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Abstract

The problem of quasistatic evolution in small strain associative elastoplasticity
is studied in the framework of the variational theory for rate-independent processes.
Existence of solutions is proved through the use of incremental variational prob-
lems in spaces of functions with bounded deformation. This approach provides a
new approximation result for the solutions of the quasistatic evolution problem,
which are shown to be absolutely continuous in time. Four equivalent formulations
of the problem in rate form are derived. A strong formulation of the flow rule is
obtained by introducing a precise definition of the stress on the singular set of the
plastic strain.

1. Introduction

In this paper we study quasistatic evolution problems in small strain associative
elastoplasticity. More precisely, we consider the case of a material that displays
linear and isotropic elastic behavior, and whose plastic response is governed by
the Prandtl-Reuss flow rule, without hardening (perfect plasticity). Perfect plas-
ticity is a classical model in mechanics, which has played a crucial role in the
understanding of irreversibility and nonlinearity associated with the emergence of
plastic deformations. Its relevance is that of a conceptual tool. Quantitatively accu-
rate predictions of the response of any given material typically require the resolution
of other nonlinear phenomena that occur between the elastic and the plastic regime.

Usually, the problem is formulated as follows (in a domain � ⊂ R
n). The

linearized strain Eu, defined as the symmetric part of the spatial gradient of the
displacement u, is decomposed as the sumEu = e+p, where e and p are the elas-
tic and plastic strains. The stress σ is determined only by e, through the formula
σ = Ce, where C is the elasticity tensor. It is constrained to lie in a prescribed
subset K, of the space M

n×n
sym of n×n symmetric matrices, whose boundary ∂K is

referred to as the yield surface.
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Given a time dependent body force f (t, x), the classical formulation of the
quasistatic evolution problem in a time interval [0, T ] requires finding functions
u(t, x), e(t, x), p(t, x), σ(t, x) that satisfy the following conditions for every t ∈
[0, T ] and every x ∈ �:

(cf1) additive decomposition: Eu(t, x) = e(t, x)+ p(t, x),
(cf2) constitutive equation: σ(t, x) = Ce(t, x),
(cf3) equilibrium: −div σ(t, x) = f (t, x),
(cf4) stress constraint: σ(t, x) ∈ K,
(cf5) associative flow rule: (ξ − σ(t, x)):ṗ(t, x) � 0 for every ξ ∈ K,

where the colon denotes the scalar product between matrices. Condition (cf5) is
also referred to as the maximum plastic work inequality (see [7]). The problem is
supplemented by initial conditions at time t = 0 and by boundary conditions for
t ∈ [0, T ], x ∈ ∂�, of the form u(t, x) = w(t, x) on a portion �0 of the boundary,
and σ(t, x)ν(x) = g(t, x) on the complementary portion �1, where ν(x) is the
outer unit normal to ∂�, w(t, x) is the prescribed displacement on �0, and g(t, x)
is the prescribed surface force on �1.

For clarity, we focus our discussion on the case where K is a cylinder of the
form K = K + RI , where I is the identity matrix and K is a convex compact
neighborhood of 0 in M

n×n
D , the space of trace free n×n symmetric matrices. This

example results in yield criteria (often used for metals), which are insensitive to
pressure, such as the ones of Tresca and von Mises (see, e.g. [14]). Thus con-
dition (cf5) implies that ṗ(t, x) ∈ M

n×n
D and it is not restrictive to assume that

p(t, x) ∈ M
n×n
D .

Introducing the normal cone NK(ξ) to K at ξ , the support function

H(ξ) := sup
ζ∈K

ξ :ζ ,

and the subdifferential ∂H(ξ) of H at ξ , the flow rule (cf5) can be written in the
equivalent forms (see, e.g. [7] & [10] (Chapter 4)):

(cf5′) normality: ṗ(t, x) ∈ NK(σD(t, x)),
(cf5′′) dissipation pseudo-potential formulation: σD(t, x) ∈ ∂H(ṗ(t, x)),
(cf5′′′) maximal dissipation: H(ṗ(t, x)) = σD(t, x):ṗ(t, x),

where σD(t, x) denotes the deviator of σ(t, x) (see Section 2.1).
In the engineering literature, quasistatic evolution problems of the type consid-

ered above are approximated numerically by solving a finite number of incremental
variational problems (see [16, 24], and more recently [5, 18, 25]). The time interval
[0, T ] is divided into k subintervals by means of points

0 = t0k < t1k < · · · < tk−1
k < tkk = T ,

and the approximate solution uik , e
i
k , p

i
k at time t ik is defined, inductively, as a

minimizer of the incremental problem

min
(u,e,p)∈A(w(tik))

{Q(e)+ H(p − pi−1
k )− 〈L(tki )|u〉}, (1.1)
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where

Q(e) := 1
2

∫
�

Ce(x):e(x) dx ,

H(p) :=
∫
�

H(p(x)) dx ,

〈L(t)|u〉 :=
∫
�

f (t, x) u(x) dx +
∫
�1

g(t, x) u(x) dHn−1(x) , (1.2)

Hn−1 is the (n−1) dimensional Hausdorff measure, andA(w(t)) is defined, at this
stage of the discussion, as the set of triples (u, e, p), with Eu(x) = e(x) + p(x)

for every x ∈ �, such that u satisfies the prescribed Dirichlet boundary condition
at time t , i.e., u(x) = w(t, x) for every x ∈ �0. Finally, the stress at time t ik is
obtained as σ ik(x) := Ceik(x).

Since H has linear growth, problem (1.1) has, in general, no solution in Sobo-
lev spaces. This is very natural from the point of view of mechanics, owing to
the phenomenon of strain localization. In the absence of hardening, solutions can
develop shear bands, where shear deformation concentrates. Seen from a macro-
scopic perspective, shear bands can be thought of as sharp discontinuities of the
displacement (slip surfaces). They cannot be resolved by Sobolev functions, but
they find a natural mathematical representation if plastic deformations are allowed
to take values in spaces of measures (see [28]).

These remarks lead naturally to a weak formulation of the problem, where the
displacement u belongs to the space BD(�) of functions with bounded defor-
mation, whose theory was developed in [17, 30, 13, 29], and the plastic strain p
belongs to the spaceMb(�∪�0; M

n×n
D ) of M

n×n
D - valued bounded Borel measures

on � ∪ �0.
In accordance to the theory of convex functions of measures developed in [9]

and [29] (Chapter II, Section 4), we define the functional H(p) in the weak formu-
lation of problem (1.1) as

H(p) :=
∫
�∪�0

H(p/|p|) d|p| ,

where p/|p| is the Radon-Nikodym derivative of the measure p with respect to its
variation |p|, while A(w(tik)) is defined, here and henceforth, as the set of triples
(u, e, p), with u ∈ BD(�), e ∈ L2(�; M

n×n
sym ),p ∈ Mb(�∪�0; M

n×n
D ), andEu =

e+ p on �, subject to the relaxed boundary condition p = (w(tik)− u)� νHn−1

on �0. In the last formula, � denotes the symmetric tensor product.
Boundary conditions of this kind are typical in the variational theory of func-

tionals with linear growth (see, e.g. [29, 8]). The mechanical interpretation of our
condition on �0 is that if the prescribed boundary displacement is not attained,
a plastic slip develops at the boundary, which has a strength proportional to the
difference between the prescribed and attained boundary displacements.

In the case pi−1
k = 0, the weak formulation of problem (1.1) was studied in

detail at the beginning of the 1980s (see [30, 2, 13, 29, 1]). With respect to this body
of work, it is important to emphasize a change of perspective. The model we study
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(Prandtl-Reuss plasticity) explicitly takes into account the history of plastic defor-
mation. Setting pi−1

k = 0 in (1.1) makes the problem oblivious to the accumulation
of plastic strain. This is the so-called Hencky theory of plasticity, in which elastic
unloading, following plastic loading, is incorrectly resolved (see [11, 28]).

However, we can rely on the results of the above mentioned papers to solve
problem (1.1) in the general case (Theorem 3.3), provided a safe-load condition is
satisfied. We then define the piecewise constant interpolations

uk(t) := uik , ek(t) := eik , pk(t) := pik , σk(t) := σ ik ,

where i is the largest integer such that t ik � t .
The aim of this paper is to introduce a weak definition of continuous-time

quasistatic evolution in the functional framework u ∈ BD(�), e ∈ L2(�; M
n×n
sym ),

p ∈ Mb(�∪�0; M
n×n
D ), σ ∈ L2(�; M

n×n
sym ), and to prove that, up to a subsequence,

the discrete-time solutions uk(t), ek(t), pk(t), σk(t), obtained by solving the weak
formulations of problems (1.1), converge to a continuous-time solution u(t), e(t),
p(t), σ(t), provided maxi (t ik − t i−1

k ) → 0 as k → ∞.
Our definition fits the general scheme of continuous-time energy formulation

of rate-independent processes developed in [22, 23, 19–21, 15]. Based on the work
presented in these papers, for every time interval [s, t] contained in [0, T ] we intro-
duce the dissipation associated with H, defined by

DH(p; s, t) := sup
{ N∑
j=1

H(p(tj )− p(tj−1)) :

s = t0 � t1 � . . . � tN = t, N ∈ N

}
.

The general definition proposed in [15] reads in our case as follows: a quasistatic
evolution is a function t 
→ (u(t), e(t), p(t)) from [0, T ] into BD(�)×L2

(�; M
n×n
sym )×Mb(� ∪ �0; M

n×n
D ) which satisfies the following conditions:

(qs1) global stability: for every t ∈ [0, T ] we have (u(t), e(t), p(t)) ∈ A(w(t))

and

Q(e(t))− 〈L(t)|u(t)〉 � Q(η)+ H(q − p(t))− 〈L(t)|v〉
for every (v, η, q) ∈ A(w(t));

(qs2) energy balance: the function t 
→ p(t) from [0, T ] intoMb(�∪ �0; M
n×n
D )

has bounded variation and for every t ∈ [0, T ]

Q(e(t))+ DH(p; 0, t)− 〈L(t)|u(t)〉

= Q(e(0))− 〈L(0)|u(0)〉 +
∫ t

0
{〈σ(s)|Eẇ(s)〉 − 〈L(s)|ẇ(s)〉} ds

−
∫ t

0
〈L̇(s)|u(s)〉 ds ,
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where σ(t) := Ce(t), dots denote time derivatives, the first brackets 〈·|·〉 in
the first integral denote the scalar product in L2(�; M

n×n
sym ), while the other

brackets 〈·|·〉 are defined as in (1.2).

The main result of our paper is the proof of the existence of a quasistatic evo-
lution satisfying the prescribed initial conditions (Theorem 4.5), provided that a
uniform safe-load condition is satisfied.

A different formulation of the problem in rate form was proposed in [12] and
[28], where an existence result is proved by a visco-plastic approximation. It turns
out that our definition is equivalent to the one considered in those papers (Theo-
rem 6.1 and Remark 6.3). Therefore, the existence result is not new, but our proof
is completely different and leads to a different approximation scheme for the solu-
tions (Theorem 4.8). This different approximation scheme may prove useful in the
construction and analysis of algorithms for the numerical solution of the prob-
lem. Moreover, it shows that this problem can be included in the general theory
developed in [19, 15].

Our proof is obtained by considering the discrete time solutions uk(t), ek(t),
pk(t), σk(t), and by showing that they satisfy an approximate energy inequality
(Lemma 4.6), which is similar to [15] (Theorem 4.1). This allows us to apply the
generalization (Lemma 7.2) of the classical Helly Theorem proved in [15] (Theo-
rem 3.2), and to extract a subsequence, independent of t and still denoted pk , such
that pk(t) ⇀ p(t) weakly∗ in Mb(� ∪ �0; M

n×n
D ) for every t ∈ [0, T ].

Extracting a further subsequence, possibly depending on t , we may assume
that uk(t) ⇀ u(t) weakly∗ in BD(�) and ek(t) ⇀ e(t) weakly in L2(�; M

n×n
sym ).

We prove (Theorem 3.7) that (u(t), e(t), p(t)) satisfies the global stability condi-
tion (qs1). Since there exists at most one (u, e) ∈ BD(�)×L2(�; M

n×n
sym ), such that

(u, e, p(t)) satisfies (qs1) (Remark 3.9), we have uk(t) ⇀ u(t) and ek(t) ⇀ e(t)

for the same subsequence (independent of t) for which pk(t) ⇀ p(t).
One of the inequalities in the energy balance (qs2) is then proved by passing to

the limit in the approximate energy inequality obtained for the discrete-time solu-
tions, while the opposite inequality follows (Theorem 4.7) from the global stability,
by adapting the proofs of [15] (Theorem 4.4) and [6] (Lemma 7.1).

The second part of our paper is devoted to the regularity of solutions and to
the comparison of our definition of quasistatic evolution with other definitions in
rate form. We prove (Theorem 5.2) that if the data of the problem are absolutely
continuous functions of time, then for every quasistatic evolution the functions
t 
→ u(t), t 
→ e(t), t 
→ p(t), and t 
→ σ(t) are absolutely continuous on [0, T ]
with values inBD(�),L2(�; M

n×n
sym ),Mb(� ∪ �0; M

n×n
D ),L2(�; M

n×n
sym ), respec-

tively. Moreover, we establish a pointwise estimate for the time derivatives of these
functions which implies that if the data of the problem are Lipschitz continuous on
[0, T ], then the same is true for t 
→ u(t), t 
→ e(t), t 
→ p(t), and t 
→ σ(t) (see
Remark 5.4).

Similar arguments prove that t 
→ e(t) and t 
→ σ(t) are uniquely determined
by their initial conditions (Theorem 5.9), while elementary examples in one dimen-
sion show that, in general, this is not true for t 
→ u(t) and t 
→ p(t) (see [28]
(Section 2.1)).
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The results on the regularity of solutions in time, which arise because of the
convexity of the problem, appear to be unusual in the context of rate-independent
evolution problems. They should be contrasted with the situation occurring in the
quasistatic growth of brittle cracks (see [6]), where the regularity of solutions is
much worse. The mechanical interpretation of this difference is that, while slip
surfaces evolve continuosly in time if the data are continuous, cracks may evolve
much less regularly.

The regularity results described above allow us to write the energy balance (qs2)
as balance of powers (Proposition 5.6): for a.e. t ∈ [0, T ]

〈σ(t)|ė(t)〉 + H(ṗ(t)) = 〈L(t)|u̇(t)〉 + 〈σ(t)|Eẇ(t)〉 − 〈L(t)|ẇ(t)〉 .
We then show that our definition of quasistatic evolution is equivalent to four differ-
ent sets of conditions, expressed in rate form (Theorems 6.1 and 6.4). The first
can be interpreted as the weak formulation, in the spaces BD(�), L2(�; M

n×n
sym ),

Mb(� ∪ �0; M
n×n
D ),L2(�; M

n×n
sym ) of the five conditions (cf1)–(cf5) considered in

the classical presentation of the problem; the second takes into account the weak
formulation of maximal dissipation (cf5′′′); the third coincides with the definition
considered in [28]; and the fourth (Theorem 6.4 and Remark 6.5) presents a strong
formulation of the normality rule in either of the two forms (cf5′) and (cf5′′).
This last formulation requires a precise representative of σD(t) defined |ṗ(t)|-a.e.
on � ∪ �0. If K is strictly convex, this representative is obtained as the limit of
averages of σD(t) (Theorem 6.6).

2. Notation and preliminary results

2.1. Mathematical preliminaries

Measures. The Lebesgue measure on R
n is denoted by Ln, and the (n−1)-dimen-

sional Hausdorff measure by Hn−1. Given a Borel set B ⊂ R
n and a finite dimen-

sional Hilbert space X, Mb(B;X) denotes the space of bounded Borel measures
on B with values in X, endowed with the norm ‖µ‖1 := |µ|(B), where |µ| ∈
Mb(B; R) is the variation of the measure µ. For every µ ∈ Mb(B;X) we consider
the Lebesgue decomposition µ = µa +µs , where µa is absolutely continuous and
µs is singular with respect to the Lebesgue measure Ln.

If µs = 0, we always identify µ with its density with respect to the Lebesgue
measure Ln. In this way, L1(B;X) is regarded as a subspace of Mb(B;X), with
the induced norm. In particular, we have µa ∈ L1(B;X) for every µ ∈ Mb(B;X).
The indication of the spaceX is omitted whenX = R. The Lp norm, 1 � p � ∞,
is denoted by ‖·‖p. The brackets 〈·|·〉 denote the duality product between conjugate
Lp spaces, as well as between other pairs of spaces, according to the context.

If the relative topology of B is locally compact, by Riesz representation the-
orem (see e.g. [27] (Theorem 6.19)) Mb(B;X) can be identified with the dual of
C0(B;X), the space of continuous functions ϕ:B → X such that {|ϕ| � ε} is
compact for every ε > 0. The weak∗ topology of Mb(B;X) is defined using this
duality.
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Matrices. The space of symmetric n×nmatrices is denoted by M
n×n
sym . It is endowed

with the euclidean scalar product ξ :ζ := tr(ξζ ) = ∑
ij ξij ζij and with the cor-

responding euclidean norm |ξ | := (ξ :ξ)1/2. The orthogonal complement of the
subspace RI spanned by the identity matrix I is the subspace M

n×n
D of all matrices

of M
n×n
sym with trace zero. For every ξ ∈ M

n×n
sym , the orthogonal projection of ξ on

RI is 1
n

tr(ξ)I , while the orthogonal projection on M
n×n
D is the deviator ξD of ξ , so

that we obtain the orthogonal decomposition

ξ = ξD + 1

n
(tr ξ)I .

The symmetrized-tensor product a� b of two vectors a, b ∈ R
n is the symmet-

ric matrix with entries (aibj + ajbi)/2. It is easy to see that tr(a� b) = a · b,
the scalar product of a and b, and that |a� b|2 = 1

2 |a|2|b|2 + 1
2 (a · b)2, so that

1√
2
|a||b| � |a� b| � |a||b|.

Functions with bounded deformation. Let U be an open set in R
n. For every u ∈

L1(U ; R
n), let Eu be the M

n×n
sym -valued distribution on U , whose components are

defined byEiju = 1
2 (Djui +Diuj ). The space BD(U) of functions with bounded

deformation is the space of all u ∈ L1(U ; R
n), such that Eu ∈ Mb(U ; M

n×n
sym ). It

is easy to see that BD(U) is a Banach space with the norm

‖u‖1 + ‖Eu‖1 .

It is possible to prove that BD(U) is the dual of a normed space (see [17, 30]).
The weak∗ topology of BD(U) is defined using this duality. A sequence uk con-
verges to u weakly∗ in BD(U) if, and only if, uk ⇀ u weakly in L1(U ; R

n) and
Euk ⇀ Eu weakly∗ in Mb(U ; M

n×n
sym ). Every bounded sequence in BD(U) has

a weakly∗ convergent subsequence. Moreover, if U is bounded and has Lipschitz
boundary, every bounded sequence in BD(U) has a subsequence which converges
weakly in Ln/(n−1)(U ; R

n) and strongly in Lp(U ; R
n) for every p < n/(n− 1).

For the general properties of BD(U) we refer to [29].
In our problem, u ∈ BD(U) represents the displacement of an elasto-plastic

body and Eu is the corresponding linearized strain.

2.2. Mechanical preliminaries

The reference configuration. Throughout the paper� is a bounded connected open
set in R

n with C2 boundary. We suppose that the boundary ∂� is partitioned into
two disjoint open sets �0, �1 and their common boundary ∂�0 = ∂�1 (topological
notions refer here to the relative topology of ∂�). We assume that

�0 �= Ø, (2.1)

and that

∂�0 = ∂�1 is C2 regular, (2.2)
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i.e. for every x ∈ ∂�0 = ∂�1 there exists a C2 diffeomorphism defined in an open
neighborhood of x in R

n which maps ∂� to an (n − 1)-dimensional plane and
∂�0 = ∂�1 to an (n− 2)-dimensional plane.

On �0 we will prescribe a Dirichlet boundary condition by assigning a function
w ∈ H 1/2(�0; R

n), or, equivalently, a function w ∈ H 1(Rn; R
n), whose trace on

�0 (also denoted by w) is the prescribed boundary value. The set �1 will be the
part of the boundary on which the traction is prescribed.

Every function u ∈ BD(�) has a trace on ∂�, still denoted by u, which
belongs to L1(∂�; R

n). If uk , u ∈ BD(�), uk → u strongly in L1(�; R
n), and

‖Euk‖1 → ‖Eu‖1, then uk → u strongly in L1(∂�; R
n) (see [29] (Chapter II,

Theorem 3.1)). Moreover, there exists a constant C > 0, depending on � and �0,
such that

‖u‖1,� � C ‖u‖1,�0 + C ‖Eu‖1,� (2.3)

(see [29] (Proposition 2.4 and Remark 2.5)).
We shall frequently use the space Mb(� ∪ �0; M

n×n
D ), which is the dual of

C0(� ∪ �0; M
n×n
D ). The latter space can be identified with the space of functions

in C(�; M
n×n
D ) vanishing on �1. The duality product is defined by

〈τ |µ〉 :=
∫
�∪�0

τ :dµ :=
∑
ij

∫
�∪�0

τij dµij (2.4)

for every τ = (τij ) ∈ C(�; M
n×n
D ) and every µ = (µij ) ∈ Mb(� ∪ �0; M

n×n
D ).

The set of admissible stresses. Let K be a closed convex set in M
n×n
D , which will

represent a constraint on the deviatoric part of the stress. Its boundary is interpreted
as the yield surface. We assume that there exist two constants rK and RK , with
0 < rK � RK < ∞, such that

{ξ ∈ M
n×n
D : |ξ | � rK} ⊂ K ⊂ {ξ ∈ M

n×n
D : |ξ | � RK} . (2.5)

It is convenient to introduce the convex set

KD(�) := {τ ∈ L2(�; M
n×n
D ) : τ(x) ∈ K for a.e. x ∈ �} .

The set of admissible stresses is defined by

K(�) := {σ ∈ L2(�; M
n×n
sym ) : σD ∈ KD(�)} .

The support function H :Mn×n
D → [0,+∞ [ of K is given by

H(ξ) := sup
ζ∈K

ξ :ζ . (2.6)

It turns out that H is convex and positively homogeneous of degree one. In partic-
ular, it satisfies the triangle inequality

H(ξ + ζ ) � H(ξ)+H(ζ) .
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From (2.5) it follows that

rK |ξ | � H(ξ) � RK |ξ | (2.7)

for every ξ ∈ M
n×n
D .

For every µ ∈ Mb(� ∪ �0; M
n×n
D ) let µ/|µ| be the Radon-Nikodym deriv-

ative of µ with respect to its variation |µ|. Using the theory of convex func-
tions of measures developed in [9], we introduce the nonnegative Radon measure
H(µ) ∈ Mb(� ∪ �0), defined by H(µ) := H(µ/|µ|)|µ|, i.e.

H(µ)(B) :=
∫
B

H(µ/|µ|) d|µ| (2.8)

for every Borel set B ⊂ � ∪ �0. Finally, we consider the functional
H:Mb(� ∪ �0; M

n×n
D ) → R defined by

H(µ) := H(µ)(� ∪ �0) =
∫
�∪�0

H(µ/|µ|) d|µ| . (2.9)

Using [9] (Theorem 4) and [29] (Chapter II, Lemma 5.2) we can see that H(µ)
coincides with the measure studied in [29] (Chapter II, Section 4). Hence

H(µ) = sup{〈τ |µ〉 : τ ∈ C0(� ∪ �0; M
n×n
D ) ∩ KD(�)}, (2.10)

and H is lower semicontinuous onMb(�∪�0; M
n×n
D ) with respect to weak∗ con-

vergence. It follows from the properties ofH that H satisfies the triangle inequality,
i.e.

H(λ+ µ) � H(λ)+ H(µ) (2.11)

for every λ,µ ∈ Mb(� ∪ �0; M
n×n
D ).

The elasticity tensor. Let C be the elasticity tensor, considered as a symmetric
positive definite linear operator C:Mn×n

sym → M
n×n
sym . We assume that the orthogonal

subspaces M
n×n
D and RI are invariant under C. This assumption is equivalent to say-

ing that there exist a symmetric positive definite linear operator CD:Mn×n
D → M

n×n
D

and a constant κ > 0 such that

Cξ := CDξD + κ(tr ξ)I (2.12)

for every ξ ∈ M
n×n
sym . Note that when C is isotropic, we have Cξ = 2µξD+κ(trξ)I ,

where µ > 0 is the shear modulus and κ is the modulus of compression, so that
our assumptions are satisfied.

LetQ:Mn×n
sym → [0,+∞ [ be the quadratic form associated with C, defined by

Q(ξ) := 1

2
Cξ :ξ = 1

2
CDξD:ξD + κ

2
(tr ξ)2.

It turns out that there exist two constants αC and βC, with 0 < αC � βC < +∞,
such that

αC|ξ |2 � Q(ξ) � βC|ξ |2 (2.13)
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for every ξ ∈ M
n×n
sym . These inequalities imply

|Cξ | � 2βC|ξ | . (2.14)

It is convenient to introduce the quadratic form Q:L2(�; M
n×n
sym ) → R defined

by

Q(e) :=
∫
�

Q(e) dx

for every e ∈ L2(�; M
n×n
sym ). It is well known that Q is lower semicontinuous on

L2(�; M
n×n
sym ), with respect to weak convergence.

The prescribed boundary displacements. For every t ∈ [0, T ], we prescribe a
boundary displacement w(t) in the spaceH 1(Rn; R

n). This choice is motivated by
the fact that we do not want to impose “discontinuous” boundary data, so that, if the
displacement develops sharp discontinuities, this is a result of energy minimization.

We also assume that

t 
→ w(t) is absolutely continuous (2.15)

from [0, T ] into H 1(Rn; R
n), so that the time derivative t 
→ ẇ(t) belongs to

L1([0, T ] ;H 1(Rn; R
n)), and its strain t 
→ Eẇ(t) belongs to L1([0, T ] ;L2(Rn;

M
n×n
sym )). For the main properties of absolutely continuous functions with values in

reflexive Banach spaces we refer to [4] (Appendix).

Body and surface forces. For every t ∈ [0, T ] the body force f (t) belongs to the
space Ln(�; R

n), and the surface force g(t) acting on �1 belongs to L∞(�1; R
n).

We assume that

t 
→ f (t) and t 
→ g(t) are absolutely continuous (2.16)

from [0, T ] into Ln(�; R
n) and L∞(�1; R

n), respectively, so that the time deriv-
ative t 
→ ḟ (t) belongs to L1([0, T ] ;Ln(�; R

n)), the weak∗ limit

ġ(t) := w∗- lim
s→t

g(s)− g(t)

s − t

exists for a.e. t ∈ [0, T ], and t 
→ ‖ġ(t)‖∞ belongs to L1([0, T ]) (see Theo-
rem 7.1).

Throughout the paper we will also assume the following uniform safe-load
condition: there exist a function t 
→ �(t) from [0, T ] into L2(�; M

n×n
sym ) and a

constant α > 0 such that for every t ∈ [0, T ]

−div�(t) = f (t) a.e. on � ,
[
�(t)ν

] = g(t) on �1 , (2.17)

and

�D(t, x)+ ξ ∈ K (2.18)
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for a.e. x ∈ � and for every ξ ∈ M
n×n
D with |ξ | � α. In these formulae �D(t, x)

denotes the value of �D(t) at x ∈ �, and the trace
[
�(t)ν

]
of �(t)ν on �1 is

interpreted in the sense of (2.24) below. We also assume that

t 
→ �(t) and t 
→ �D(t) are absolutely continuous (2.19)

from [0, T ] into L2(�; M
n×n
sym ) and L∞(�; M

n×n
D ), respectively, so that the time

derivative t 
→ �̇(t) belongs to L1([0, T ] ;L2(�; M
n×n
sym )),

�D(s)− �D(t)

s − t
⇀ �̇D(t) as s → t (2.20)

weakly∗ in L∞(�; M
n×n
D ) for a.e. t ∈ [0, T ], and t 
→ ‖�̇D(t)‖∞ belongs to

L1([0, T ]) (see Theorem 7.1).

2.3. Stress and strain

Given a displacement u ∈ BD(�), and a boundary datum w ∈ H 1(Rn; R
n),

the elastic and plastic strains e ∈ L2(�; M
n×n
sym ) and p ∈ Mb(� ∪ �0; M

n×n
D )

satisfy the equalities

Eu = e + p in � , (2.21)

p = (w − u)� νHn−1 on �0 . (2.22)

Therefore, we have e = Eau−pa a.e. on� and ps = Esu on�. Since tr p = 0, it
follows from (2.21) that div u = tr e ∈ L2(�) and from (2.22) that (w−u) · ν = 0
Hn−1-a.e. on �0. The stress σ ∈ L2(�; M

n×n
sym ) is defined by

σ := Ce = CDeD + κ tr e .

The stored elastic energy is given by

Q(e) =
∫
�

Q(e) dx = 1
2 〈σ |e〉 .

Givenw ∈ H 1(Rn; R
n), the set of admissible displacements and strains for the

boundary datum w on �0 is denoted by A(w): it is defined as the set of all triples
(u, e, p), with u ∈ BD(�), e ∈ L2(�; M

n×n
sym ), p ∈ Mb(�∪�0; M

n×n
D ), satisfying

(2.21) and (2.22).
We shall also use the space ��0(�) of admissible plastic strains, defined as

the set of all p ∈ Mb(� ∪ �0; M
n×n
D ) for which there exist u ∈ BD(�), w ∈

H 1(Rn; R
n), and e ∈ L2(�; M

n×n
sym ) satisfying (2.21) and (2.22), i.e. (u, e, p) ∈

A(w).
We now prove a closure property for the multi-valued map w 
→ A(w).

Lemma 2.1. Assume (2.1) and (2.2). Let wk be a sequence in H 1(Rn; R
n) and let

(uk, ek, pk) ∈ A(wk). Assume that uk ⇀ u∞ weakly∗ inBD(�), ek ⇀ e∞ weakly
in L2(�; M

n×n
sym ), pk ⇀ p∞ weakly∗ inMb(�∪ �0; M

n×n
D ), wk ⇀ w∞ weakly in

H 1(Rn; R
n). Then (u∞, e∞, p∞) ∈ A(w∞).
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Proof. Since �0 is open in ∂�, there exists a bounded open set U in R
n, such that

�0 = U ∩ ∂�, and we define �̃ := � ∪ U .
For k = 1, 2, . . . ,∞ let ũk ∈ BD(�̃) be defined by ũk = uk a.e. on � and

ũk = wk a.e. on U \�. Then,

Eũk = Euk on � ,

Eũk = (wk − uk)� νHn−1 on �0 ,

Eũk = Ewk on U \� , (2.23)

(see e.g. [29] (Theorem 2.1 and Remark 2.3)). Since wk − uk is bounded in
L1(�0; R

n) by the continuity of the trace operator, the sequence Eũk is bounded
inMb(�̃; M

n×n
sym ). As ũk → ũ∞ weakly in L1(�̃; R

n), we conclude that ũk ⇀ ũ∞
weakly∗ in BD(�̃).

For k = 1, 2, . . . ,∞ let ẽk ∈ L2(�̃; M
n×n
sym ) be defined by ẽk = ek a.e. on� and

ẽk = Ewk a.e. onU\�, and let p̃k ∈ Mb(�̃; M
n×n
D )be defined by p̃k = pk on�∪�0

and p̃k = 0 on U\�. Then ẽk converges to ẽ∞ weakly in L2(�̃; M
n×n
sym ). Since the

restrictions to �∪ �0 of functions in C0(�̃; M
n×n
D ) belong to C0(�∪ �0; M

n×n
D ),

we also find that p̃k converges to p̃∞ weakly∗ in Mb(�̃; M
n×n
D ).

As (uk, ek, pk) ∈ A(wk) for k < ∞, by use of (2.23), we obtain Eũk =
ẽk+ p̃k in �̃. The convergence properties already proved for (ũk, ẽk, p̃k) show that
Eũ∞ = ẽ∞ + p̃∞ in �̃. Consequently, (2.23) for k = ∞ implies that
(u∞, e∞, p∞) ∈ A(w∞). ��
The traces of the stress. If σ ∈ L2(�; M

n×n
sym ) and div σ ∈ L2(�; R

n), then we
can define a distribution [σ, ν] on ∂� by

〈[σν]|ψ〉∂�: = 〈div σ |ψ〉 + 〈σ |Eψ〉 (2.24)

for every ψ ∈ H 1(�; R
n). It turns out that [σ, ν] ∈ H−1/2(∂�; R

n) (see e.g. [29]
(Theorem 1.2, Chapter I)). We will consider the normal and tangential parts of [σν],
defined by

[σν]ν := ([σν] · ν)ν , [σν]⊥ν := [σν] − ([σν] · ν)ν . (2.25)

Since ν ∈ C1(∂�; R
n), we obtain [σν]ν , [σν]⊥ν ∈ H−1/2(∂�; R

n). If, in addition,
σD ∈ L∞(�; M

n×n
D ), then [σν]⊥ν ∈ L∞(∂�; R

n) and

‖ [σν]⊥ν ‖∞,∂� � 1√
2
‖σD‖∞, (2.26)

(see [13] (Lemma 2.4)).

Stress-strain duality. Let

�(�) := {σ ∈ L2(�; M
n×n
sym ) : div σ ∈ Ln(�; R

n), σD ∈ L∞(�; M
n×n
D )} .

If σ ∈ �(�), then σ ∈ Lr(�; M
n×n
sym ) for every r < ∞ by [13] (Proposition 2.5).

For every u ∈ BD(�) with div u ∈ Ln/(n−1)(�), we define the distribution
[σD : EDu] on � by

〈[σD:EDu] |ϕ〉: = −〈div σ |ϕ u〉 − 1
n
〈tr σ |ϕ div u〉 − 〈σ |u� ∇ϕ〉 (2.27)
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for every ϕ ∈ C∞
c (�). It is proved in [13] (Theorem 3.2) that [σD:EDu] is a

bounded measure on � whose variation satisfies

| [σD:EDu] | � ‖σD‖∞|EDu| in � . (2.28)

Moreover

[ψσD:EDu] = ψ [σD:EDu] in � (2.29)

for every ψ ∈ C1(�), and

[σD:EDu]a = σD:EaDu a.e. in �

(see [1] (Corollary 3.2)). We define the measure
[
σD:EsD

]
on � by

[
σD:EsDu

]
: = [σD:EDu]s = [σD:EDu] − σD:EaDu .

By (2.28), we have

| [σD:EsDu
] | � ‖σD‖∞|EsDu| in � . (2.30)

This shows, in particular, that if σ̂ , û satisfy the same properties as σ , u, and
σD = σ̂D a.e. on �, EsDu = EsDû in �, then

[
σD:EsDu

] = [
σ̂D:EsDû

]
in �.

We define

〈σD|EDu〉: = [σD:EDu] (�) , 〈σD|EsDu〉: = [
σD:EsDu

]
(�) ,

so that 〈σD|EDu〉 = 〈σD|EaDu〉 + 〈σD|EsDu〉. If σk ⇀ σ weakly in L2(�; M
n×n
sym ),

div σk ⇀ div σ weakly inLn(�; R
n), and (σk)D is bounded inL∞(�; M

n×n
D ), then

σk ⇀ σ weakly in Lr(�; M
n×n
sym ) for every r < +∞ (see [13] (Proposition 2.5))

and

〈[(σk)D:EDu] |ϕ〉 → 〈[σD:EDu] |ϕ〉 ,
〈[(σk)D:EsDu

] |ϕ〉 → 〈[σD:EsDu
] |ϕ〉 (2.31)

for every ϕ ∈ C(�) (see [13] (Theorem 3.2), the proof of which gives the result
also in the case of weak convergence).

We now define a duality between �(�) and ��0(�). Given σ ∈ �(�) and
p ∈ ��0(�), we fix u ∈ BD(�), e ∈ L2(�; M

n×n
sym ), and w ∈ H 1(Rn; R

n),
satisfying (2.21) and (2.22). We then define a measure [σD:p] ∈ Mb(� ∪ �0) by
setting

[σD:p] := σD:pa + [
σD:EsDu

] = [σD:EDu] − σD:eD on � ,

[σD:p] := [σν]⊥ν · (w − u)Hn−1 on �0 ,

so that

〈[σD:p] |ϕ〉 = 〈[σD:EDu] |ϕ〉 − 〈σD:eD|ϕ〉 + 〈[σν]⊥ν |ϕ(w − u)〉�0 (2.32)

for every ϕ ∈ C(�), where 〈·|·〉�0 denotes the duality pairing betweenL∞(�0; R
n)

and L1(�0; R
n). Using the previous remarks, it is easy to see that the measure
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[σD:p] does not depend on the choice of u, e, andw. It follows from the definition,
and from (2.26) and (2.30), that

[σD:p]a =σD:pa a.e. on � , [σD:p]s =[
σD:EsDu

]
on �∪�0 ,

| [σD:p] | �‖σD‖∞|p| on � ∪ �0 , | [σD:p]s | � ‖σD‖∞|ps | on � ∪ �0 .

(2.33)

Moreover, (2.29) implies that

[ψσD:p] = ψ [σD:p] in � ∪ �0 (2.34)

for every ψ ∈ C1(�). Using the definitions, we can deduce that

〈[σD:p] |ϕ〉 = 〈ϕ σD|p〉 (2.35)

for every σ ∈ C1(�; M
n×n
sym ) and every ϕ ∈ C1(�), where the duality used in the

right-hand side is defined in (2.4). Using the continuity properties given by (2.33),
we can prove by approximation that (2.35) also holds for every σ ∈ C(�; M

n×n
sym )

and everyϕ ∈ C(�). Therefore, for every σ ∈ C(�; M
n×n
sym ) and everyp ∈ ��0(�)

we obtain

[σD:p] = σD:p on � ∪ �0 , (2.36)

where the right-hand side denotes the measure defined by

(σD:p)(B) :=
∫
B

σD:dp :=
∑
ij

∫
B

σij dpij (2.37)

for every Borel set B ⊂ � ∪ �0.
If σk ⇀ σ weakly in L2(�; M

n×n
sym ), div σk ⇀ div σ weakly in Ln(�; R

n), and

(σk)D is bounded inL∞(�; M
n×n
D ), then using (2.24)–(2.26) and (2.31), we obtain

〈[(σk)D:p] |ϕ〉 → 〈[σD:p] |ϕ〉 (2.38)

for every ϕ ∈ C(�).
Finally, for every σ ∈ �(�) and p ∈ ��0(�), we define

〈σD|p〉 := [σD:p] (� ∪ �0)

= 〈σD|pa〉 + 〈σD|EsDu〉 + 〈[σν]⊥ν |w − u〉�0

= 〈σD|EDu〉 − 〈σD|eD〉 + 〈[σν]⊥ν |w − u〉�0 , (2.39)

where u ∈ BD(�), e ∈ L2(�; M
n×n
sym ), and w ∈ H 1(Rn; R

n) satisfy (2.21) and
(2.22).

We are now in a position to prove an integration by parts formula for stresses
σ ∈ �(�) and displacements u ∈ BD(�), involving the elastic and plastic strains
e and p.



Quasistatic Evolution Problems in Perfect Plasticity 251

Proposition 2.2 (Integration by parts). Assume (2.1) and (2.2). Let σ ∈ �(�),
f ∈ Ln(�; R

n),g ∈ L∞(�1; R
n), and let (u, e, p) ∈ A(w), withw ∈ H 1(Rn; R

n).
Assume that −div σ = f a.e. on � and [σν] = g on �1. Then

〈σD|p〉 + 〈σ |e − Ew〉 = 〈f |u− w〉 + 〈g|u− w〉�1 , (2.40)

where 〈·|·〉�1 denotes the duality pairing between L∞(�1; R
n) and L1(�1; R

n).
Moreover,

〈[σD:p] |ϕ〉 + 〈σ :(e − Ew)|ϕ〉 + 〈σ |(u− w)� ∇ϕ〉
= 〈f |ϕ(u− w)〉 + 〈g|ϕ(u− w)〉�1 (2.41)

for every ϕ ∈ C1(�).

Proof. By [13] (Theorem 3.2 and Propositions 3.3 and 3.4) we have

〈div σ |ϕ v〉 + 〈[σD:EDv] |ϕ〉 + 1
n
〈tr σ |ϕ div v〉 + 〈σ |v� ∇ϕ〉

= 〈[σν]⊥ν |ϕ v〉�0 + 〈g|ϕ v〉�1 (2.42)

for every ϕ ∈ C1(�) and every v ∈ BD(�) with div v ∈ L2(�) and v · ν = 0
Hn−1-a.e. on �0. By (2.32) we have

〈[σD:p] |ϕ〉 + 〈σ :(e − Ew)|ϕ〉 + 〈σ |(u− w)� ∇ϕ〉
= 〈[σD:ED(u− w)] |ϕ〉 + 1

n
〈tr σ |ϕ div(u− w)〉

+〈σ |(u− w)� ∇ϕ〉 − 〈[σν]⊥ν |ϕ(u− w)〉�0 . (2.43)

If we apply (2.42) with v = u− w we obtain

〈[σD:ED(u− w)] |ϕ〉 + 1
n
〈tr σ |ϕ div (u− w)〉

+〈σ |(u− w)� ∇ϕ〉 − 〈[σν]⊥ν |ϕ(u− w)〉�0

= 〈f |ϕ(u− w)〉 + 〈g|ϕ(u− w)〉�1 . (2.44)

Equality (2.41) now follows from (2.43) and (2.44). To obtain (2.40) it is enough
to take ϕ = 1 in (2.41). ��

In order to show the connection between the duality (2.39) and the functional
H defined in (2.9), we need the following approximation result.

Lemma 2.3. Let U be a bounded open set in R
n with the segment property, let K

be a closed convex subset of M
n×n
sym , and let σ ∈ Lr(U ; M

n×n
sym ), 1 � r < +∞, with

div σ ∈ Lr(U ; R
n) and σ(x) ∈ K for a.e. x ∈ U . There then exists a sequence

σk ∈ C∞(U ; M
n×n
sym ) such that σk → σ strongly in Lr(U ; M

n×n
sym ), div σk → div σ

strongly in Lr(U ; R
n), and σk(x) ∈ K for every x ∈ U .
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Proof. Since U is bounded and has the segment property, there exists a finite open
cover (Ui), i = 1, . . . , m, of ∂U and a corresponding sequence of nonzero vectors
yi such that, if x ∈ U ∩ Ui for some i, then x + tyi ∈ U for 0 < t < 1. We set
U0 := U and y0 := 0. For i = 0, . . . , m and k = 1, 2, . . . the open setUik := {x ∈
Ui : x + (1/k)yi ∈ U} contains U ∩ Ui . We define σ ik(x) := σ(x + (1/k)yi) for
every x ∈ Uik . Let (Vi), i = 0, . . . , m, be an open cover of U , such that Vi ⊂⊂ Ui

for every i. Since U ∩ V i ⊂ Uik for every i and k, we can find a mollifier ψik of
class C∞

c (R
n) such that the convolution σ ik � ψ

i
k is well defined in a neighborhood

of U ∩ V i and

‖σ ik � ψik − σ ik‖r,U∩Vi � 1

k
,

‖div σ ik � ψ
i
k − div σ ik‖r,U∩Vi � 1

k
.

(2.45)

As K is closed and convex, we have σ ik � ψ
i
k(x) ∈ K for every x in a neighborhood

of U ∩ V i .
Let (ϕi), i = 0, . . . , m, be a C∞ partition of unity for U subordinate to (Vi),

and let

σk :=
m∑
i=0

ϕi(σ
i
k � ψ

i
k) .

Thenσk is of classC∞ in a neighborhood ofU andσk(x) ∈ K for every x in a neigh-
borhood of U . Since σ ik → σ strongly in Lr(U ∩ Vi; M

n×n
sym ) and div σ ik → div σ

strongly in L2(U ∩ Vi; R
n), from (2.45) and from the identity

div σ :=
m∑
i=0

(ϕi div σ + σ ∇ϕi),

we can deduce that σk → σ strongly inLr(U ; M
n×n
sym ) and div σk → div σ strongly

in Lr(U ; R
n). ��

The following proposition provides a variant of (2.10) expressed by using the
duality (2.39).

Proposition 2.4. Let p ∈ ��0(�). Then

H(p) � [σD : p] on � ∪ �0 (2.46)

for every σ ∈ �(�) ∩ K(�), and

H(p) = sup{〈σD|p〉 : σ ∈ �(�) ∩ K(�)} . (2.47)

Moreover, ifg ∈ L∞(�1; R
n)and there exists� ∈ �(�)∩K(�) such that

[
�ν

] = g

on �1, then

H(p) = sup{〈σD|p〉 : σ ∈ �(�) ∩ K(�), [σν] = g on �1} . (2.48)
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Proof. Let σ ∈ �(�) ∩ K(�). To prove (2.46), it is sufficient to show that

〈H(p)|ϕ〉 � 〈[σD:p] |ϕ〉 (2.49)

for every ϕ ∈ C(�) with ϕ � 0 on �. By Lemma 2.3 there exists a sequence
(σk) in C∞(�; M

n×n
sym ) ∩ K(�), such that σk → σ strongly in Ln(�; M

n×n
sym ) and

div σk → div σ strongly in Ln(�; R
n). By (2.6), (2.8), and (2.35) we obtain

〈H(p)|ϕ〉 � 〈[(σk)D:p] |ϕ〉 ,
and (2.49) follows from (2.38). This concludes the proof of (2.46).

From [29] (Chapter II, Section 4) we have

H(p) = sup{〈σD|p〉 : σ ∈ C∞(Rn; M
n×n
sym ) ∩ K(�), supp σ ∩ �1 = Ø} .

This equality, together with (2.35) and (2.46), implies (2.47) and (2.48) with g = 0.
Let φ ∈ C∞(R) be such that 0 � φ � 1, φ(s) = 0 for s � 1, and φ(s) = 1

for s � 2. For δ > 0 we consider the function ψδ(x) := φ( 1
δ
dist(x, �1)) defined

for every x ∈ �. Let σ ∈ �(�) ∩ K(�) be such that [σν] = 0 on �1. Then,
σδ := ψδσ + (1−ψδ)� ∈ �(�)∩K(�) and [σδν] = g on �1. Moreover, by (2.34)
we have

〈(σδ)D|p〉 = 〈[σD:p] |ψδ〉 + 〈[�D:p
] |1 − ψδ〉 .

Since the right-hand side converges to 〈σD|p〉 as δ → 0, equality (2.48) follows
from the equality already proved for g = 0 and from (2.46). ��

3. The minimum problem

In this section we study in detail the minimum problem used in the incre-
mental formulation of the quasistatic evolution. The data are the current values
p0 ∈ ��0(�) of the plastic strain and the updated values w ∈ H 1(Rn; R

n),
f ∈ Ln(�; R

n), and g ∈ L∞(�1; R
n), of the boundary displacement and of the

body and surface loads. The total load L ∈ BD(�)′ is defined by

〈L|u〉 := 〈f |u〉 + 〈g|u〉�1 (3.1)

for every u ∈ BD(�). By solving the minimum problem

min
(u,e,p)∈A(w){Q(e)+ H(p − p0)− 〈L|u〉}, (3.2)

we get the updated values u, e, and p of displacement, elastic and plastic strain.
For the existence result we will assume the following safe-load condition: there

exist � ∈ L2(�; M
n×n
sym ) and α > 0 such that

−div� = f a.e. on � ,
[
�ν

] = g on �1 , (3.3)

and

�D(x)+ ξ ∈ K (3.4)

for a.e. x ∈ �, and for every ξ ∈ M
n×n
D with |ξ | � α.
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3.1. Existence of a minimizer

We begin by proving two technical lemmas concerning the safe-load condition.

Lemma 3.1. Let w ∈ H 1(Rn; R
n), f ∈ Ln(�; R

n), g ∈ L∞(�1; R
n), and let L

be defined by (3.1). Assume (2.1), (2.2), (3.3), and (3.4). Then,

〈L|u〉 = 〈�|e〉 + 〈�D|p〉 − 〈�|Ew〉 + 〈L|w〉
for every (u, e, p) ∈ A(w).
Proof. The result follows from the definition (2.39) of the duality product 〈�D|p〉,
and from the integration by parts formula (2.40). ��

The following lemma shows the coerciveness of the functional H(p)−〈�D|p〉.
Lemma 3.2. Letf ∈ Ln(�; R

n),g ∈ L∞(�1; R
n),� ∈ L2(�; M

n×n
sym ), andα > 0.

Assume (2.1), (2.2), (3.3), and (3.4). Then,

H(p)− 〈�D|p〉 � α‖p‖1 (3.5)

for every p ∈ ��0(�).

Proof. By Proposition 2.4 we have

H(p)− 〈�D|p〉 = sup{〈σD − �D|p〉 : σ ∈ �(�) ∩ K(�)}
� sup{〈τD|p〉 : τ ∈ �(�), ‖τD‖∞ � α} .

From (2.35) it follows that

H(p)− 〈�D|p〉 � sup{〈τD|p〉 : τ ∈ C∞(�; M
n×n
sym ), ‖τD‖∞ � α} ,

where the duality product in the right-hand side is defined by (2.4). The conclusion
now follows from standard arguments in measure theory. ��

We are now in a position to prove the existence of a solution to (3.2).

Theorem 3.3. Let w ∈ H 1(Rn; R
n), p0 ∈ ��0(�), f ∈ Ln(�; R

n), g ∈ L∞
(�1; R

n), and let L be defined by (3.1). Assume (2.1), (2.2), (3.3), and (3.4). Then,
the minimum problem (3.2) has a solution.

Proof. By Lemma 3.1 the minimum problem (3.2) is equivalent to

min
(u,e,p)∈A(w){Q(e)− 〈�|e〉 + H(p − p0)− 〈�D|p − p0〉} , (3.6)

in the sense that these problems have the same solutions. Let (uk, ek, pk) ∈ A(w)
be a minimizing sequence. By Lemma 3.2

H(pk − p0)− 〈�D|pk − p0〉 � α‖pk − p0‖1 ,
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while (2.13) gives

Q(ek)− 〈�|ek〉 � αC

2
‖ek‖2

2 − 1

2αC

‖�‖2
2 .

Therefore, the sequences ek and pk are bounded in L2(�; M
n×n
sym ) and in Mb(� ∪

�0; M
n×n
D ), respectively. SinceEuk = ek+pk in�, it follows thatEuk is bounded

in Mb (�; M
n×n
sym ). Since (w − uk)� νHn−1 = pk is bounded in Mb(�0; M

n×n
D ),

the traces of uk are bounded in L1(�0; R
n). Therefore, uk is bounded in BD(�)

by (2.3). Up to extracting a subsequence, we may assume that uk ⇀ u weakly∗ in
BD(�), ek ⇀ eweakly inL2(�; M

n×n
sym ), pk ⇀ pweakly∗ inMb(�∪�0; M

n×n
D ).

By Lemma 2.1 we obtain (u, e, p) ∈ A(w). By lower semicontinuity

Q(e)− 〈�|e〉 � lim inf
k→∞ {Q(ek)− 〈�|ek〉} . (3.7)

To conclude we just need to show that

H(p − p0)− 〈�D|p − p0〉 � lim inf
k→∞ {H(pk − p0)− 〈�D|pk − p0〉} . (3.8)

To this aim, let φ ∈ C∞(R) be such that 0 � φ � 1, φ(s) = 0 for s � 1, and
φ(s) = 1 for s � 2. Let δ > 0 and ψδ(x) := φ( 1

δ
dist(x, �1)) for every x ∈ �.

Since the measure H(pk − p0) − [
�D:(pk − p0)

]
is nonnegative on � ∪ �0 by

(2.46),

H(ψδ(pk − p0))− 〈[
�D:(pk − p0)

] |ψδ
〉
� H(pk − p0)− 〈�D|pk − p0〉 (3.9)

for every δ > 0. The integration by parts formula (2.41) gives

〈[�D:(pk − p0)
] |ψδ〉 = −〈�:(ek − Ew)|ψδ〉 − 〈�|(uk − w)� ∇ψδ〉

+〈f |ψδ(uk − w)〉 − 〈[
�D:p0

] |ψδ
〉
.

Passing to the limit as k → ∞, and using (2.41) again, we deduce that

〈[
�D:(p − p0)

] |ψδ
〉 = lim

k→∞
〈[
�D:(pk − p0)

] |ψδ
〉
. (3.10)

By (3.9), (3.10), and the lower semicontinuity of H, we obtain

H(ψδ(p − p0))− 〈[
�D:(p − p0)

] |ψδ
〉
� lim inf

k→∞ {H(pk − p0)− 〈�D|pk − p0〉} .

Passing to the limit as δ → 0, we finally obtain (3.8).
Since (uk, ek, pk) is a minimizing sequence and (u, e, p) ∈ A(w), by (3.7) and

(3.8) we conclude that (u, e, p) is a minimizer of (3.6). ��
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3.2. The Euler conditions

We now derive the Euler conditions for a minimizer of (3.2) in the special case
p = p0.

Theorem 3.4. Let w ∈ H 1(Rn; R
n), f ∈ Ln(�; R

n), g ∈ L∞(�1; R
n), and let L

be defined by (3.1). Suppose that (u, e, p) is a solution of (3.2) with p0 = p, and
let σ := Ce. Then σ ∈ L2(�; M

n×n
sym ) and

−H(q) � 〈σ |η〉 − 〈L|v〉 = 〈σD|ηD〉 + 1

n
〈tr σ |div v〉 − 〈L|v〉

� H(−q) (3.11)

for every (v, η, q) ∈ A(0).
Proof. Let us fix (v, η, q) ∈ A(0). For every ε ∈ R, the triple (u+ εv, e+ εη, p+
εq) belongs to A(w), and hence

Q(e + εη)+ H(εq)− ε〈L|v〉 � Q(e) for every ε ∈ R .

Using the positive homogeneity of H we obtain

Q(e ± εη)+ εH(±q)∓ ε〈L|v〉 � Q(e) for every ε > 0 .

Taking the derivative, with respect to ε at ε = 0, we get

〈σ |η〉 + H(q)− 〈L|v〉 � 0 , −〈σ |η〉 + H(−q)+ 〈L|v〉 � 0 ,

which implies (3.11). ��
The following proposition shows that σ satisfies the Euler conditions obtained

in Theorem 3.4 if, and only if, it satisfies the stress constraint and the equilibrium
condition on �, as well as the boundary condition on �1.

Proposition 3.5. Assume (2.1) and (2.2). Let σ ∈ L2(�; M
n×n
sym ), f ∈ Ln(�; R

n),
g ∈ L∞(�1; R

n), and let L be defined by (3.1). The following conditions are
equivalent:

(a) −H(q) � 〈σ |η〉 − 〈L|v〉 � H(−q) for every (v, η, q) ∈ A(0);
(b) σ ∈ �(�) ∩ K(�), −div σ = f a.e. on �, and [σν] = g on �1.

Proof. Assume (a) and let v ∈ H 1(�; R
n) with v = 0 Hn−1 a.e. on �0. Since the

triple (v, Ev, 0) belongs to A(0), from (a) we obtain

〈σ |Ev〉 − 〈f |v〉 − 〈g|v〉�1 = 0 . (3.12)

Since this is true, in particular, for v ∈ C∞
c (�; R

n), we conclude that −div σ = f

on�, hence div σ ∈ Ln(�; R
n). Using the distributional definition (2.24) of [σν],

from (3.12) we also obtain [σν] = g on �1.
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Let η ∈ L2(�; M
n×n
D ). Regarding −η as an absolutely continuous measure on

� ∪ �0, the triple (0, η,−η) belongs to A(0), thus from (a) we obtain

−H(−η) � 〈σD|η〉 � H(η) .

Let us fix ξ ∈ M
n×n
D . Since for every Borel setB ⊂ �we can take η(x) = 1B(x) ξ ,

we deduce that

−H(−ξ) � σD(x):ξ � H(ξ) for a.e. x ∈ � .
Therefore, σD(x) ∈ ∂H(0) for a.e. x ∈ �. As ∂H(0) = K (see e.g. [26] (Cor-
ollary 23.5.3)), σD(x) ∈ K for a.e. x ∈ �, hence σD ∈ L∞(�; M

n×n
D ) and

σ ∈ K(�).
Conversely, assume (b) and let (v, η, q) ∈ A(0). By Proposition 2.4

−H(−q) � 〈σD|q〉 � H(q) . (3.13)

From the integration by parts formula (2.40) we get

〈σD|q〉 = −〈σ |η〉 + 〈f |v〉 + 〈g|v〉�1 ,

so that (a) follows now from (3.13). ��
The following theorem summarizes the results obtained thus far on the Euler

conditions.

Theorem 3.6. Assume (2.1) and (2.2). Let w ∈ H 1(Rn; R
n), f ∈ Ln(�; R

n),
g ∈ L∞(�; R

n), let (u, e, p) ∈ A(w), let σ := Ce, and let L be defined by (3.1).
The following conditions are then equivalent:

(a) (u, e, p) is a solution of (3.2) with p0 = p;
(b) −H(q) � 〈σ |η〉 − 〈L|v〉 � H(−q) for every (v, η, q) ∈ A(0);
(c) σ ∈ �(�) ∩ K(�), −div σ = f a.e. on �, and [σν] = g on �1.

Proof. The implication (a) ⇒ (b) was proved in Theorem 3.4. The converse is
true by convexity. The equivalence (b) ⇔ (c) was proved in Proposition 3.5. ��

Theorem 3.6 immediately gives a stability result with respect to weak conver-
gence of the data.

Theorem 3.7. Assume (2.1) and (2.2). Letwk , fk , gk be sequences inH 1(Rn; R
n),

Ln(�; R
n), L∞(�; R

n), respectively, let Lk be defined by (3.1) with f = fk and
g = gk , and let (uk, ek, pk) ∈ A(wk). Assume that uk ⇀ u∞ weakly∗ in BD(�),
ek ⇀ e∞ weakly in L2(�; M

n×n
sym ), pk ⇀ p∞ weakly∗ in Mb(� ∪ �0; M

n×n
D ),

wk ⇀ w∞ weakly in H 1(Rn; R
n), fk ⇀ f∞ weakly in Ln(�; R

n), gk ⇀ g∞
weakly∗ in L∞(�; R

n), and let L∞ be defined by (3.1) with f = f∞ and g = g∞.
If

Q(ek)− 〈Lk|uk〉 � Q(η)+ H(q − pk)− 〈Lk|v〉 (3.14)

for every k and every (v, η, q) ∈ A(wk), then (u∞, e∞, p∞) ∈ A(w∞) and

Q(e∞)− 〈L∞|u∞〉 � Q(η)+ H(q − p∞)− 〈L∞|v〉 (3.15)

for every (v, η, q) ∈ A(w∞).
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Proof. First, we note that (u∞, e∞, p∞) ∈ A(w∞) by Lemma 2.1. Let σk := Cek
and σ∞ := Ce∞. If (3.14) holds, then uk , ek , pk , wk , fk , gk satisfy condition (a)
of Theorem 3.6. By condition (c) of Theorem 3.6 we have σk ∈ �(�) ∩ K(�),
−div σk = fk a.e. on �, and [σkν] = gk on �1.

Since ek ⇀ e∞ weakly in L2(�; M
n×n
sym ), σk ⇀ σ∞ weakly in L2(�; M

n×n
sym ).

As K(�) is closed and convex inL2(�; M
n×n
sym ), we deduce that σ∞ ∈ K(�). Since

−div σk = fk a.e. on � and fk ⇀ f∞ weakly in Ln(�; R
n), −div σ∞ = f∞

a.e. on �. Hence, σ∞ ∈ �(�). Moreover, from (2.24) it follows that [σkν] ⇀
[σ∞ν] weakly in H−1/2(∂�; R

n). As [σkν] = gk on �1 and gk ⇀ g∞ weakly∗ in
L∞(�; R

n), we conclude that [σ∞ν] = g∞ on �1. Therefore, u∞, e∞, p∞, w∞,
f∞, g∞ satisfy condition (c) of Theorem 3.6. Inequality (3.15) follows now from
condition (a) of Theorem 3.6. ��

3.3. Continuous dependence on the data

We complete our study of the solutions (u, e, p) of the minimum problem (3.2)
for the special case p = p0 by proving the continuous dependence, in the norm
topology, of u and e on the data p0, w, f , and g. In particular we prove a Hölder
continuous dependence of e on p0. If t 
→ (u(t), e(t), p(t)) is a quasistatic evo-
lution according to Definition 4.2 below, this continuity estimate is not enough
to deduce that t 
→ e(t) has bounded variation from the fact that t 
→ p(t) has
bounded variation. However, it allows us to prove that t 
→ e(t) is continuous,
except for a countable set of values of t , which is an important ingredient for an
elementary proof of Theorem 4.7.

Theorem 3.8. For i = 1, 2 let wi ∈ H 1(Rn; R
n), fi ∈ Ln(�; R

n), gi ∈ L∞(�1;
R
n), and let Li be defined by (3.1) with f = fi and g = gi . Suppose that (ui, ei, pi)

is a solution of (3.2) with p0 = pi , w = wi , L = Li , and let

ω12 := ‖p2 − p1‖1 + ‖p2 − p1‖1/2
1

+‖f2 − f1‖n + ‖g2 − g1‖∞,�1 + ‖Ew2 − Ew1‖2 .

Then

‖e2 − e1‖2 � C1 ω12 , (3.16)

‖Eu2 − Eu1‖1 � C2 ω12 , (3.17)

‖u2 − u1‖1 � C3 (ω12 + ‖w2 − w1‖2) , (3.18)

where C1, C2, and C3 are positive constants depending only on RK , αC, βC, �,
and �0.

Proof. Let v := (u2 − w2) − (u1 − w1), η := (e2 − Ew2) − (e1 − Ew1), and
q := p2 − p1. Since (v, η, q) ∈ AP(0), by Theorem 3.4 we obtain

−H(p2 − p1) � 〈Ce1|η〉 − 〈f1|v〉 − 〈g1|v〉�1 ,

〈Ce2|η〉 − 〈f2|v〉 − 〈g2|v〉�1 � H(p1 − p2) .
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Adding term by term, and using (2.7), we obtain

〈C(e2 − e1)|e2 − e1〉 � 〈C(e2 − e1)|Ew2 − Ew1〉 + 〈f2 − f1|v〉
+〈g2 − g1|v〉�1 + 2RK‖p2 − p1‖1 .

By (2.13) and (2.14), this implies

2 αC‖e2 − e1‖2
2 � 2 βC‖e2 − e1‖2 ‖Ew2 − Ew1‖2

+‖f2 − f1‖n ‖v‖n/(n−1)

+‖g2 − g1‖∞,�1‖v‖1,�1 + 2RK‖p2 − p1‖1 . (3.19)

Since the embedding ofBD(�) intoLn/(n−1)(�; R
n) is continuous, there exists

a constant A1, depending only on �, such that

‖v‖n/(n−1) � A1 ‖v‖1 + A1 ‖Ev‖1 . (3.20)

By (2.3) there exists a constant C > 0, depending only on � and �0, such that

‖v‖1 � C ‖v‖1,�0 + C ‖Ev‖1 . (3.21)

Since p2 − p1 = −v� νHn−1 on �0,

‖v‖1,�0 �
√

2 ‖p2 − p1‖1 . (3.22)

As Ev = (e2 − e1) + (p2 − p1) − (Ew2 − Ew1), by the Hölder inequality we
obtain

‖Ev‖1 � Ln(�)1/2‖e2 − e1‖2 + ‖p2 − p1‖1

+Ln(�)1/2‖Ew2 − Ew1‖2 . (3.23)

By (3.20)–(3.23) there exists a constantA2, depending only on� and �0, such that

‖v‖n/(n−1) � A2 ‖e2 − e1‖2 + A2 ‖p2 − p1‖1 + A2 ‖Ew2 − Ew1‖2 . (3.24)

Since the trace operator is continuous from BD(�) into L1(∂�; R
n), there

exists a constant B1, depending only on �, such that

‖v‖1,�1 � B1 ‖v‖1 + B1 ‖Ev‖1 .

From this inequality, and from (3.21)–(3.23), we deduce that there exists a constant
B2, depending only on � and �0, such that

‖v‖1,�1 � B2 ‖e2 − e1‖2 + B2 ‖p2 − p1‖1 + B2 ‖Ew2 − Ew1‖2 . (3.25)

Therefore (3.19), (3.24), and (3.25) imply that

2 αC ‖e2 − e1‖2
2

� 2 βC ‖e2 − e1‖2 ‖Ew2 − Ew1‖2 + A2 ‖f2 − f1‖n ‖e2 − e1‖2

+A2 ‖f2 − f1‖n ‖p2 − p1‖1 + A2 ‖f2 − f1‖n ‖Ew2 − Ew1‖2

+B2 ‖g2 − g1‖∞,�1 ‖e2 − e1‖2 + B2 ‖g2 − g1‖∞,�1 ‖p2 − p1‖1

+B2 ‖g2 − g1‖∞,�1 ‖Ew2 − Ew1‖2 + 2RK‖p2 − p1‖1 ,

which yields (3.16) by the Cauchy inequality.
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As Eui = ei + pi in � by (2.21), by the Hölder inequality we obtain

‖Eu2 − Eu1‖1 � Ln(�)1/2‖e2 − e1‖2 + ‖p2 − p1‖1 ,

so that (3.16) gives (3.17).
Since p2 − p1 = [(w2 − w1)− (u2 − u1)] � νHn−1 on �0, we have

‖u2 − u1‖1,�0 � ‖w2 − w1‖1,�0 + √
2 ‖p2 − p1‖1 .

The continuity of the trace operator fromH 1(�; R
n) into L1(∂�; R

n) implies that
there exists a constant M , depending only on �, such that

‖u2 − u1‖1,�0 � M ‖w2 − w1‖2 +M ‖Ew2 − Ew1‖2 + √
2 ‖p2 − p1‖1 .

By (2.3) there exists a constant C, depending only on � and �0, such that

‖u2 − u1‖1 � C ‖u2 − u1‖1,�0 + C ‖Eu2 − Eu1‖1

� CM ‖w2 − w1‖2 + CM ‖Ew2 − Ew1‖2

+√
2C ‖p2 − p1‖1 + C ‖Eu2 − Eu1‖1 .

Inequality (3.18) now follows from (3.17). ��
Remark 3.9. Theorem 3.8 implies that if (u1, e1, p0) and (u2, e2, p0) are solutions
to problem (3.2) with the same w, f , and g, then u1 = u2 and e1 = e2 a.e. on �.

4. Quasistatic evolution

We now consider time-dependent boundary conditions w(t) satisfying (2.15),
as well as body and surface forces f (t) and g(t) satisfying the regularity assump-
tion (2.16) and the uniform safe-load condition (2.17)–(2.19). For every t ∈ [0, T ]
the total load L(t) ∈ BD(�)′ applied at time t is defined by

〈L(t)|u〉 := 〈f (t)|u〉 + 〈g(t)|u〉�1 (4.1)

for every u ∈ BD(�).
Remark 4.1. From (2.16) it follows that the weak∗ limit

L̇(t) := w∗ − lim
s→t

L(s)− L(t)
s − t

exists in BD(�)′ for a.e. t ∈ [0, T ], and that

〈L̇(t)|u〉 = 〈ḟ (t)|u〉 + 〈ġ(t)|u〉�1 (4.2)

for everyu ∈ BD(�).Therefore, the function t 
→〈L̇(t)|u(t)〉belongs toL1([0, T ])
whenever t 
→ u(t) belongs to L∞([0, T ] ;BD(�)).
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From (2.17)–(2.19) we find that �̇(t) ∈ �(�) for a.e. t ∈ [0, T ] and

−div �̇(t) = ḟ (t) a.e. on � ,
[
�̇(t)ν

] = ġ(t) on �1 .

Furthermore, owing to (2.38), we can prove that for every p ∈ ��0(�), the
function s 
→ 〈�D(s)|p〉 is differentiable at each t ∈ [0, T ] where �̇(t) exists
and (2.20) holds with the derivative given by 〈�̇D(t)|p〉. This implies that t 
→
〈�̇D(t)|p(t)〉 is measurable for every simple function t 
→ p(t) from [0, T ] into
Mb(�∪�0; M

n×n
D ) with p(t) ∈ ��0(�) for a.e. t ∈ [0, T ]. By approximation we

conclude that t 
→ 〈�̇D(t)|p(t)〉 belongs toL1([0, T ])whenever t 
→ p(t) belongs
to L∞([0, T ] ;Mb(� ∪ �0; M

n×n
D )) and p(t) ∈ ��0(�) for a.e. t ∈ [0, T ].

A function p: [0, T ] → Mb(� ∪ �0; M
n×n
D ) will be regarded as a function

defined on the time interval [0, T ] with values in the dual of the separable Banach
space C0(� ∪ �0; M

n×n
D ). Therefore, for every s, t ∈ [0, T ] with s � t the total

variation of p on [s, t] is defined by

V(p; s, t) = sup
{ N∑
j=1

‖p(tj )− p(tj−1)‖1 :

s = t0 � t1 � . . . � tN = t, N ∈ N

}
.

By (2.10) all results proved in the Appendix with X = Mb(� ∪ �0; M
n×n
D ), Y =

C0(� ∪ �0; M
n×n
D ), and K = KD(�) ∩ C0(� ∪ �0; M

n×n
D ) can be applied to H.

The H-variation of p on [s, t], which will play the role of the dissipation in the
time interval [s, t], is denoted DH(p; s, t) and is defined by

DH(p; s, t) := sup
{ N∑
j=1

H(p(tj )− p(tj−1)) :

s = t0 � t1 � . . . � tN = t, N ∈ N

}
.

4.1. Definition of quasistatic evolution

We are now in a position to introduce the following definition.

Definition 4.2. A quasistatic evolution is a function t 
→ (u(t), e(t), p(t)) from
[0, T ] into BD(�)×L2(�; M

n×n
sym )×Mb(� ∪ �0; M

n×n
D ) which satisfies the fol-

lowing conditions:

(qs1) global stability: for every t ∈ [0, T ] we have (u(t), e(t), p(t)) ∈ A(w(t))

and

Q(e(t))− 〈L(t)|u(t)〉 � Q(η)+ H(q − p(t))− 〈L(t)|v〉 (4.3)

for every (v, η, q) ∈ A(w(t));
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(qs2) energy balance: the function t 
→ p(t) from [0, T ] into Mb(� ∪ �0; M
n×n
D )

has bounded variation and for every t ∈ [0, T ]

Q(e(t))+ DH(p; 0, t)− 〈L(t)|u(t)〉

= Q(e(0))− 〈L(0)|u(0)〉 +
∫ t

0
{〈σ(s)|Eẇ(s)〉 − 〈L(s)|ẇ(s)〉} ds

−
∫ t

0
〈L̇(s)|u(s)〉 ds , (4.4)

where σ(t) := Ce(t).

Remark 4.3. Since the function t 
→ p(t) from [0, T ] into Mb(� ∪ �0; M
n×n
D )

has bounded variation, it is bounded and the set of its discontinuity points (in the
strong topology) is at most countable (see e.g. [4] (Lemma A.1)). By Theorem 3.8
the same properties hold for the functions t 
→ e(t) and t 
→ σ(t) from [0, T ] into
L2(�; M

n×n
sym ), and for the function t 
→ u(t) from [0, T ] into BD(�). Therefore,

t 
→ e(t) and t 
→ σ(t) belong to L∞([0, T ] ;L2(�; M
n×n
sym )), and t 
→ u(t) be-

longs toL∞([0, T ] ;BD(�)).As t 
→ Eẇ(t)belongs toL1([0, T ] ;L2(�; M
n×n
sym ))

and t 
→ ẇ(t) belongs to L1([0, T ] ;H 1(Rn; R
n)), the integrals in the right-hand

side of (4.4) are well defined (see Remark 4.1).

The following theorem gives an equivalent formulation of conditions (qs1) and
(qs2), which uses the function t 
→ �(t) introduced in the uniform safe-load con-
dition of Section 2.2.

Theorem 4.4. Assume (2.1), (2.2), (2.7), (2.12), (2.13), and (2.15)–(2.19). Then, a
function t 
→ (u(t), e(t), p(t)) from [0, T ] into BD(�)×L2(�; M

n×n
sym )×Mb(�∪

�0; M
n×n
D ) is a quasistatic evolution if, and only if, it satisfies the following condi-

tions:

(qs1′) for every t ∈ [0, T ] we have (u(t), e(t), p(t)) ∈ A(w(t)) and

Q(e(t))− 〈�(t)|e(t)〉
� Q(η)− 〈�(t)|η〉 + H(q − p(t))− 〈�D(t)|q − p(t)〉 (4.5)

for every (v, η, q) ∈ A(w(t));
(qs2′) the function t 
→ p(t) from [0, T ] into Mb(� ∪ �0; M

n×n
D ) has bounded

variation and for every t ∈ [0, T ]

Q(e(t))+ DH(p; 0, t)− 〈�(t)|e(t)− Ew(t)〉 − 〈�D(t)|p(t)〉
= Q(e(0))− 〈�(0)|e(0)− Ew(0)〉 − 〈�D(0)|p(0)〉

+
∫ t

0
〈σ(s)|Eẇ(s)〉 ds

−
∫ t

0
{〈�̇(s)|e(s)− Ew(s)〉 + 〈�̇D(s)|p(s)〉} ds , (4.6)

where σ(t) := Ce(t).
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Proof. The equivalence of conditions (qs1) and (qs1′) follows from Lemma 3.1.
As the functions t 
→ f (t), t 
→ g(t), and t 
→ w(t) are absolutely continuous

from [0, T ] into Ln(�; R
n), L∞(�1; R

n), andH 1(Rn; R
n), respectively, the func-

tion t 
→ 〈L(t)|w(t)〉 is absolutely continuous on [0, T ] and its time derivative is
given by t 
→ 〈L̇(t)|w(t)〉 + 〈L(t)|ẇ(t)〉. It follows that

∫ t

0
{〈L̇(s)|w(s)〉 + 〈L(s)|ẇ(s)〉} ds = 〈L(t)|w(t)〉 − 〈L(0)|w(0)〉 . (4.7)

By Lemma 3.1 we have

〈L(t)|v〉 = 〈�(t)|η − Ez〉 + 〈�D(t)|q〉 + 〈L(t)|z〉 (4.8)

for every t ∈ [0, T ], z ∈ H 1(Rn; R
n), and (v, η, q) ∈ A(z). Taking the derivative

with respect to t (see Remark 4.1), we obtain

〈L̇(t)|v〉 = 〈�̇(t)|η − Ez〉 + 〈�̇D(t)|q〉 + 〈L̇(t)|z〉
for a.e. t ∈ [0, T ], for every z ∈ H 1(Rn; R

n), and every (v, η, q) ∈ A(z).
If conditions (qs1) or (qs1′) hold, then by Remark 4.3 the function t 
→

(u(t), e(t), p(t)) belongs to L∞([0, T ] ;BD(�)×L2(�; M
n×n
sym )×Mb(� ∪ �0;

M
n×n
D )). As (u(t), e(t), p(t)) ∈ A(w(t)) for every t ∈ [0, T ],

〈L̇(t)|u(t)〉 = 〈�̇(t)|e(t)− Ew(t)〉 + 〈�̇D(t)|p(t)〉 + 〈L̇(t)|w(t)〉
for a.e. t ∈ [0, T ]. Therefore, (4.7) implies that

∫ t

0
{〈L̇(s)|u(s)〉 + 〈L(s)|ẇ(s)〉} ds
= 〈L(t)|w(t)〉 − 〈L(0)|w(0)〉

+
∫ t

0
{〈�̇(s)|e(s)− Ew(s)〉 + 〈�̇D(s)|p(s)〉} ds .

The equivalence of conditions (qs2) and (qs2′) now follows from this equality
and (4.8). ��

4.2. The existence result

The following theorem is the main result of the paper.

Theorem 4.5. Assume (2.1), (2.2), (2.7), (2.12), (2.13), and (2.15)–(2.19). Let
(u0, e0, p0) ∈ A(w(0)) satisfy the stability condition

Q(e0)− 〈L(0)|u0〉 � Q(e)+ H(p − p0)− 〈L(0)|v〉 (4.9)

for every (u, e, p) ∈ A(w(0)). Then, there exists a quasistatic evolution t 
→
(u(t), e(t), p(t)) such that u(0) = u0, e(0) = e0, p(0) = p0.
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Theorem 4.5 will be proved by a time discretization process. First, fix a sequence
of subdivisions (t ik)0�i�k of the interval [0, T ], with

0 = t0k < t1k < · · · < tk−1
k < tkk = T , (4.10)

lim
k→∞ max

1�i�k
(t ik − t i−1

k ) = 0. (4.11)

For i = 0, . . . , k, we set wik := w(tik), f
i
k := f (tik), g

i
k := g(t ik), Lik := L(t ik), and

�ik := �(tik).
For every k, we define uik , e

i
k , and pik by induction. We set (u0

k, e
0
k, p

0
k ) :=

(u0, e0, p0), which by assumption belongs toA(w(0)). For i = 1, . . . , k we define
(uik, e

i
k, p

i
k) as a solution to the incremental problem

min
(u,e,p)∈A(wik)

{Q(e)+ H(p − pi−1
k )− 〈Lik|u〉} . (4.12)

The existence of a solution to this problem is proved in Theorem 3.3. We recall that
by Lemma 3.1 the minimum problem (4.12) is equivalent to

min
(u,e,p)∈A(wik)

{Q(e)− 〈�ik|e〉 + H(p − pi−1
k )− 〈(�ik)D|p − pi−1

k 〉} . (4.13)

Moreover, by the triangle inequality (2.11), the triple (uik, e
i
k, p

i
k) is also a solution

of the problem

min
(u,e,p)∈A(wik)

{Q(e)+ H(p − pik)− 〈Lik|u〉} . (4.14)

For i = 0, . . . , k we set σ ik := Ceik , and for every t ∈ [0, T ] we define the
piecewise constant interpolations

uk(t) := uik , ek(t) := eik , pk(t) := pik , σk(t) := σ ik ,

wk(t) := wik , fk(t) := f ik , gk(t) := gik ,

Lk(t) := Lik , �k(t) := �ik ,

(4.15)

where i is the largest integer such that t ik � t . By definition, (uk(t), ek(t), pk(t)) ∈
A(wk(t)), and by (4.14) we have

Q(ek(t))− 〈Lk(t)|uk(t)〉 � Q(η)+ H(q − pk(t))− 〈Lk(t)|v〉 (4.16)

for every (v, η, q) ∈ A(wk(t)).

4.3. The discrete energy inequality

We now derive an energy estimate for the solutions of the incremental problems.
Note that a remainder δk is needed because the integral terms which appear in the
right-hand side of (4.17) provide only an approximate value of the work done by
the external forces.
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Lemma 4.6. There exists a sequence δk → 0+ such that for every k and every
t ∈ [0, T ]

Q(ek(t))− 〈�k(t)|ek(t)− Ewk(t)〉

+
∑

0<trk�t
{H(prk − pr−1

k )− 〈�D(trk )|prk − pr−1
k 〉}

� Q(e0)− 〈�(0)|e0 − Ew(0)〉 −
∫ t ik

0
〈�̇(s)|ek(s)− Ewk(s)〉 ds

+
∫ t ik

0
〈σk(s)|Eẇ(s)〉 ds + δk , (4.17)

where i is the largest integer such that t ik � t .

The integrals in the right-hand side of (4.17) can be written as

∫ t ik

0
〈�̇(s)|ek(s)− Ewk(s)〉 ds =

i∑
j=1

〈�jk − �
j−1
k |ej−1

k − Ew
j−1
k 〉 ,

∫ t ik

0
〈σk(s)|Eẇ(s)〉 ds =

i∑
j=1

〈σ j−1
k |Ewjk − Ew

j−1
k 〉 ,

where the sums involve only the values of �(t) and w(t) at the discretization
points tjk . This is the main difference between inequality (4.17) and those con-
sidered in [15] (Theorem 4.1).

Proof of Lemma 4.6. We have to prove that there exists a sequence δk → 0+ such
that

Q(eik)− 〈�ik|eik − Ewik〉

+
i∑
r=1

{H(prk − pr−1
k )− 〈(�rk)D|prk − pr−1

k 〉}

� Q(e0)− 〈�(0)|e0 − Ew(0)〉 −
∫ t ik

0
〈�̇(s)|ek(s)− Ewk(s)〉 ds

+
∫ t ik

0
〈σk(s)|Eẇ(s)〉 ds + δk (4.18)

for every k and every i = 1, . . . , k.
Let us fix an integer r with 1 � r � i, and let v := ur−1

k − wr−1
k + wrk

and η := er−1
k − Ewr−1

k + Ewrk . Since (v, η, pr−1
k ) ∈ A(wrk), by the minimality

condition (4.13) we obtain

Q(erk)− 〈�rk|erk〉 + H(prk − pr−1
k )− 〈(�rk)D|prk − pr−1

k 〉
� Q(er−1

k + Ewrk − Ewr−1
k )− 〈�rk|er−1

k + Ewrk − Ewr−1
k 〉 , (4.19)
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where the quadratic form in the right-hand side can be developed as

Q(er−1
k + Ewrk − Ewr−1

k )

= Q(er−1
k )+ 〈σ r−1

k |Ewrk − Ewr−1
k 〉 + Q(Ewrk − Ewr−1

k ) . (4.20)

From the absolute continuity of w with respect to t we obtain

wrk − wr−1
k =

∫ t rk

tr−1
k

ẇ(t) dt ,

where we use a Bochner integral of a function with values in H 1(Rn; R
n). This

implies

Ewrk − Ewr−1
k =

∫ t rk

tr−1
k

Eẇ(t) dt , (4.21)

where we use a Bochner integral of a function with values in L2(Rn; M
n×n
sym ). By

(2.13) and (4.21)

Q(Ewrk − Ewr−1
k ) � βC

( ∫ t rk

tr−1
k

‖Eẇ(t)‖2 dt
)2
. (4.22)

From the absolute continuity of � with respect to t we obtain

〈�rk|er−1
k − Ewr−1

k 〉

= 〈�r−1
k |er−1

k − Ewr−1
k 〉 +

∫ t rk

tr−1
k

〈�̇(t)|er−1
k − Ewr−1

k 〉 dt . (4.23)

By (4.19)–(4.23) we obtain

Q(erk)− 〈�rk|erk − Ewrk〉 + H(prk − pr−1
k )− 〈(�rk)D|prk − pr−1

k 〉

� Q(er−1
k )− 〈�r−1

k |er−1
k − Ewr−1

k 〉 −
∫ t rk

tr−1
k

〈�̇(t)|er−1
k − Ewr−1

k 〉 dt

+
∫ t rk

tr−1
k

〈σ r−1
k |Eẇ(t)〉 dt + βC

( ∫ t rk

tr−1
k

‖Eẇ(t)‖2 dt
)2

� Q(er−1
k )− 〈�r−1

k |er−1
k − Ewr−1

k 〉 −
∫ t rk

tr−1
k

〈�̇(t)|er−1
k − Ewr−1

k 〉 dt

+
∫ t rk

tr−1
k

〈σ r−1
k |Eẇ(t)〉 dt + ωk

∫ t rk

tr−1
k

‖Eẇ(t)‖2 dt , (4.24)

where

ωk := βC max
1�r�k

∫ t rk

tr−1
k

‖Eẇ(t)‖2 dt → 0,

by the absolute continuity of the integral. Now iterating inequality (4.24) for
1 � r � i, we get (4.18) with δk := ωk

∫ T
0 ‖Eẇ(t)‖2 dt . ��
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4.4. Proof of the existence theorem

We are now in a position to prove Theorem 4.5.

Proof of Theorem 4.5. Let us fix a sequence of subdivisions (t ik)0�i�k of the inter-

val [0, T ] satisfying (4.10) and (4.11). For every k let (uik, e
i
k, p

i
k), i = 1, . . . , k, be

defined inductively as solutions of the discrete problems (4.12), with (u0
k, e

0
k, p

0
k ) =

(u0, e0, p0), and let uk(t), ek(t), pk(t), σk(t), wk(t), fk(t), gk(t), Lk(t), �k(t) be
defined by (4.15).

Let us prove that there exists a constantC, depending only on the constants αC,
βC, and α, and on the functions e0, t 
→ w(t), and t 
→ �(t), such that

sup
t∈[0,T ]

‖ek(t)‖2 � C and V(pk; 0, T ) � C (4.25)

for every k. As t 
→ w(t) and t 
→ �(t) are absolutely continuous with val-
ues in H 1(Rn; R

n) and L2(�; M
n×n
sym ), respectively, the functions t 
→ ‖Ew(t)‖2

and t 
→ ‖�(t)‖2 are bounded on [0, T ], and the functions t 
→ ‖Eẇ(t)‖2 and
t 
→ ‖�̇(t)‖2 are integrable on [0, T ]. This fact, together with (2.13), (2.14), (3.5),
and (4.17), implies that

αC‖ek(t)‖2
2 − sup

t∈[0,T ]
‖�(t)‖2 sup

t∈[0,T ]
‖Ew(t)‖2 + α

∑
0<trk�t

‖prk − pr−1
k ‖1

� sup
t∈[0,T ]

‖ek(t)‖2

(∫ T

0
‖�̇(s)‖2 ds + 2βC

∫ T

0
‖Eẇ(s)‖2 ds + sup

t∈[0,T ]
‖�(t)‖2

)

+ sup
t∈[0,T ]

‖Ew(t)‖2

∫ T

0
‖�̇(s)‖2 ds + βC‖e0‖2

2 + ‖�(0)‖2‖e0‖2

+‖�(0)‖2‖Ew(0)‖2 + δk (4.26)

for every k and every t ∈ [0, T ]. The former inequality in (4.25) can now be
obtained by using the Cauchy inequality. As for the latter, by (4.26) and the first
inequality in (4.25), we deduce that

∑
0<trk�t

‖prk − pr−1
k ‖1 � C (4.27)

for every k and every t ∈ [0, T ]. Since t 
→ pk(t) is constant on the intervals[
t r−1
k , trk

[
, the estimate (4.27) is equivalent to the second inequality in (4.25).

By the generalized version of the classical Helly theorem given in Lemma 7.2,
there exist a subsequence, still denoted pk , and a function, p: [0, T ] → Mb(� ∪
�0; M

n×n
D ), with bounded variation on [0, T ], such that pk(t) ⇀ p(t) weakly∗ in

Mb(� ∪ �0; M
n×n
D ) for every t ∈ [0, T ].

Since by (4.25), ‖ek(t)‖2 � C and ‖pk(t)‖1 � C for every k and every t ,
following the same argument used in the proof of Theorem 3.3, we can deduce that
uk(t) is bounded in BD(�) uniformly with respect to k and t . Let us fix t ∈ [0, T ].
There exist an increasing sequence kj (possibly depending on t) and two functions
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u(t) ∈ BD(�) and e(t) ∈ L2(�; M
n×n
sym ) such that ukj (t) ⇀ u(t) weakly∗ in

BD(�) and ekj (t) ⇀ e(t) weakly in L2(�; M
n×n
sym ). By (4.16), we can apply The-

orem 3.7 and we find that the triple (u(t), e(t), p(t)) is a solution of the minimum
problem

min
(v,η,q)∈A(w(t)){Q(η)+ H(q − p(t))− 〈L(t)|v〉} . (4.28)

By Remark 3.9 there exists a unique (u, e) ∈ BD(�)×L2(�; M
n×n
sym ) such that

(u, e, p(t)) is a solution to (4.28). Therefore, the convergence result holds for the
whole sequence, i.e., uk(t) ⇀ u(t) weakly∗ in BD(�) and ek(t) ⇀ e(t) weakly
in L2(�; M

n×n
sym ).

Let us now show that the function t 
→ (u(t), e(t), p(t)) is a quasistatic evolu-
tion, satisfying (u(0), e(0), p(0)) = (u0, e0, p0). The initial condition is fulfilled,
since uk(0) = u0, ek(0) = e0, pk(0) = p0 for every k. In (4.28) we already proved
that (u(t), e(t), p(t)) satisfies (4.3) for every t ∈ [0, T ].

It now remains to prove the energy balance (4.4), or equivalently (4.6). By
Theorem 4.7, proved below, it is enough to establish the energy inequality

Q(e(t))− 〈�(t)|e(t)− Ew(t)〉 + DH(p; 0, t)− 〈�D(t)|p(t)〉
� Q(e(0))− 〈�(0)|e(0)− Ew(0)〉 − 〈�D(0)|p(0)〉

+
∫ t

0
〈σ(s)|Eẇ(s)〉 ds

−
∫ t

0
{〈�̇(s)|e(s)− Ew(s)〉 + 〈�̇D(s)|p(s)〉} ds . (4.29)

Let us fix t ∈ [0, T ]. As in the proof of Theorem 3.3, let δ > 0 and ψδ(x) :=
φ( 1

δ
dist(x, �1)) for every x ∈ �, where φ ∈ C∞(R), 0 � φ � 1, φ(s) = 0

for s � 1, and φ(s) = 1 for s � 2. Since the measure H(prk − pr−1
k ) −[

�D(t
r
k ):(p

r
k − pr−1

k )
]

is nonnegative on � ∪ �0 by (2.46), we obtain

H(ψδ(prk − pr−1
k ))− 〈[�D(trk ):(prk − pr−1

k )]|ψδ〉
� H(prk − pr−1

k )− 〈�D(trk )|prk − pr−1
k 〉 (4.30)

for every r = 1, . . . , i. Since t 
→ pk(t) is constant on the intervals
[
t r−1
k , trk

[
, we

have

DH(ψδpk; 0, t) �
∑

0<trk�t
H(ψδ(prk − pr−1

k )) ,

so that the lower semicontinuity of the dissipation (see (7.2)) gives

DH(ψδp; 0, t) � lim inf
k→∞

∑
0<trk�t

H(ψδ(prk − pr−1
k )) . (4.31)
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It is convenient to write:
i∑
r=1

〈[�D(trk ):(prk − pr−1
k )]|ψδ〉

= −
i∑
r=1

〈[(�D(trk )− �D(t
r−1
k )):pr−1

k ]|ψδ〉 + 〈[�D(tik):pik]|ψδ〉

− 〈[
�D(0):p0

] |ψδ
〉
. (4.32)

Since t 
→ �(t) and t 
→ f (t) are absolutely continuous from [0, T ] into
L2(�; M

n×n
sym ) and Ln(�; R

n), respectively, by (2.41) we obtain

i∑
r=1

〈[
(�D(t

r
k )− �D(t

r−1
k )):pr−1

k

]
|ψδ

〉

=
∫ t ik

0
〈ḟ (s)|ψδ(uk(s)− wk(s))〉 ds −

∫ t ik

0
〈�̇(s)|ψδ(ek(s)− Ewk(s))〉 ds

−
∫ t ik

0
〈�̇(s)|(uk(s)− wk(s))� ∇ψδ〉 ds .

Passing to the limit as k → ∞ and using (2.41) again, we obtain

lim
k→∞

i∑
r=1

〈[
(�D(t

r
k )− �D(t

r−1
k )):pr−1

k

]
|ψδ

〉
=

∫ t

0

〈[
�̇D(s):p(s)

] |ψδ
〉
ds .

(4.33)

Analogously, we can show that

lim
k→∞

〈[
�D(t

i
k):p

i
k

]
|ψδ

〉
= 〈[

�D(t):p(t)
] |ψδ

〉
. (4.34)

Combining (4.30)–(4.34), we obtain

DH(ψδp; 0, t)− 〈[
�D(t):p(t)

] |ψδ
〉

+ 〈[
�D(0):p(0)

] |ψδ
〉 +

∫ t

0

〈[
�̇D(s):p(s)

] |ψδ
〉
ds

� lim inf
k→∞

i∑
r=1

{H(prk − pr−1
k )− 〈�D(trk )|prk − pr−1

k 〉},

and passing to the limit as δ → 0+, we conclude that

DH(p; 0, t)− 〈�D(t)|p(t)〉 + 〈�D(0)|p(0)〉 +
∫ t

0
〈�̇D(s)|p(s)〉 ds

� lim inf
k→∞

i∑
r=1

{H(prk − pr−1
k )− 〈�D(trk )|prk − pr−1

k 〉} . (4.35)
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For every s ∈ [0, t] we have σk(s) = Cek(s) ⇀ Ce(s) = σ(s) weakly in
L2(�; M

n×n
sym ). As σk(s) is bounded in L2(�; M

n×n
sym ) uniformly with respect to

k and s, we can pass to the limit in (4.17) as k → ∞ and we obtain (4.29) from
(4.35) and from the lower semicontinuity of Q. ��

As in [15] (Theorem 4.4) and [6] (Lemma 7.1), the energy inequality (4.29)
together with the global stability (qs1′) imply the exact energy balance (qs2′).

Theorem 4.7. Assume (2.1), (2.2), (2.7), (2.12), (2.13), and (2.15)–(2.19). Let
t 
→ (u(t), e(t), p(t)) be a function from [0, T ] into BD(�)×L2(�; M

n×n
sym )×Mb

(� ∪ �0; M
n×n
D ) satisfying the stability condition (qs1′) in Theorem 4.4. Assume

that t 
→ p(t) from [0, T ] into Mb(� ∪ �0; M
n×n
D ) has bounded variation. Then

for every t ∈ [0, T ]

Q(e(t))− 〈�(t)|e(t)− Ew(t)〉 + DH(p; 0, t)− 〈�D(t)|p(t)〉

� Q(e(0))− 〈�(0)|e(0)− Ew(0)〉 − 〈�D(0)|p(0)〉 +
∫ t

0
〈σ(s)|Eẇ(s)〉 ds

−
∫ t

0
{〈�̇(s)|e(s)− Ew(s)〉 + 〈�̇D(s)|p(s)〉} ds , (4.36)

where σ(t) := Ce(t). If, in addition, (4.29) is satisfied, then the exact energy
balance (qs2′) holds.

Proof. Let us fix t ∈ (0, T ] and let (sik)0�i�k be a sequence of subdivisions of the
interval [0, t] satisfying

0 = s0
k < s1

k < · · · < sk−1
k < skk = t , (4.37)

lim
k→∞ max

1�i�k
(sik − si−1

k ) = 0 . (4.38)

For every i = 1, . . . , k let v := u(sik)−w(sik)+w(si−1
k ) and η := e(sik)−Ew(sik)+

Ew(si−1
k ). Since (v, η, p(sik)) ∈ A(w(si−1

k )), by the global stability (4.5), we have

Q(e(si−1
k ))− 〈�(si−1

k )|e(si−1
k )〉 � Q(e(sik)− (Ew(sik)− Ew(si−1

k )))

−〈�(si−1
k )|e(sik)− (Ew(sik)− Ew(si−1

k ))〉
+H(p(sik)− p(si−1

k ))

−〈�D(si−1
k )|p(sik)− p(si−1

k )〉 . (4.39)

The first term in the right-hand side can be written as

Q(e(sik)− (Ew(sik)− Ew(si−1
k )))

= Q(e(sik))− 〈σ(sik)|Ew(sik)− Ew(si−1
k )〉 + Q(Ew(sik)− Ew(si−1

k )) .
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Now, following the same argument used in both (4.23) and the proof of the last
inequality in (4.24), from the previous equality and from (4.39), we find that there
exists a sequence ωk → 0+ such that

Q(e(si−1
k ))− 〈�(si−1

k )|e(si−1
k )− Ew(si−1

k )〉 − 〈�D(si−1
k )|p(si−1

k )〉
� Q(e(sik))+ H(p(sik)− p(si−1

k ))− 〈�(sik)|e(sik)− Ew(sik)〉

−〈�D(sik)|p(sik)〉 +
∫ t

0
〈�̇(s)|e(sik)− Ew(sik)〉 ds +

∫ t

0
〈�̇D(s)|p(sik)〉 ds

−
∫ sik

si−1
k

〈σ(sik)|Eẇ(s)〉 ds + ωk

∫ sik

si−1
k

‖Eẇ(s)‖2 ds .

On [0, t] we define the piecewise constant functions

ek(s) := e(sik) , Ewk(s) := Ew(sik) , pk(s) := p(sik) , σ k(s) := σ(sik) ,

where i is the smallest index such that s � sik . Since
∑
i H(p(sik) − p(si−1

k )) �
DH(p; 0, t), iterating the last inequality for 1 � i � k we obtain

Q(e(0))− 〈�(0)|e(0)− Ew(0)〉 − 〈�D(0)|p(0)〉
� Q(e(t))+ DH(p; 0, t)− 〈�(t)|e(t)− Ew(t)〉 − 〈�D(t)|p(t)〉

+
∫ t

0
〈�̇(s)|ek(s)− Ewk(s)〉 ds +

∫ t

0
〈�̇D(s)|pk(s)〉 ds

−
∫ t

0
〈σk(s)|Eẇ(s)〉 ds + δk , (4.40)

where δk := ωk
∫ T

0 ‖Eẇ(s)‖2 ds. By Remark 4.3, the set of discontinuity points
of the functions s 
→ p(s), s 
→ e(s), and s 
→ σ(s) is at most countable, and
‖pk(s)‖1, ‖ek(s)‖2, and ‖σk(s)‖2 are bounded uniformly with respect to s and
k. Therefore, (4.38) implies that pk(s) → p(s) strongly in Mb(� ∪ �0; M

n×n
D ),

ek(s) → e(s) and σk(s) → σ(s) strongly inL2(�; M
n×n
sym ) for a.e. s ∈ [0, t]. Now,

(4.36) follows from (4.40) by the dominated convergence theorem. ��

4.5. Convergence of the approximate solutions

For every k, let (uik, e
i
k, p

i
k), i = 1, . . . , k, be defined inductively as solu-

tions of the discrete problems (4.12), starting from (u0
k, e

0
k, p

0
k ) = (u0, e0, p0). Let

uk(t), ek(t), pk(t), σk(t) be defined by (4.15). Also let t 
→ (u(t), e(t), p(t)) be a
quasistatic evolution. Assume that

pk(t) ⇀ p(t) weakly∗ in Mb(� ∪ �0; M
n×n
D ) (4.41)

for every t ∈ [0, T ]. The following theorem shows, in particular, that stresses and
elastic strains of the approximate solutions converge strongly in L2(�; M

n×n
sym ).
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Theorem 4.8. Under the hypothesis of Theorem 4.5, assume that the plastic strain
of the approximate solutions satisfies (4.41). Then, ek(t) → e(t) and σk(t) → σ(t)

strongly in L2(�; M
n×n
sym ). Moreover,

lim
k→∞

∑
0<trk�t

{H(prk − pr−1
k )− 〈�D(trk )|prk − pr−1

k 〉}

= DH(p; 0, t)− 〈�D(t)|p(t)〉 + 〈�D(0)|p(0)〉 +
∫ t

0
〈�̇D(s)|p(s)〉 ds (4.42)

for every t ∈ [0, T ].

Proof. By the discrete energy inequality (4.17) for every t ∈ [0, T ] we have

Q(ek(t))+
∑

0<trk�t
{H(prk − pr−1

k )− 〈�D(trk )|prk − pr−1
k 〉}

� Q(e0)− 〈�(0)|e0 − Ew(0)〉 + 〈�k(t)|ek(t)− Ewk(t)〉

−
∫ t ik

0
〈�̇(s)|ek(s)− Ewk(s)〉 ds +

∫ t ik

0
〈σk(s)|Eẇ(s)〉 ds + δk , (4.43)

where δk → 0 and i is the largest integer such that t ik � t . By the energy balance
(4.6) we also have

Q(e(t))+ DH(p; 0, t)− 〈�D(t)|p(t)〉 + 〈�D(0)|p(0)〉 +
∫ t

0
〈�̇D(s)|p(s)〉 ds

= Q(e0)− 〈�(0)|e0 − Ew(0)〉 + 〈�(t)|e(t)− Ew(t)〉
−

∫ t

0
〈�̇(s)|e(s)− Ew(s)〉 ds +

∫ t

0
〈σ(s)|Eẇ(s)〉 ds . (4.44)

In the proof of Theorem 4.5 we found that ek(t) ⇀ e(t) and σk(t) ⇀ σ(t) weakly
in L2(�; M

n×n
sym ), and that ‖ek(t)‖2 and ‖σk(t)‖2 are bounded uniformly with re-

spect to t and k. Moreover, �k(t) → �(t) and Ewk(t) → Ew(t) strongly in
L2(�; M

n×n
sym ). Therefore, the right-hand side of (4.43) converges to the right-hand

side of (4.44), implying

lim sup
k→∞

{
Q(ek(t))+

∑
0<trk�t

{H(prk − pr−1
k )− 〈�D(trk )|prk − pr−1

k 〉}
}

� Q(e(t))+ DH(p; 0, t)− 〈�D(t)|p(t)〉 + 〈�D(0)|p(0)〉
+

∫ t

0
〈�̇D(s)|p(s)〉 ds .

By the lower semicontinuity of Q and by (4.35), we obtain (4.42) and

Q(ek(t)) → Q(e(t)) ,

which gives the strong convergence of the strains ek(t), and consequently of the
stresses σk(t) = Cek(t). ��
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5. Regularity and uniqueness results

In this section we prove that every quasistatic evolution t 
→ (u(t), e(t), p(t))

is absolutely continuous with respect to time, and that the functions t 
→ e(t) and
t 
→ σ(t) are determined uniquely by their initial conditions.

5.1. Regularity

For the general properties of absolutely continuous functions with values in
Banach spaces we refer to [4] (Appendix) for the reflexive case, and to the Appen-
dix of the present paper for the case of the dual of a separable Banach space.

If t 
→ q(t) and t 
→ v(t) are absolutely continuous from [0, T ] into Mb(� ∪
�0; M

n×n
D ) and BD(�), respectively, we define

q̇(t) := w∗ − lim
s→t

q(s)− q(t)

s − t
, v̇(t) := w∗ − lim

s→t

v(s)− v(t)

s − t
. (5.1)

By Theorem 7.1 q̇(t) and v̇(t) are defined for a.e. t ∈ [0, T ], the function
t 
→ H(q̇(t)) is measurable, and

DH(q; 0, t) =
∫ t

0
H(q̇(s)) ds (5.2)

for every t ∈ [0, T ].

Remark 5.1. If we apply (7.4) to the absolutely continuous function t 
→ q(t),
with X = Mb(� ∪ �0; M

n×n
D ), Y = C0(� ∪ �0; M

n×n
D ), and K = {ϕ ∈ C0(� ∪

�0; M
n×n
D ) : ‖ϕ‖∞ � 1}, for a.e. t ∈ [0, T ] we obtain

‖q̇(t)‖1 = lim
s→t

∥∥∥q(s)− q(t)

s − t

∥∥∥
1
. (5.3)

By the definition of weak∗ convergence in BD(�), it follows from (5.1) that
for a.e. t ∈ [0, T ] we have (v(s) − v(t))/(s − t) → v̇(t) strongly in L1(�; R

n)

and (Ev(s)− Ev(t))/(s − t) ⇀ Ev̇(t) weakly∗ in Mb(�; M
n×n
sym ) as s → t .

If we apply (7.4) to the absolutely continuous function t 
→ Ev(t), with X =
Mb(�; M

n×n
sym ), Y = C0(�; M

n×n
sym ), and K = {ϕ ∈ C0(�; M

n×n
sym ) : ‖ϕ‖∞ � 1},

for a.e. t ∈ [0, T ] we obtain

‖Ev̇(t)‖1 = lim
s→t

∥∥∥Ev(s)− Ev(t)

s − t

∥∥∥
1
.

The above implies that for a.e. t ∈ [0, T ], the trace of v̇(t) is the strong limit in
L1(∂�; R

n) of the traces of (v(s)− v(t))/(s − t) as s → t (see [29] (Chapter II,
Theorem 3.1)). In other words, the time derivative of the trace of v(t) is the trace
of the time derivative of v(t). Therefore, using (4.1) and (4.2), we can prove by a
standard argument that

d

dt
〈L(t)|v(t)〉 = 〈L̇(t)|v(t)〉 + 〈L(t)|v̇(t)〉 (5.4)

for a.e. t ∈ [0, T ].
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The next proposition deals with the absolute continuity of the functions t 
→
e(t), t 
→ p(t), and t 
→ u(t) from [0, T ] into L2(�; M

n×n
sym ),Mb(�∪�0; M

n×n
D ),

and BD(�), respectively.

Theorem 5.2. Assume (2.1), (2.2), (2.7), (2.12), (2.13), and (2.15)–(2.19). Let t 
→
(u(t), e(t), p(t)) be a quasistatic evolution. Then, the functions t 
→ e(t), t 
→
p(t), and t 
→ u(t) are absolutely continuous from [0, T ] into L2(�; M

n×n
sym ),

Mb(� ∪ �0; M
n×n
D ), and BD(�), respectively. Moreover, for a.e. t ∈ [0, T ] we

have

‖ė(t)‖2 � C1(‖�̇(t)‖2 + ‖�̇D(t)‖∞ + ‖Eẇ(t)‖2) , (5.5)

‖ṗ(t)‖1 � C2(‖�̇(t)‖2 + ‖�̇D(t)‖∞ + ‖Eẇ(t)‖2) , (5.6)

‖Eu̇(t)‖1 � C3(‖�̇(t)‖2 + ‖�̇D(t)‖∞ + ‖Eẇ(t)‖2) , (5.7)

‖u̇(t)‖1 � C4(‖�̇(t)‖2 + ‖�̇D(t)‖∞ + ‖Eẇ(t)‖2 + ‖ẇ(t)‖2) , (5.8)

whereC1 andC2 are positive constants depending onRK , αC, βC, α, supt ‖�(t)‖2,
supt ‖e(t)‖2, and supt ‖p(t)‖1, while C3 depends also on�, and C4 also on� and
�0.

Proof. Since H(p(t2) − p(t1)) � DH(p; t1, t2), by the energy equality (4.6) we
obtain after an integration by parts,

1
2 〈σ(t2)|e(t2)〉 − 1

2 〈σ(t1)|e(t1)〉 + H(p(t2)− p(t1))

� 〈�(t2)|e(t2)〉 − 〈�(t1)|e(t1)〉 + 〈�D(t2)|p(t2)〉 − 〈�D(t1)|p(t1)〉

−
∫ t2

t1

{〈�̇(s)|e(s)〉 + 〈�̇D(s)|p(s)〉 − 〈σ(s)− �(s)|Eẇ(s)〉} ds (5.9)

for every t1, t2 ∈ [0, T ] with t1 < t2. Now consider the functions v := u(t2) −
u(t1)− (w(t2)−w(t1)), η := e(t2)− e(t1)− (Ew(t2)−Ew(t1)), and the measure
q := p(t2)−p(t1). Since (v, η, q) ∈ A(0) and (u(t1), e(t1), p(t1)) is a solution of
the minimum problem (3.2) with p0 = p(t1) and L = L(t1), by Theorem 3.4 and
Lemma 3.1 we obtain

−〈σ(t1)|e(t2)− e(t1)〉 + 〈�(t1)|e(t2)− e(t1)〉 + 〈�D(t1)|p(t2)− p(t1)〉
+〈σ(t1)− �(t1)|Ew(t2)− Ew(t1)〉 � H(p(t2)− p(t1)) ,

so that (5.9) implies

1
2 〈σ(t2)|e(t2)〉 − 1

2 〈σ(t1)|e(t1)〉 − 〈σ(t1)|e(t2)− e(t1)〉

� 〈�(t2)− �(t1)|e(t2)〉 + 〈�D(t2)− �D(t1)|p(t2)〉

−〈σ(t1)− �(t1)|Ew(t2)− Ew(t1)〉 −
∫ t2

t1

〈�̇(s)|e(s)〉 ds

+
∫ t2

t1

〈�̇D(s)|p(s)〉 ds −
∫ t2

t1

〈σ(s)− �(s)|Eẇ(s)〉 ds .
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Therefore,

1
2 〈C(e(t2)− e(t1))|e(t2)− e(t1)〉

�
∫ t2

t1

〈σ(s)− σ(t1)|Eẇ(s)〉 ds +
∫ t2

t1

〈�̇(s)|e(t2)− e(s)〉 ds

+
∫ t2

t1

〈�̇D(s)|p(t2)− p(s)〉 ds −
∫ t2

t1

〈�(s)− �(t1)|Eẇ(s)〉 ds .

By (2.13) and (2.14), we obtain

αC‖e(t2)− e(t1)‖2
2 � 2βC

∫ t2

t1

‖e(s)− e(t1)‖2 ‖Eẇ(s)‖2 ds

+
∫ t2

t1

‖�̇(s)‖2 ‖e(t2)− e(s)‖2 ds

+
∫ t2

t1

‖�̇D(s)‖∞ ‖p(t2)− p(s)‖1 ds

+
∫ t2

t1

‖�(s)− �(t1)‖2 ‖Eẇ(s)‖2 ds . (5.10)

By Lemma 3.2, for every t1 � s � t2, we have

α‖p(t2)− p(s)‖1 � H(p(t2)− p(s))− 〈�D(t2)|p(t2)− p(s)〉 ,
therefore, inequality (5.9) with t1 = s implies

α‖p(t2)− p(s)‖1 � 1
2 〈σ(s)|e(s)〉 − 1

2 〈σ(t2)|e(t2)〉 + 〈�(t2)|e(t2)− e(s)〉

+〈�(t2)− �(s)|e(s)〉 + 〈�D(t2)− �D(s)|p(s)〉

−
∫ t2

s

{〈�̇(t)|e(t)〉 + 〈�̇D(t)|p(t)〉} dt

+
∫ t2

s

〈σ(t)− �(t)|Eẇ(t)〉 dt .

We observe that supt ‖�(t)‖2, supt ‖�D(t)‖∞, supt ‖e(t)‖2, and supt ‖p(t)‖1 are
finite (see Remark 4.3 for e(t)). In the rest of the proof, C will denote a positive
constant, with a value that can change from line to line, depending on these suprema
and on the constants αC, βC, α. The previous inequality implies that

‖p(t2)− p(s)‖1

� C(‖e(t2)− e(s)‖2 + ‖�(t2)− �(s)‖2 + ‖�D(t2)− �D(s)‖∞)

+C
∫ t2

s

{‖�̇(t)‖2 + ‖�̇D(t)‖∞ + ‖Eẇ(t)‖2} dt .
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Therefore, for every t1 � s � t2,

‖p(t2)− p(s)‖1 � C ‖e(t2)− e(s)‖2

+C
∫ t2

t1

{‖�̇(t)‖2 + ‖�̇D(t)‖∞ + ‖Eẇ(t)‖2} dt . (5.11)

By (5.10) and (5.11), using ‖e(t2)− e(s)‖2 � ‖e(t2)− e(t1)‖2 + ‖e(s)− e(t1)‖2,
we deduce that

‖e(t2)− e(t1)‖2
2

� C ‖e(t2)− e(t1)‖2

∫ t2

t1

{‖�̇(s)‖2 + ‖�̇D(s)‖∞} ds

+C
∫ t2

t1

{‖�̇(s)‖2 + ‖�̇D(s)‖∞ + ‖Eẇ(s)‖2} ‖e(s)− e(t1)‖2 ds

+C
( ∫ t2

t1

{‖�̇(s)‖2 + ‖�̇D(s)‖∞ + ‖Eẇ(s)‖2} ds
)2
.

By the Cauchy inequality,

‖e(t2)− e(t1)‖2
2 �

∫ t2

t1

ψ(s) ‖e(s)− e(t1)‖2 ds +
( ∫ t2

t1

ψ(s) ds
)2
,

where

ψ(s) := C(‖�̇(s)‖2 + ‖�̇D(s)‖∞ + ‖Eẇ(s)‖2) .

We can now apply a version of the Gronwall inequality, proved in Lemma 5.3 below,
which gives

‖e(t2)− e(t1)‖2 � 3

2

∫ t2

t1

ψ(s) ds

� C

∫ t2

t1

{‖�̇(s)‖2 + ‖�̇D(s)‖∞ + ‖Eẇ(s)‖2} ds .

This implies that t 
→ e(t) is absolutely continuous from [0, T ] into L2(�; M
n×n
sym )

and that ė(t) satisfies (5.5).
Using the absolute continuity of t 
→ e(t) and (5.5), inequality (5.11) with

s = t1 yields the absolute continuity of t 
→ p(t) and (5.6).
From the decomposition Eu(t) = e(t) + p(t), it follows that t 
→ Eu(t) is

absolutely continuous from [0, T ] into Mb(�; M
n×n
sym ) and Eu̇(t) = ė(t) + ṗ(t)

for a.e. t ∈ [0, T ]. Inequality (5.7) is an easy consequence of this decomposition.
It now remains to prove that t 
→ u(t) is absolutely continuous from [0, T ] into
L1(�; R

n), and satisfies (5.8). By (2.3), there exists a constant C > 0, depending
on � and �0, such that

‖u(t2)− u(t1)‖1 � C ‖u(t2)− u(t1)‖1,�0 + C ‖Eu(t2)− Eu(t1)‖1 . (5.12)
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Using (2.22) and the continuity of the trace operator fromH 1(�; R
n) into L1(∂�;

R
n), we obtain that there exists a constant M , depending on �, such that

‖u(t2)− u(t1)‖1,�0 �
√

2 ‖p(t2)− p(t1)‖1 +M‖w(t2)− w(t1)‖2

+M‖Ew(t2)− Ew(t1)‖2 . (5.13)

As t 
→ w(t), t 
→ Eu(t), and t 
→ p(t) are absolutely continuous from [0, T ]
intoH 1(�; R

n),Mb(�; M
n×n
sym ), andMb(�∪�0; M

n×n
D ), respectively, inequalities

(5.12) and (5.13) imply that t 
→ u(t) is absolutely continuous from [0, T ] into
L1(�; R

n) and (5.8) is satisfied. ��
The version of the Gronwall inequality contained in the following lemma allows

us to conclude the proof of Theorem 5.2.

Lemma 5.3. Let φ: [0, T ] → [0,+∞ [ be a bounded measurable function and let
ψ: [0, T ] → [0,+∞ [ be an integrable function. Suppose that

φ(t)2 �
∫ t

0
φ(s) ψ(s) ds +

( ∫ t

0
ψ(s) ds

)2
(5.14)

for every t ∈ [0, T ]. Then,

φ(t) � 3

2

∫ t

0
ψ(s) ds

for every t ∈ [0, T ].

Proof. Let us fix t0 ∈ [0, T ] and let γ0 := (
∫ t0

0 ψ(s) ds)2. For every t ∈ [0, t0]
we define V (t) := ∫ t

0 φ(s) ψ(s) ds. Thus V is absolutely continuous on [0, t0],
φ(t)2 � V (t) + γ0 for every t ∈ [0, t0], and V̇ (t) � ψ(t)(V (t)+ γ0)

1/2 for a.e.
t ∈ [0, t0]. Integrating between 0 and t0, we get 2(V (t0)+ γ0)

1/2 � 2γ 1/2
0 +∫ t0

0 ψ(s) ds = 3
∫ t0

0 ψ(s) ds. By (5.14) we have φ(t0) � (V (t0)+ γ0)
1/2, so that

the previous inequality gives 2φ(t0) � 3
∫ t0

0 ψ(s) ds. ��
Remark 5.4. Estimates (5.5)–(5.8) imply that if t 
→ w(t), t 
→ �(t), and t 
→
�D(t) are Lipschitz continuous from [0, T ] into the spaces H 1(Rn; R

n), L2(�;
M
n×n
sym ), and L∞(�; M

n×n
D ), respectively, then the functions t 
→ u(t), t 
→

e(t), t 
→ p(t) are Lipschitz continuous from [0, T ] into the spaces BD(�),
L2(�; M

n×n
sym ), and Mb(� ∪ �0; M

n×n
D ), respectively.

The following lemma will be crucial in the rest of the paper.

Lemma 5.5. Assume (2.1), (2.2), and (2.15). Let t 
→ u(t), t 
→ e(t), t 
→ p(t) be
absolutely continuous functions from [0, T ] into BD(�), L2(�; R

n), andMb(�∪
�0; M

n×n
D ), respectively. Assume that (u(t), e(t), p(t)) ∈ A(w(t)) for every t ∈

[0, T ]. Then, (u̇(t), ė(t), ṗ(t)) ∈ A(ẇ(t)) for a.e. t ∈ [0, T ].

Proof. It is enough to apply Lemma 2.1 to the difference quotients. ��
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Owing to the following proposition, we can differentiate the energy balance
(4.4) and obtain a balance of powers: the rate of change of stored energy plus the
rate of plastic dissipation equals the power of external forces.

Proposition 5.6. Assume (2.1), (2.2), (2.7), (2.12), (2.13), and (2.15)–(2.19). Let
t 
→(u(t), e(t), p(t))be an absolutely continuous function from [0, T ] intoBD(�)×
L2(�; M

n×n
sym )×Mb(� ∪ �0; M

n×n
D ) and let σ(t) := Ce(t). The following condi-

tions are then equivalent:

(a) for every t ∈ [0, T ]

Q(e(t))+ DH(p; 0, t)− 〈L(t)|u(t)〉
= Q(e(0))− 〈L(0)|u(0)〉 +

∫ t

0
{〈σ(s)|Eẇ(s)〉 − 〈L(s)|ẇ(s)〉} ds

−
∫ t

0
〈L̇(s)|u(s)〉 ds ;

(b) for a.e. t ∈ [0, T ]

〈σ(t)|ė(t)〉 + H(ṗ(t)) = 〈σ(t)|Eẇ(t)〉 − 〈L(t)|ẇ(t)〉 + 〈L(t)|u̇(t)〉 ;

(c) for a.e. t ∈ [0, T ]

〈σ(t)− �(t)|ė(t)〉 + H(ṗ(t)) = 〈�D(t)|ṗ(t)〉 + 〈σ(t)− �(t)|Eẇ(t)〉 ;

(d) for every t ∈ [0, T ]

Q(e(t))+
∫ t

0
{H(ṗ(s))− 〈�D(s)|ṗ(s)〉} ds

= Q(e(0))+
∫ t

0
{〈�(s)|ė(s)〉 + 〈σ(s)− �(s)|Eẇ(s)〉} ds .

Proof. Using (5.2) and (5.4) we obtain (b) by differentiating (a), and (a) by inte-
grating (b). Similarly, we obtain (c) by differentiating (d), and (d) by integrating (c).
The equivalence between (b) and (c) follows from Lemmas 3.1 and 5.5. ��

Condition (d) of Proposition 5.6 allows us to prove an estimate of the quantities
supt ‖e(t)‖2 and supt ‖p(t)‖1 in terms of the data of the problem.

Proposition 5.7. Assume (2.1), (2.2), (2.7), (2.12), (2.13), and (2.15)–(2.19). Let
t 
→ (u(t), e(t), p(t)) be a quasistatic evolution. Then,

sup
t∈[0,T ]

‖e(t)‖2 � C1

{
‖e(0)‖2 + sup

t∈[0,T ]
‖�(t)‖2 +

∫ T

0
‖�̇(t)‖2 dt

+
∫ T

0
‖Eẇ(t)‖2 dt

}
, (5.15)
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and

sup
t∈[0,T ]

‖p(t)‖1 � ‖p(0)‖1 + C2

{
‖e(0)‖2

2 + sup
t∈[0,T ]

‖�(t)‖2
2

+
( ∫ T

0
‖�̇(t)‖2 dt

)2 +
( ∫ T

0
‖Eẇ(t)‖2 dt

)2
}
, (5.16)

where C1 is a positive constant depending only on αC and βC, while C2 depends
also on α.

Proof. By Theorem 5.2, the function t 
→ (u(t), e(t), p(t)) is absolutely continu-
ous from [0, T ] into BD(�)×L2(�; M

n×n
sym )×Mb(� ∪ �0; M

n×n
D ). Since

t 
→ (u(t), e(t), p(t)) satisfies (qs2) in Definition 4.2, it satisfies conditions (a)
and (d) of Proposition 5.6. After an integration by parts, we obtain from (d)

Q(e(t))+
∫ t

0
{H(ṗ(s))− 〈�D(s)|ṗ(s)〉} ds − 〈�(t)|e(t)〉

= Q(e(0))+
∫ t

0
{〈σ(s)− �(s)|Eẇ(s)〉 − 〈�̇(s)|e(s)〉} ds − 〈�(0)|e(0)〉 .

By (2.13), (2.14), and (3.5) for every t ∈ [0, T ] we have

αC ‖e(t)‖2
2 + α

∫ t

0
‖ṗ(s)‖1 ds

� βC ‖e(0)‖2
2 + 2 sup

t∈[0,T ]
‖�(t)‖2 sup

t∈[0,T ]
‖e(t)‖2

+ sup
t∈[0,T ]

‖e(t)‖2

∫ T

0
{2 βC ‖Eẇ(s))‖2 + ‖�̇(s)‖2} ds

+ sup
t∈[0,T ]

‖�(t)‖2

∫ T

0
‖Eẇ(s))‖2 ds ,

which implies (5.15) and (5.16) by the Cauchy inequality. ��

Remark 5.8. Let t 
→ (u(t), e(t), p(t)) be a quasistatic evolution. By Proposi-
tion 5.7, estimates (5.5)–(5.8) are satisfied with constants C1, . . . , C4 depending
only on the data of the problem. More precisely,C1 andC2 depend onRK , αC, βC,
α, supt ‖�(t)‖2,

∫ T
0 ‖�̇(t)‖2 dt ,

∫ T
0 ‖Eẇ(t)‖2 dt , ‖e(0)‖2, and ‖p(0)‖1, while C3

also depends on �, and C4 also depends on � and �0.

5.2. Uniqueness of stress and elastic strain

We now prove that t 
→ e(t) (and, consequently, t 
→ σ(t)) is determined
uniquely by its initial condition.
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Theorem 5.9. Assume (2.1), (2.2), (2.7), (2.12), (2.13), and (2.15)–(2.19). Let
t 
→ (u(t), e(t), p(t)) and t 
→ (v(t), η(t), q(t)) be two quasistatic evolutions,
corresponding to the same data t 
→ w(t), t 
→ f (t), and t 
→ g(t), and let
σ(t) := Ce(t) and τ(t) := Cη(t). If e(0) = η(0), then e(t) = η(t) for every
t ∈ [0, T ]. Equivalently, if σ(0) = τ(0), then σ(t) = τ(t) for every t ∈ [0, T ].

Proof. By Theorem 5.2 the functions t 
→ (u(t), e(t), p(t)) and t 
→ (v(t),

η(t), q(t)) are absolutely continuous. By condition (c) of Proposition 5.6 we have

〈σ(t)− �(t)|ė(t)− Eẇ(t)〉 + H(ṗ(t)) = 〈�D(t)|ṗ(t)〉 , (5.17)

〈τ(t)− �(t)|η̇(t)− Eẇ(t)〉 + H(q̇(t)) = 〈�D(t)|q̇(t)〉 . (5.18)

From the global stability condition (4.3) and from Theorem 3.6, it follows that for
every t ∈ [0, T ] we have τ(t) ∈ �(�) ∩ K(�), −div τ(t) = f (t) a.e. on �, and
[τ(t)ν] = g(t) on �1. By Lemma 5.5 we have (u̇(t), ė(t), ṗ(t)) ∈ A(ẇ(t)) for a.e.
t ∈ [0, T ]. Therefore, from Proposition 2.4 we have H(ṗ(t)) � 〈τD(t)|ṗ(t)〉. By
(5.17), this implies

〈σ(t)− �(t)|ė(t)− Eẇ(t)〉 + 〈[τD(t)− �D(t)
] |ṗ(t)〉 � 0 .

As div(τ (t) − �(t)) = 0 a.e. on � and
[
(τ (t)− �(t))ν

] = 0 on �1 by (2.17) and
Theorem 3.6, this inequality is equivalent to

〈σ(t)− τ(t)|ė(t)− Eẇ(t)〉 � 0,

in view of the integration by parts formula (2.40). Analogously, from (5.18) we
obtain

〈τ(t)− σ(t)|η̇(t)− Eẇ(t)〉 � 0 .

Summing these two inequalities we find that

〈C(e(t)− η(t))|ė(t)− η̇(t)〉 � 0 ;
hence,

d

dt
〈C(e(t)− η(t))|e(t)− η(t)〉 � 0 .

If e(0) = η(0), then 〈C(e(0) − η(0))|e(0) − η(0)〉 = 0, thus for every t ∈ [0, T ]
〈C(e(t)−η(t))|e(t)−η(t)〉 � 0, which is equivalent to e(t) = η(t) by (2.13). ��

6. Equivalent formulations in rate form

Let t 
→ (u(t), e(t), p(t)) be a quasistatic evolution. Suppose, for a moment,
that ṗ(t) ∈ L2(�; M

n×n
D ), and denote the values of ṗ(t) and σD(t) at x ∈ � by

ṗ(t, x) and σD(t, x), respectively. We recall that the normal cone NK(ξ0) to K at
ξ0 ∈ M

n×n
D is defined in the following way: if ξ0 ∈ K , then NK(ξ0) is the set of

matrices ζ ∈ M
n×n
D , such that ζ :(ξ − ξ0) � 0 for every ξ ∈ K; if ξ0 /∈ K , then

NK(ξ0) := Ø. In this section, we want to prove that

ṗ(t, x) ∈ NK(σD(t, x)) for a.e. x ∈ � , (6.1)

which represents the classical formulation of the flow rule.
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6.1. Weak formulation

By the definition of NK , it is easy to see that (6.1) is equivalent to

〈σD(t)− τD|ṗ(t)〉 � 0 (6.2)

for every τ ∈ �(�) ∩ K(�) with [τν] = g(t) on �1. Indeed, the fact that (6.1)
implies (6.2) is straightforward. To prove the converse implication, it is enough
to consider test functions of the form τ = ϕ ξ + (1 − ϕ) σ , with ϕ ∈ C∞

c (�),
0 � ϕ � 1, and ξ ∈ K .

Note that the variational inequality (6.2) makes sense, even if ṗ(t) is only a
measure, since in any case ṗ(t) ∈ ��0(�) by Theorem 5.2 and Lemma 5.5. Thus
the duality product 〈σD(t)− τD|ṗ(t)〉 well defined by (2.39). We will regard (6.2)
as the weak formulation of inclusion (6.1) when ṗ(t) ∈ Mb(� ∪ �0; M

n×n
D ).

The following theorem collects three different sets of conditions, including
(6.2), and expressed in terms of the time derivatives ṗ(t), ė(t), and u̇(t), which are
equivalent to the conditions considered in Definition 4.2.

Theorem 6.1. Assume (2.1), (2.2), (2.7), (2.12), (2.13), and (2.15)–(2.19). Let
t 
→ (u(t), e(t), p(t)) be a function from [0, T ] into BD(�)×L2(�; M

n×n
sym )×

Mb(� ∪ �0; M
n×n
D ) and let σ(t) := Ce(t). The following conditions are then

equivalent:

(a) t 
→ (u(t), e(t), p(t)) is a quasistatic evolution;
(b) t 
→ (u(t), e(t), p(t)) is absolutely continuous and

(b1) for every t ∈ [0, T ] we have (u(t), e(t), p(t)) ∈ A(w(t)), σ(t) ∈
�(�)∩ K(�), −div σ(t) = f (t) a.e. on �, and [σ(t)ν] = g(t) on �1,

(b2) for a.e. t ∈ [0, T ] we have

H(ṗ(t)) = 〈σD(t)|ṗ(t)〉 ;
(c) t 
→ (u(t), e(t), p(t)) is absolutely continuous and

(c1) for every t ∈ [0, T ] we have (u(t), e(t), p(t)) ∈ A(w(t)), σ(t) ∈ �(�)∩
K(�), −div σ(t) = f (t) a.e. on �, and [σ(t)ν] = g(t) on �1,

(c2) for a.e. t ∈ [0, T ] we have

〈σD(t)− τD|ṗ(t)〉 � 0

for every τ ∈ �(�) ∩ K(�) with [τν] = g(t) on �1;

(d) t 
→ (u(t), e(t)) is absolutely continuous and
(d1) for every t ∈ [0, T ] we have σ(t) ∈ �(�) ∩ K(�), −div σ(t) = f (t)

a.e. on �, and [σ(t)ν] = g(t) on �1,
(d2) for a.e. t ∈ [0, T ] we have

〈τ − σ(t)|ė(t)〉 + 〈div τ − div σ(t)|u̇(t)〉 � 〈[(τ − σ(t))ν] |ẇ(t)〉∂�
for every τ ∈ �(�) ∩ K(�) with [τν] = g(t) on �1, where 〈·|·〉∂� de-
notes the duality pairing between H−1/2(∂�; R

n) and H 1/2(∂�; R
n),

(d3) for every t ∈ [0, T ] p(t) = Eu(t) − e(t) on � and p(t) = (w(t) −
u(t))� νHn−1 on �0.



282 Gianni Dal Maso, Antonio DeSimone & Maria Giovanna Mora

Note that in conditions (b) and (c) the duality products 〈σD(t)|ṗ(t)〉 and 〈σD(t)−
τD|ṗ(t)〉 are well defined by (2.39), since ṗ(t) ∈ ��0(�) by Lemma 5.5, and σ(t),
τ ∈ �(�).
Proof of Theorem 6.1. We first prove that (a) ⇔ (b). We already proved, in
Theorem 5.2, that every quasistatic evolution is absolutely continuous. Moreover,
Theorem 3.6 shows that (b1) is equivalent to the global stability condition (qs1) of
Definition 4.2. By Proposition 5.6, it only remains to prove that, for an absolutely
continuous function t 
→ (u(t), e(t), p(t)) satisfying either (b1) or (qs1), condition
(b2) is equivalent to the balance of powers

〈σ(t)|ė(t)〉 + H(ṗ(t)) = 〈σ(t)|Eẇ(t)〉 − 〈L(t)|ẇ(t)〉 + 〈L(t)|u̇(t)〉 (6.3)

for a.e. t ∈ [0, T ]. Since (u̇(t), ė(t), ṗ(t)) ∈ A(ẇ(t)) for a.e. t ∈ [0, T ] by
Lemma 5.5, condition (b2) is equivalent to (6.3) in view of the integration by parts
formula (2.40).

We now prove that (b) ⇔ (c). It is enough to show that, if (b1) is satisfied, then
(b2) ⇔ (c2). Condition (c2) is equivalent to

〈σD(t)|ṗ(t)〉 � sup{〈τD|ṗ(t)〉 : τ ∈ �(�) ∩ K(�), [τν] = g(t) on �1} .
Since σ(t) ∈ �(�) ∩ K(�) and [σ(t)ν] = g(t) on �1 by (b1), the opposite
inequality is trivial, thus (c2) is equivalent to

〈σD(t)|ṗ(t)〉 = sup{〈τD|ṗ(t)〉 : τ ∈ �(�) ∩ K(�), [τν] = g(t) on �1} .
This last condition is equivalent to (b2) by Proposition 2.4.

Finally, we prove that (c) ⇔ (d). We observe first that (d3) and the absolute
continuity of t 
→ (u(t), e(t)) imply that t 
→ p(t) is also absolutely continuous
and (u(t), e(t), p(t)) ∈ A(w(t)) for every t ∈ [0, T ]. It remains to prove that if
(c1) is satisfied, then (c2) ⇔ (d2).

By (2.24) we have

〈[(τ − σ(t))ν] |ẇ(t)〉∂� = 〈div τ − div σ(t)|ẇ(t)〉 + 〈τ − σ(t)|Eẇ(t)〉 .
Therefore, (d2) is equivalent to

〈τ − σ(t)|ė(t)− Eẇ(t)〉 + 〈div τ − div σ(t)|u̇(t)− ẇ(t)〉 � 0 . (6.4)

Since (u̇(t), ė(t), ṗ(t)) ∈ A(ẇ(t)) for a.e. t ∈ [0, T ] by Lemma 5.5, and [(τ − σ(t))

ν] = 0 on �1, condition (c2) is equivalent to (6.4) as a consequence of the integra-
tion by parts formula (2.40). ��
Remark 6.2. By Proposition 2.4, the measure H(ṗ(t)) − [σD(t):ṗ(t)] is
nonnegative on � ∪ �0, so that (b2) of Theorem 6.1 implies

H(ṗ(t)) = [σD(t):ṗ(t)] on � ∪ �0 . (6.5)

Remark 6.3. Condition (d) of Theorem 6.1 is the weak formulation of the
quasistatic evolution problem for perfectly plastic materials, proposed in [12] in a
slightly different form, and analysed in [28].
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6.2. Strong formulation and precise definition of the stress

Let us return to the classical formulation (6.1) of the flow rule, which makes
sense if ṗ(t) ∈ L2(�; M

n×n
D ). It can be written in the equivalent form

ṗ(t, x)

|ṗ(t, x)| ∈ NK(σD(t, x)) for Ln -a.e. x ∈ {|ṗ(t)| > 0} .

When ṗ(t) ∈ Mb(�∪�0; M
n×n
D ), we can consider the Radon-Nikodym derivative

ṗ(t)/|ṗ(t)| of ṗ(t) with respect to its variation |ṗ(t)|, which is a function defined
|ṗ(t)|- a.e. on � ∪ �0. We note that

ṗ(t)

|ṗ(t)| (x) = ṗ(t, x)

|ṗ(t, x)| for Ln-a.e. x ∈ {|ṗ(t)| > 0},

when ṗ(t) ∈ L2(�; M
n×n
D ). It is tempting to consider the inclusion

ṗ(t)

|ṗ(t)| (x) ∈ NK(σD(t, x)), (6.6)

as a pointwise formulation of the flow rule in the general case ṗ(t) ∈ Mb(� ∪
�0; M

n×n
D ). There is, however, a problem owing to the fact that the left-hand side

of (6.6) is defined |ṗ(t)|- a.e. on � ∪ �0, while the right-hand side is defined only
Ln-a.e. on �. This difficulty is overcome in Theorem 6.4 below, by introducing a
precise representative σ̂D(t, x) of σD(t, x), defined almost everywhere with respect
to the measure µ(t) := Ln + |ṗ(t)|. A delicate point in the choice of this repre-
sentative is the fact that it must also satisfy an integration by parts formula (see
Remark 6.5). If K is strictly convex, this representative is essentially unique and
can be obtained, in �, as the limit of the averages of σD (see Theorem 6.6).

Theorem 6.4. Assume (2.1), (2.2), (2.7), (2.12), (2.13), and (2.15)–(2.19). Let t 
→
(u(t), e(t), p(t)) be a function from [0, T ] into BD(�)×L2(�; M

n×n
sym )×Mb(� ∪

�0; M
n×n
D ), let σ(t) := Ce(t), and let µ(t) := Ln + |ṗ(t)|. Then t 
→ (u(t), e(t),

p(t)) is a quasistatic evolution if, and only if,

(e) t 
→ (u(t), e(t), p(t)) is absolutely continuous and
(e1) for every t ∈ [0, T ] we have (u(t), e(t), p(t)) ∈ A(w(t)),σ(t) ∈ �(�)∩

K(�), −div σ(t) = f (t) a.e. on �, and [σ(t)ν] = g(t) on �1,
(e2) for a.e. t ∈ [0, T ] there exists σ̂D(t) ∈ L∞

µ(t)(� ∪ �0; M
n×n
D ) such that

σ̂D(t) = σD(t) Ln-a.e. on � , (6.7)

[σD(t):ṗ(t)] =
(
σ̂D(t):

ṗ(t)

|ṗ(t)|
)

|ṗ(t)| on � ∪ �0 , (6.8)

ṗ(t)

|ṗ(t)| (x) ∈NK(σ̂D(t, x)) for |ṗ(t)|-a.e.

x ∈ � ∪ �0 , (6.9)

where σ̂D(t, x) denotes the value of σ̂D(t) at the point x.
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Remark 6.5. Assume that t 
→ (u(t), e(t), p(t)) is absolutely continuous. If (e1)
holds, then we can prove using (2.41) that condition (6.8) of Theorem 6.4 is equiv-
alent to the following integration by parts formula: for every ϕ ∈ C1(�) we have

〈ϕ σ̂D(t)|ṗ(t)〉
= 〈σ(t)|ϕ (ė(t)− Eẇ(t))〉 − 〈 σ(t)|(u̇(t)− ẇ(t))� ∇ϕ〉

+〈f (t)|ϕ (u̇(t)− ẇ(t))〉 + 〈g(t)|ϕ (u̇(t)− ẇ(t))〉�1 ,

where the duality product in the left-hand side is defined by (2.4).
As ṗ(t)/|ṗ(t)| = 1 |ṗ(t)|-a.e. on�∪�0, andNK(ξ) = {0} if ξ is in the interior

of K , we can deduce from (6.9) that for a.e. t ∈ [0, T ]

σ̂D(t, x) ∈ ∂K for |ṗ(t)|- a.e. x ∈ � ∪ �0 . (6.10)

Using [26] (Theorem 23.5), we can prove that condition (6.9) is equivalent to

σ̂D(t, x) ∈ ∂H
(
ṗ(t)

|ṗ(t)| (x)
)

for |ṗ(t)|- a.e. x ∈ � ∪ �0 . (6.11)

Since ∂H is positively homogeneous of degree 0, this is equivalent to the fact
that both of the following inclusions are satisfied:

σ̂D(t, x) ∈ ∂H(ṗa(t)(x)) for Ln- a.e. x ∈ {|ṗa(t)| > 0} , (6.12)

σ̂D(t, x) ∈ ∂H
(
ṗ(t)
|ṗ(t)| (x)

)
for |ṗs(t)|- a.e. x ∈ � ∪ �0 . (6.13)

Conditions (6.12) and (6.13) are the measure theoretic version of the formulation
(cf5′′), based on a dissipation pseudo-potential (see the Introduction). Our termi-
nology is based on [7], where a further formulation is examined, based on the notion
of a maximally responsive multivalued map G, and expressed by a relation of the
form σD(t, x) ∈ G(ṗ(t, x)). Since it is shown in [7] that compatibility with the
maximum plastic work inequality (cf5) leads to G = ∂H , we will not present a
separate analysis of the formulation based on maximal responsiveness.

Proof of Theorem 6.4. Assume that t 
→ (u(t), e(t), p(t)) is a quasistatic evo-
lution. Then t 
→ (u(t), e(t), p(t)) is absolutely continuous by Theorem 5.2 and
condition (e1) is satisfied by Theorem 6.1.

Let A(t) ⊂ � and B(t) ⊂ � ∪ �0 be two disjoint Borel sets, such that A(t) ∪
B(t) = � ∪ �0 and |ṗs(t)|(A(t)) = Ln(B(t)) = 0. We define

σ̂D(t, x) := σD(t, x) for Ln- a.e. x ∈ A(t) ,
σ̂D(t, x) := ∂ 0H

(
ṗ(t)

|ṗ(t)| (x)
)

for |ṗs(t)|- a.e. x ∈ B(t) ,

where ∂ 0H(ξ) denotes the element of ∂H(ξ) with minimum norm. Equation (6.7)
then follows from the definition of σ̂D(t) on A(t), and (6.13) follows from the
definition of σ̂D(t) on B(t). To prove (6.12), it is enough to show that

σD(t, x) ∈ ∂H(ṗa(t)(x)) for Ln-a.e. x ∈ {|ṗa(t)| > 0} . (6.14)
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Taking the absolutely continuous parts in (6.5), We obtain thatH(ṗa(t)) = σD(t):
ṗa(t) Ln-a.e. on�. Since for Ln- a.e. x ∈ � we have σD(t, x) ∈ K = ∂H(0) (see
e.g. [26] (Corollary 23.5.3)), we obtain σD(t, x):ξ � H(ξ) for every ξ ∈ M

n×n
D .

Therefore, for Ln- a.e. x ∈ �we have σD(t, x):(ξ−ṗa(t)) � H(ξ)−H(ṗa(t)(x))
for every ξ ∈ M

n×n
D , which implies (6.14).

To prove (6.8), we begin by proving the equality on A(t). Since |ṗs(t)| = 0 on
A(t), we have [σD(t):ṗ(t)] = σD(t):ṗa(t) on A(t) by (2.33). As σ̂D(t) = σD(t)

Ln- a.e. on A(t) and ṗ(t) = ṗa(t) on A(t), we conclude that

[σD(t):ṗ(t)] = σD(t):ṗ
a(t) =

(
σ̂D(t):

ṗ(t)

|ṗ(t)|
)

|ṗ(t)| on A(t) .

To prove the equality onB(t), we rely on (6.5). Using the definition (2.8) ofH(ṗ(t)),
the proof of (6.8) will be complete if we show that

H

(
ṗ(t)

|ṗ(t)|
)

= σ̂D(t):
ṗ(t)

|ṗ(t)| |ṗ(t)|-a.e. on B(t) .

But this equality follows from the definition of σ̂D(t) on B(t), using the Euler
identity

H(ξ) = ζ :ξ for every ξ ∈ M
n×n
D and every ζ ∈ ∂H(ξ) .

This concludes the proof of (e2).
Conversely, assume (e). By (6.11), again using the Euler identity, for a.e. t ∈

[0, T ] we obtain

H

(
ṗ(t)

|ṗ(t)|
)

= σ̂D(t):
ṗ(t)

|ṗ(t)| |ṗ(t)|-a.e. on � ∪ �0 .

From the definition (2.8) of the measure H(ṗ(t)), and from (6.8), we deduce that
H(ṗ(t)) = 〈σD(t)|ṗ(t)〉 for a.e. t ∈ [0, T ]. Therefore, t 
→ (u(t), e(t), p(t)) is a
quasistatic evolution by Theorem 6.1. ��

For every r > 0 and every t ∈ [0, T ] we consider the function σ r(t) ∈
C(�; M

n×n
sym ), defined by

σ r(t, x) := 1

Ln(B(x, r) ∩�)
∫
B(x,r)∩�

σ(t, y) dy . (6.15)

Since K is convex, we have σ r(t, x) ∈ K for every x ∈ �.
If K is strictly convex, i.e. s ξ1 + (1 − s) ξ2 is an interior point of K for every

0 < s < 1 and every pair of distinct points ξ1, ξ2 ∈ K , then H is differentiable at
all points ξ �= 0 (see e.g. [26] (Corollary 23.5.4 and Theorem 25.1)) and we keep
the notation ∂H(ξ) for the gradient. Under this hypothesis, for a.e. t ∈ [0, T ] the
function σ̂D(t) is uniquely determined µ(t)- a.e. on � ∪ �0 by (6.7) and (6.11) as

σ̂D(t) = σD(t) Ln-a.e. on � , (6.16)

σ̂D(t) = ∂H
( ṗ(t)
|ṗ(t)|

)
|ṗ(t)|-a.e. on � ∪ �0 . (6.17)
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The following theorem shows that under the same hypothesis, σ̂D(t) can be obtained
in � as the limit of σ rD(t) as r → 0. This confirms the intrinsic character of the
precise representative introduced in Theorem 6.4.

Theorem 6.6. Assume (2.1), (2.2), (2.7), (2.12), (2.13), and (2.15)–(2.19). Assume
in addition that K is strictly convex. Let t 
→ (u(t), e(t), p(t)) be a quasistatic
evolution, let µ(t) := Ln + |ṗ(t)|, let σ(t) := Ce(t), and let σ r(t) and σ̂D(t) be
defined by (6.15) and (6.17). Thus σ rD(t) → σ̂D(t) strongly in L1

µ(t)(�; M
n×n
D ) for

a.e. t ∈ [0, T ].

Proof. This proof is inspired by the proof of [1] (Theorem 3.7). Since σ rD(t) con-
verge to σD(t) strongly inL1(�; M

n×n
D ) and ‖σ rD(t)‖∞ is bounded uniformly with

respect to r , it suffices to prove that σ rD(t) → σ̂D(t) strongly in L1
|ṗ(t)|(U ; M

n×n
D )

for every open set U ⊂⊂ �. Let us fix U . Since σ r(t) → σ(t) strongly in
L2(U ; M

n×n
sym ), div σ r(t) → div σ(t) strongly in Ln(U ; R

n), and σ rD(t) is bounded

in L∞(U ; M
n×n
D ), by (2.38) we have

〈[σ rD(t):ṗ(t)] |ϕ〉 → 〈[σD(t):ṗ(t)] |ϕ〉 (6.18)

for every ϕ ∈ C0(U) and for a.e. t ∈ [0, T ]. By (2.36) we also have
[
σ rD(t):ṗ(t)

] =
σ rD(t):ṗ(t) on U , where the right-hand side is defined by (2.37). By (6.5) we also
have [σD(t):ṗ(t)] = H(ṗ(t)) on U . Therefore, the definition (2.8) ofH(ṗ(t)) and
(6.18), together with the boundedness of σ rD(t), imply that

σ rD(t):
ṗ(t)

|ṗ(t)| ⇀ H

(
ṗ(t)

|ṗ(t)|
)

weakly∗ in L∞
|ṗ(t)|(U) (6.19)

for a.e. t ∈ [0, T ].
Let us fix t ∈ [0, T ] such that (6.10), (6.17), and (6.19) hold. Since σ rD(t) is

bounded in L∞
|ṗ(t)|(U ; M

n×n
D ), there exists a sequence rj → 0 such that σ

rj
D (t) ⇀

σ ∗ for some σ ∗ ∈ L∞
|ṗ(t)|(U ; M

n×n
D ). From (6.19) we deduce that

σ ∗:
ṗ(t)

|ṗ(t)| = H

(
ṗ(t)

|ṗ(t)|
)

|ṗ(t)|-a.e. on U . (6.20)

Let us now fix ξ ∈ M
n×n
D . Since σ

rj
D (t, x) ∈ K = ∂H(0) for every x ∈ U , we have

σ
rj
D (t):ξ � H(ξ) |ṗ(t)|- a.e. on U . As σ

rj
D (t):ξ ⇀ σ ∗:ξ weakly∗ in L∞

|ṗ(t)|(U), we
have also σ ∗:ξ � H(ξ) |ṗ(t)|- a.e. on U . Taking (6.20) into account, we obtain

σ ∗:

(
ξ − ṗ(t)

|ṗ(t)|
)

� H(ξ)−H
( ṗ(t)
|ṗ(t)|

)
|ṗ(t)|-a.e. on U .

In view of the differentiability properties of H , this implies

σ ∗ = ∂H

(
ṗ(t)

|ṗ(t)|
)

|ṗ(t)|-a.e. on U .
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By (6.17) we deduce that σ ∗ = σ̂D(t) |ṗ(t)|- a.e. on U . Since the limit does not
depend on the sequence rj , we conclude that

σ rD(t) ⇀ σ̂D(t) weakly∗ in L∞
|ṗ(t)|(U ; M

n×n
D ) . (6.21)

As σ̂D(t, x) ∈ ∂K for |ṗ(t)|-a.e. x ∈ U by Remark 6.5 and σ rD(t, x) ∈ K for every
x ∈ U , the strict convexity ofK can be used to improve the weak∗ convergence in
(6.21), and to obtain strong convergence in L1

|ṗ(t)|(U ; M
n×n
D ) (see e.g. [31]). ��

7. Appendix

Let X be the dual of a separable Banach space Y . Let K be a bounded closed
convex subset of Y , containing the origin as an interior point, and let H:X → R

be its support function, defined by

H(x) := sup
y∈K

〈x|y〉.

Since K is a bounded neighborhood of the origin, there exist two constants αH and
βH, with 0 < αH � βH < +∞, such that

αH‖x‖X � H(x) � βH‖x‖X for every x ∈ X . (7.1)

Given f : [0, T ] → X and a, b ∈ [0, T ] with a � b, we denote the total
variation of f on [a, b] by

V(f ; a, b) := sup

{
N∑
i=1

‖f (ti)− f (ti−1)‖X :

a = t0 � t1 � . . . � tN = b, N ∈ N

}
,

and we define the H-variation of f on [a, b] as

VH(f ; a, b) := sup

{ N∑
i=1

H(f (ti)− f (ti−1)) :

a = t0 � t1 � . . . � tN = b, N ∈ N

}
.

From (7.1), it follows that

αHV(f ; a, b) � VH(f ; a, b) � βHV(f ; a, b) .
Since H is weakly∗ lower semicontinuous, we have

VH(f ; a, b) � lim inf
k→∞ VH(fk; a, b) (7.2)

whenever fk(t) ⇀ f (t) weakly∗ for every t ∈ [a, b].
We now prove a theorem about weak∗ derivatives of absolutely continuous

functions with values in X and their relationships with the notion of H-variation.
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Theorem 7.1. Let f : [0, T ] → X be an absolutely continuous function. Then the
weak∗-limit

ḟ (t) := w∗ − lim
s→t

f (s)− f (t)

s − t
(7.3)

exists for a.e. t ∈ [0, T ], and

H(ḟ (t)) = lim
s→t

H
(
f (s)− f (t)

s − t

)
(7.4)

for a.e. t ∈ [0, T ]. Moreover, the function t 
→ H(ḟ (t)) is measurable and

VH(f ; a, b) =
∫ b

a

H(ḟ (t)) dt (7.5)

for every a, b ∈ [0, T ] with a � b.

Proof. Let F be the linear span over Q of a countable dense set in Y . For every
y ∈ F the map t 
→ 〈f (t)|y〉 is absolutely continuous on [0, T ]. Therefore, there
exists a set Ny of measure zero, such that the limit

Dy(t) := lim
s→t

〈f (s)− f (t)|y〉
s − t

exists for every t ∈ [0, T ]\Ny . Let V(t) := V(f ; 0, t). Since the function t 
→ V(t)
is non-decreasing, it is differentiable for every t ∈ [0, T ]\M , where M is a set
of measure zero. Let N be the union of M with the sets Ny for y ∈ F . Then,
L1(N) = 0, the derivative Dy(t) exists for every y ∈ F and every t ∈ [0, T ]\N ,
and

|Dy(t)| = lim
s→t

|〈f (s)− f (t)|y〉|
|s − t | � V̇(t)‖y‖Y (7.6)

for every y ∈ F and every t ∈ [0, T ]\N . Now, for t ∈ [0, T ]\N , consider the linear
map y ∈ F 
→ Dy(t). This map is continuous by (7.6). Therefore there exists a
vector in X, which we call ḟ (t), such that

Dy(t) = 〈ḟ (t)|y〉
for every y ∈ F . Using the density of F and (7.6) it is easy to show that the vector
ḟ (t) satisfies

〈ḟ (t)|y〉 = lim
s→t

〈f (s)− f (t)|y〉
s − t

for every y ∈ Y and every t ∈ [0, T ]\N , thus (7.3) is satisfied.
We note that the function t 
→ H(ḟ (t)) is measurable, since the map t →

〈ḟ (t)|y〉 is measurable for every y ∈ Y and H(ḟ (t)) = supy∈K0
〈ḟ (t)|y〉, where K0

is a countable dense subset of K. Moreover, if a = t0 � t1 � . . . � tN−1 � tN = b

is a subdivision of [a, b], then

〈f (ti)− f (ti−1)|y〉 =
∫ ti

ti−1

〈ḟ (t)|y〉 dt �
∫ ti

ti−1

H(ḟ (t)) dt
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for every 1 � i � N and every y ∈ K. Hence

H(f (ti)− f (ti−1)) �
∫ ti

ti−1

H(ḟ (t)) dt

for every 1 � i � N . Summing over i and taking the supremum over all subdivi-
sions, we obtain

VH(f ; a, b) �
∫ b

a

H(ḟ (t)) dt . (7.7)

To show the converse inequality, we note that the function t 
→ VH(f ; 0, t) is
non-decreasing. Therefore, it is differentiable for a.e. t ∈ [0, T ] and

∫ b

a

d

dt
VH(f ; 0, t) dt � VH(f ; a, b) . (7.8)

Let t0 ∈ [0, T ] be a point where both f and VH(f ; 0, ·) are differentiable. Since
H is positively homogeneous of degree 1, we have

H
(
f (t)− f (t0)

t − t0

)
� VH(f ; 0, t)− VH(f ; 0, t0)

t − t0

for every t �= t0. Passing to the limit as t → t0 and using the weak∗-lower semi-
continuity of H, we get

H(ḟ (t0)) � lim inf
t→t0

H
(
f (t)− f (t0)

t − t0

)

� lim sup
t→t0

H
(
f (t)− f (t0)

t − t0

)

� d

dt
VH(f ; 0, t)

∣∣∣
t=t0

for a.e. t0 ∈ [0, T ]. We now integrate the first and the last term in the previous
inequality from a to b and we obtain (7.5) and (7.4) from (7.7) and (7.8). ��

We conclude this appendix with a lemma that generalizes the classical Helly
Theorem for real valued functions with uniformly bounded variation, as well as
its extension to reflexive separable Banach spaces (see e.g. [3] (Chapter 1, Theo-
rem 3.5)).

Lemma 7.2. Let fk: [0, T ] → X be a sequence of functions such that fk(0) and
V(fk; 0, T ) are bounded uniformly with respect to k. Then, there exist a subse-
quence, still denoted fk , and a function f : [0, T ] → X with bounded variation on
[0, T ], such that fk(t) ⇀ f (t) weakly∗ for every t ∈ [0, T ].

Proof. It is enough to apply [15] (Theorem 3.2) with Y = X, R(t) = V(t) equal
to the corresponding unit ball, and T equal to the weak∗ topology. ��
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