(x, y), x^{2/3} y^{1/3} \right).$$

As in Theorem 1, the upper bound can be obtained by making the sketched constructions precise, but the lower bound needs a different argument. In particular, the latter can be proven by contradiction using a compactness result obtained for the eikonal functional $I_{\text{Eik}} = I_{\sigma, 0}$ by Ambrosio et al. [2] and independently by DeSimone et al. [28]. This permits to show that a sequence whose energy would tend to zero faster than claimed in Theorem 2 would converge weakly to zero and, at the same time, strongly to a map whose gradient is everywhere of length one. But this is a contradiction. The complete argument is given in [21].

This result shows that the scalar approximation predicts two different regimes at small h. If the compression is isotropic, only the long-wavelength compression is captured by this approximation. The resulting pattern is smooth, and qualitatively well approximated by the distance function. The discussion in Section 3 shows that small-scale oscillations which refine towards the boundary are superimposed on a finer scale, and reduce the energy down to linear order in the thickness h. If instead the compression is approximately uniaxial, the scalar approximation predicts very different patterns, where no large-scale structure is present, but only fine-scale oscillations. The energy scaling is also in this case too high (the optimal energy scaling is linear in h, see [21]), but in both cases the scalar approximation correctly identifies the patterns associated with the largest length scale in the problem.

5. Concluding remarks

We have presented an analysis of the elastic problem arising in thin-film blistering from the viewpoint of the direct method of the (nonconvex) calculus of variations, which bypasses the Euler–Lagrange equations by focusing directly on qualitative properties of low-energy states. In particular, we have derived the optimal energy scaling by means of a combination of explicit constructions, for the upper bounds, and rigidity arguments, for the lower bounds. This approach is markedly different from the classical buckling–postbuckling analysis, which is based on the study of linear stability and of the leading nonlinear corrections. As already pointed out by Ortiz and Gioia [56], the regime in which many folds appear is well beyond the critical one for buckling. In particular, in a domain of size L the buckling threshold can be estimated by comparing the bending energy of the buckled state, proportional to $h^2 \epsilon_L / L^2$ per unit area, with the energy of the (undistorted) affine deformation, which is proportional to c^2_L per unit area. The buckling threshold, corresponding to loss of linear stability for the affine state, is $\sigma = L$. In typical experiments σ ranges from from a few percent of L to much less than L [56, 36], for example in the sheets represented Fig. 7 we have $\sigma / L = 0.004$ and 0.002 respectively. Therefore blistering experiments explore the deeply nonlinear regime $\sigma \ll L$, named folding regime in [56], which is far from the buckling threshold and characterized by the formation of a large number of folds.

Acknowledgement

This work was partially supported by the Deutsche Forschungsgemeinschaft through the Schwerpunktprogramm 1095 Analysis, Modeling and Simulation of Multiscale Problems.
References

[31] G. Friesecke, R. James, S. Müller, A hierarchy of plate models derived from nonlinear elasticity by Γ-convergence, MPI-MIS Preprint Nr. 7/2005.