
royalsocietypublishing.org/journal/rspa

Research

Article submitted to journal

Subject Areas:

Mathematical Modelling, Mechanics

Keywords:

Dielectric Elastomer, Buckling,

Snap-though Instability, Finite

Element Method

Author for correspondence:

W.Q. Chen

e-mail: chenwq@zju.edu.cn

P. Ciarletta

e-mail: pasquale.ciarletta@polimi.it

Tunable morphing of
electroactive
dielectric-elastomer balloons
Yipin Su1, ∗, Davide Riccobelli1, ∗, Yingjie

Chen2, ∗, Weiqiu Chen2, 3, Pasquale

Ciarletta1

1 MOX – Dipartimento di Matematica, Politecnico di

Milano, Piazza Leonardo da Vinci 32, Milan 20133,

Italy
2 Department of Engineering Mechanics, Zhejiang

University, Hangzhou 310027, PR China
3Shenzhen Research Institute of Zhejiang University,

Shenzhen 518057, PR China
∗ These authors equally contributed to the work.

Designing smart devices with tunable shapes has
important applications in industrial manufacture. In
this paper, we investigate the nonlinear deformation
and the morphological transitions between buckling,
necking, and snap-through instabilities of layered DE
balloons in response to an applied radial voltage
and an inner pressure. We propose a general
mathematical theory of nonlinear electro-elasticity
able to account for finite inhomogeneous strains
provoked by the electro-mechanical coupling. We
investigate the onsets of morphological transitions of
the spherically symmetric balloons using the surface
impedance matrix method. Moreover, we study
the nonlinear evolution of the bifurcated branches
through finite element numerical simulations. Our
analysis demonstrates the possibility to design
tunable DE spheres, where the onset of buckling
and necking can be controlled by geometrical and
mechanical properties of the passive elastic layers.
Relevant applications include soft robotics and
mechanical actuators.

1. Introduction
Dielectric elastomers (DEs) are soft smart materials
capable of performing large deformations in fast
response to electrical stimuli. In the last decades, they
have

© The Author(s) Published by the Royal Society. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1098/rspa.&domain=pdf&date_stamp=
mailto:chenwq@zju.edu.cn
mailto:pasquale.ciarletta@polimi.it


2

royalsocietypublishing.org/journal/rspa
P

roc
R

S
oc

A
0000000

..................................................................

attracted considerable attention, from both academia and industry, for many applications at
the core of modern technologies, such as soft robots, artificial muscles, actuators and energy
harvesters [1,2]. A typical DE actuator consists of a soft elastomer sandwiched between two
compliant electrodes. The actuator deforms when subject to a voltage along the thickness
direction, accompanied by a reduction in the thickness and an expansion in the area [3,4]. The DE
balloon is widely used as a device configuration for its suitability to enhance the electric-induced
deformation and for its versatility in industrial applications [5,6]. In some practical applications,
the DE devices should be insulated from their surroundings. For example, a wearable device is
capable of delivering haptic information by adding a soft elastic insulation layer outside the DE
actuator, protecting human skin, enhancing breathability and preventing slippage [7].

A clear advantage of using DEs is the N-shaped constitutive curve between the applied voltage
and the resulting stretch, which characterizes the so-called snap-through instability [8,9]. It consists
of a sudden increase of the resulting strain as the applied voltage reaches the local maximum
value, as presented in Fig. 1. Taking advantage of this feature, a giant areal strain can be obtained,
as large as 1600% [10,11].

Due to their geometric and constitutive nonlinearities, as well as to the multi-physics coupling,
DE devices can be modeled as boundary value problems (BVPs) that are generally difficult to
solve. Multiple morphological transitions can occur due to the presence of many stationary points
of the electro-mechanical functional of interest. For instance, necking (i.e. the local thinning of
an elastic body under tension) was initially identified as a precursor of structural failure of DE
devices, which should be avoided [12]. On the contrary, more recent studies have reported that
compressive buckling can be positively used to control shape and surface patterns in functional
devices and biological tissues [13,14].

In this respect, the buckling of nonlinear elastic, thick-walled balloons has been extensively
studied in the past [15–17] So far, some efforts have been devoted in the literature to the study
of mechanical behaviors of DE balloons. For example, Alibakhshi et al. studied the nonlinear
vibration and stability of a dielectric elastomer balloon based on a strain-stiffening model [18].
Jin and Huang investigated the random response of dielectric elastomer balloons disturbed by
electrical or mechanical fluctuation [19]. Sharma et al. developed an energy-based method for
estimating the dynamic pull-in instability parameters of the DE balloon actuator undergoing
homogeneous deformation in [20]. Liang and Cai proposed a study of shape bifurcation of a
spherical dielectric elastomer balloon subject to internal pressure and electric voltage [21]. Xie et
al. studied the bifurcation of a dielectric elastomer balloon under pressurized inflation and electric
actuation [22]. Rudykh et al. [23] investigated the response of electroactive balloons subject to
coupled electromechanical stimuli. The inflation deformation of an electroelastic spherical shell
subject to an internal pressure and a radial voltage was examined in [24]. Mao et al. conducted a
3D analytical study of the small-amplitude free vibration of a SEA spherical balloon with radially
inhomogeneous biasing fields [25]. The bifurcation of finitely deformed thick-walled electroelastic
spherical shells subject to a radial electric field was analyzed in [26]. It should be noted that most
existing works focused on monolayer DE balloons. Recently, layered dielectric composites have
gained more and more attention. Osman et al. proposed the approaches for preparing bilayered
polydimethylsiloxane (PDMS) composite for dielectric elastomer applications. Kumar et al.
theoretically studied the dynamic electromechanical behavior of multi-layered DE composites
[27]. Su et al. proposed a dielectric-elastomer bilayer capable of smart bending deformation
[28]. Four different criteria of multilayered soft dielectrics under plane-strain conditions were
compared in [29]. To the best knowledge of the authors, the only related work on the nonlinear
response of multi-layered DE balloons was proposed by [6]. However, the influences of the
layered configuration and the applied electro-mechanical stimuli on the morphological diagram
of layered DE balloons are still unknown. By analyzing the electro-elastic behavior of a spherical
piezoceramic sensor coated by a homogeneous protective layer, it was shown that the existence
of the protective layer can prolong the effective working life of the piezoceramic sensor [30]. It is
unclear whether or not this enhancement can happen in dielectric devices.
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Figure 1. Nonlinear responses of planar DE actuators subject to a voltage through the thickness: (a) Electrical breakdown

occurs prior to the onset of snap-through instability (type I); (b) Snap-through instability induces electrical breakdown of

the material (type II); (c) The DEs survives the snap-through instability (type III). The solid and dashed curves correspond

to the voltage-stretch loading curve and the electric breakdown curve of the materials, respectively. The arrow represents

the snap-through path of the material during the deformation.

Here, we propose a theoretical and numerical study of an incompressible layered dielectric-
elastic balloon subject to the combined action of electrical and mechanical loads. For
simplification, we only consider type III DEs as defined in Fig. 1c, excluding the possibility
of electric breakdown of the material before the onsets of the snap-through and the necking
instabilities. We investigate the possibility to enhance and to control the electric-induced
deformation field by coating an inactive elastic layer outside the DE balloon.

The article is structured as follows. In Section 2, we derive the governing equations for the
inflation of a layered dielectric-elastic balloon subject to an internal pressure and a radial voltage.
We assume that the elastic and DE layers are perfectly bonded. In Section 3, we formulate the
linear stability analysis of the radially symmetric solution, using the surface impedance matrix
method to implement a robust numerical scheme for solving the linearised BVP for a generic
constitutive function. In Section 4(a), we illustrate the solution obtained by assuming a Gent
constitutive response. In Section 4(b), we compare the numerical results obtained for elastic
monolayer, DE monolayer and bi-layered dielectric-elastic balloons. In Section 5, we present a
post-buckling analysis of the devices by means of a finite element approximation of the nonlinear
problem. In Section 6, we finally discuss the relevance of our results for enabling a novel design
strategy for tuning shapes of DE devices, together with a few concluding remarks.

2. The electro-mechanical model
In this section, we define the nonlinear BVP describing the response of a spherical dielectric-elastic
balloon to electro-mechanical stimuli, deriving its radially symmetric solution.

(a) Nonlinear boundary value problem
Let us consider a thick-walled bi-layered spherical balloon that occupies the domain B0 ⊂R3 in
its reference configuration. Specifically B0 =Bd0 ∪ Be0, where

Bd0 = {X ∈R3 |Ri < ‖X‖ ≤Rm},
Be0 = {X ∈R3 |Rm < ‖X‖ ≤Ro},

(2.1)

as illustrated in Fig. 2. We assume that the inner and outer layers are made of DE and elastic
elastomers, respectively. Throughout the paper, we denote the quantities related to the inner,
interfacial and outer surfaces by the subscripts (•)i, (•)m and (•)o, respectively, and the quantities
related to the DE and elastic layers by the superscripts (•)d and (•)e, respectively. X and
x=χ(X) are the reference and the actual position vectors, respectively, with χ :B0 →R3 being
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Figure 2. Sketch of a layered dielectric-elastic balloon subject to a radial voltage V through the DE layer and an internal

pressure P at the inner surface: (a) undeformed and (b) deformed configurations. The upper row depicts the three-

dimensional domains with the respective spherical coordinate systems, and the lower row shows the corresponding

in-plane cross sections with geometrical and electro-mechanical loading parameters.

the mapping from the reference configuration to the actual configuration B=χ(B0). Then the
displacement field is u=x−X .

Let (eR, eΨ , eΘ) and (er, eψ, eθ) be the corresponding spherical orthonormal bases in the
reference and actual configurations, respectively. Moreover, let (R, Ψ, Θ) and (r, ψ, θ) be the
spherical coordinates in the reference and actual frames, respectively, so that{

X = (X1, X2, X3) = (R sinΘ cosΨ, R sinΘ sinΨ, R cosΘ),

x= (x1, x2, x3) = (r sin θ cosψ, r sin θ sinψ, r cos θ).
(2.2)

We denote by F=Gradχ the deformation gradient, where Grad is the material gradient
operator. In the following, we use capital letters for all the differential operators referring to the
reference frame. We assume that both layers are incompressible, so that everywhere holds the
constraint

detF= 1. (2.3)

We now introduce the true electric field E :B→R3 and the true electric displacement field
D :B→R3. Their Lagrangian counterparts are given by

EL = FTE, DL = F−1D. (2.4)

Accordingly, the Maxwell equations in the material frame read

CurlEL = 0, DivDL = 0, (2.5)

or, equivalently, in the material setting

curlE = 0, divD= 0, (2.6)
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where div and curl are the spatial divergence and curl operators, respectively, and Div and Curl

their material counterparts. The first equation is automatically satisfied if we introduce the electric
potential φ such that:

E =− gradφ. (2.7)

Both in Bd0 and in Be0, the nominal stress S must satisfy the balance equation

Div S= 0, (2.8)

while we require that the normal traction and displacement are continuous at the interface
between the elastomer and the dielectric layers, that is

lim
R→R−

m

ST eR = lim
R→R+

m

ST eR. (2.9)

We postulate the existence of an energy density W in the form

W =

{
W d(F, DL) in Bd0 ,
W e(F) in Be0.

(2.10)

The dielectric elastomer is assumed to be isotropic. In virtue of the representation theorem of
isotropic functions, the energy density can be generally written as a function of five invariants,
namely W d =W d(I1, I2, I4, I5, I6), where

I1 = trC, I2 =
I21 − tr(C2)

2
, I4 =DL ·DL, I5 =DL · CDL, I6 =DL · C2DL,

(2.11)
where C is the right Cauchy–Green tensor, given by C= FTF. The elastomer is also isotropic and
therefore W e =W e(I1, I2).

By standard thermo-mechanical considerations [31], the nominal stress and the Lagrangian
electric field can be expressed as

S=
∂W

∂F
− pF−1, EL =

∂W

∂DL
, (2.12)

where p is a Lagrange multiplier that enforces the incompressibility constraint Eq. (2.3). For later
convenience, we also introduce the push-forward of the nominal stress in the actual configuration,
i.e. the Cauchy stress tensor

T= FS. (2.13)

The Maxwell equation (2.5) and the balance equation (2.8) are complemented by interface and
boundary conditions. We assume that the inner and the outer surfaces of the DE layer are coated
with compliant electrodes, so that the potential difference between the surfaces of the dielectric is
a fixed applied voltage V , namely

∆φ= φ(Rm)− φ(Ri) = V. (2.14)

Furthermore, we assume that the inner surface of the bilayer is subject to a pressure P , such that

STN =−PF−TN , (2.15)

where N is the outward normal vector.
In the following, we derive the radially symmetric solution of the BVP given by

Eqs. (2.3)-(2.15).
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(b) Radially symmetric solution
We look for a particular solution of the BVP using the ansatz

r= r(R), θ=Θ, ψ= Ψ, φ= φ(R). (2.16)

We introduce the spatial inner, interfacial and outer radii ri = r(Ri), rm = r(Rm) and ro = r(Ro),
respectively. Using spherical coordinates, the deformation gradient reads

F= λrer ⊗ER + λθeθ ⊗EΘ + λψeψ ⊗EΨ =
dr

dR
er ⊗ER +

r

R

(
eθ ⊗EΘ + eψ ⊗EΨ

)
,

(2.17)
where λj (j = r, θ, ψ) is the stretch at j−direction of the balloon.

Using the incompressibility assumption Eq. (2.3) in its local and global forms, we get

dr

dR

r2

R2
= 1 =⇒ r(R) = 3

√
R3 −R3

i + r3i . (2.18)

We denote the hoop stretch as λ= r/R, so that

λr =
1

λ2
, λθ = λψ = λ. (2.19)

From Eq. (2.18), the following relationships hold between the stretches at the inner, interfacial and
outer surfaces λi = ri/Ri, λm = rm/Rm and λo = ro/Ro of the balloon,

λm =
[
1 + (td)3

(
λ3i − 1

)]1/3
, λo =

[
1 + (te)3

(
λ3m − 1

)]1/3
, (2.20)

where td =Ri/Rm and te =Rm/Ro are the aspect ratios of the DE and elastic layers, respectively.
We remark that the limit cases td→ 1 and te→ 1 correspond to monolayer elastic and DE
balloons, respectively.

The radial electric field generated by the applied potential difference V only exists in the DE
layer. According to our ansatz, the nominal electric field and nominal electric displacement have
the forms

EL =EReR, DL =DReR, (2.21)

where ER and DR are the only non-zero components of the nominal electric field and
nominal electric displacement, respectively. The corresponding true electric field and true electric
displacement are

E = F−TEL =Erer D= FDL =Drer, (2.22)

where Er = λ2ER and Dr = λ−2DR are the only non-zero components of the true electric field
and true electric displacement, respectively.

From Eqs. (2.11) and (2.19), we obtain the following expressions of the invariants

I1 = 2λ2 + λ−4, I2 = 2λ−2 + λ4, I4 =D2
R, I5 = λ−4D2

R, I6 = λ−8D2
R. (2.23)

By using Eq. (2.12)2, we get

Er = 2
(
λ2W d

4 +W d
5 + λ−6W d

6

)
DR, (2.24)

where W s
j = ∂W s/∂Ij , with s= (d, e).

The only non-zero components of the Cauchy stress in spherical coordinates are given by

T drr = 2
[
λ−4W d

1 + 2λ−2W d
2 +

(
λ−4W d

5 + 2λ−8W d
6

)
D2
R

]
− pd,

T dθθ = T dψψ = 2
[
λ2W d

1 +
(
λ−2 + λ4

)
W d

2

]
− pd, (2.25)

in the DE layer, and

T err = 2
(
λ−4W e

1 + 2λ−2W e
2

)
− pe,

T eθθ = T eψψ = 2
[
λ2W e

1 +
(
λ−2 + λ4

)
W e

2

]
− pe, (2.26)
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in the elastic layer. Here ps, where s= (d, e), is a Lagrange multiplier associated with the
incompressibility constraint of the s-th layer, which will be determined from the equilibrium
equations and boundary conditions as detailed in the following.

The balance Eq. (2.8) in the actual configuration imposes

divT= 0. (2.27)

Under the symmetry assumption made in Eq. (2.16), Eq. (2.5)2 becomes

1

r2
∂(r2Dr)

∂r
= 0, (2.28)

which implies that r2Dr is a constant, and Eq. (2.27) reads

∂T srr
∂r

=
2

r

(
T sθθ − T srr

)
(s= d, e). (2.29)

By introducing the reduced energy functions defined by

W d
sph (λ, DR) =W d (I1, I2, I4, I5, I6) , W e

sph (λ) =W e (I1, I2) , (2.30)

and by substituting Eqs. (2.23), (2.24) and (2.30), we have

Er = λ2
∂W d

sph

∂DR
. (2.31)

Accordingly, the applied voltage is

V =

∫rm
ri

λ2
∂W d

sph

∂DR
dr. (2.32)

Similarly, Eq. (2.29) can be rewritten compactly as

∂T srr
∂r

=
λ

r

∂W s
sph

∂λ
(s= d, e). (2.33)

Using the boundary conditions

T drr(ri) =−P, T err(ro) = 0, (2.34)

and Eq. (2.33), the principal stresses in the radial direction read

T drr =

∫λ
λi

1

1− λ3

∂W d
sph

∂λ
dλ− P at the DE layer,

T err =−
∫λ
λo

1

1− λ3

∂W e
sph

∂λ
dλ at the elastic layer. (2.35)

Note that we have used the following relationship

dr

r
=

dλ

λ (1− λ3)
, (2.36)

which can be obtained from Eqs. (2.18) and (2.19).
The hoop stresses T sθθ = T sψψ can be determined using the following relationship

2(T sθθ − T srr) = λ
∂W s

sph

∂λ
(s= d, e), (2.37)

which results from Eqs. (2.29) and (2.33).
The two layers are perfectly bonded to each other, imposing the continuity of the

displacements and normal stresses at the interface, see Eq. (2.9). As a result, the relationship
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between λi, λm, λo and V can be established, using Eq (2.35), as

∫λm

λi

1

1− λ3

∂W d
sph

∂λ
dλ− P =−

∫λm

λo

1

1− λ3

∂W e
sph

∂λ
dλ. (2.38)

Finally, the deformation λi, λm and λo can be fully determined from Eqs. (2.20), (2.32) and
(2.38), once the inner pressure P , voltage V and constitutive laws W s, with s= (d, e), are given.

3. Linear stability analysis
Mechanical instabilities may occur in finitely deformed solids, and the onset of buckling and
necking can be predicted by using the theory of incremental deformations superposed on a finite
strain [25,32–35]. In this section, we derive the governing equations for the analysis of small-
amplitude wrinkles superimposed upon the finite deformation of the balloon, and develop the
surface impedance matrix method applicable to layered structures to build a robust numerical
procedure for solving the resulting dispersion equations. Here we just give the general governing
equations of the deformed DE elastomer, and we omit the superscript for the sake of notation
compactness. Note that the incremental governing equations for the elastic elastomer can be
simply derived by making the electric field vanish in the given solution.

(a) Incremental BVP
Due to the spherical symmetry, the study of axisymmetric modes is sufficient to give a
full insight into the buckling behavior of the material, since the dependence on ψ does
not alter the incremental BVP [15]. Let us superimpose a small axisymmetric incremental
displacement u̇= u̇r(r, θ)er + u̇θ(r, θ)eθ along with an incremental electric displacement Ḋ=

Ḋr(r, θ)er + Ḋθ(r, θ)eθ over the radially symmetric solution described in Section 2. Hereinafter
the incremental quantity will be denoted by the notation (•̇).

In the following, we adopt the convention of summation over repeated indices. The linearized
incremental forms of the constitutive relations read [36]

Ṡ=A :H+ ΓḊ + pH− ṗI, Ė =H :Γ + KḊ,

Ṡij =AijαβHβα + ΓijαḊα + pHij − ṗδij , Ėi =HαβΓβαi +KiαḊα.
(3.1)

where H= grad u̇ is the displacement gradient, A, Γ and K are, fourth-, third- and second-order
electro-elastic moduli tensors, respectively, whose components are given by

Apiqj =Aqjpi = FpαFqβ
∂2W

∂Fiα∂Fjβ
, Γpiq = Γipq = FpαF

−1
βq

∂2W

∂Fiα∂Dlβ
,

Kij =Kji = F−1
αi F

−1
βj

∂2W

∂Dlα∂Dlβ
.

(3.2)

The incremental counterpart of the equilibrium Eqs. (2.5)-(2.8) read

div Ṡ= 0, (3.3)
curl Ė = 0, (3.4)
div Ḋ= 0. (3.5)

We introduce an incremental electric potential φ̇= φ̇(r, θ) to rewrite the incremental electric field
as Ė =− grad φ̇, so that Eq. (3.4) is automatically satisfied.
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For the considered deformation, we have

H= grad u̇=



∂u̇r
∂r

1

r

(
∂u̇r
∂θ

− u̇θ

)
0

∂u̇θ
∂r

1

r

(
u̇r +

∂u̇θ
∂θ

)
0

0 0
1

r
(u̇r + u̇θ cot θ)


. (3.6)

The incompressibility Eq. (2.3) at the incremental order reads

div u̇= 0. (3.7)

Having assumed that the applied voltage and pressure are fixed and that the two layers are
perfectly bonded, the following boundary and interfacial conditions apply

Ṡdrr = P
∂u̇r
∂r

, Ṡdrθ =
P

r

(
∂u̇r
∂θ

− u̇θ

)
, φ̇= 0 at r= ri, (3.8)

Ṡdrr = Ṡerr, Ṡdrθ = Ṡerθ, φ̇= 0 at r= rm,

Ṡerr = Ṡerθ = 0 at r= ro.

(b) Stroh formulation
We assume the following separation of variables for the incremental fields [37]{

u̇r (r, θ) , Ṡrr (r, θ) , φ̇ (r, θ) , Ḋr (r, θ)
}
= {Ur (r) , Σrr (r) , Φ (r) ,∆r (r)}Pm (cos θ) ,{

u̇θ (r, θ) , Ṡrθ (r, θ)
}
=

{
Uθ (r)

M
,
Σrθ (r)

M

}
dPm (cos θ)

dθ
,

(3.9)

where M =
√
m (m+ 1), and Pm indicates the Legendre polynomial of order m, which satisfies

the following identity

d2Pm (cos θ)

dθ2
+ cot θ

dPm (cos θ)

dθ
+M2Pm (cos θ) = 0. (3.10)

Given the Stroh vector η(r) = (Ur, Uθ, r∆r, rΣrr, rΣrθ, Φ), the governing equations (3.1),
(3.3), (3.5) and (3.7) can be rewritten in the form of a first-order differential system as

d
dr

η=
1

r
Gη=

1

r

[
G1 G2

G3 G4

]
η, (3.11)

where the matrix G∈R6×6 is the so-called Stroh matrix. The derivation of Eq. (3.11) and the
components of the 3 × 3 sub-matrices G1, G2, G3 and G4 are detailed in Supplementary Material.

We introduce the generalized displacement and traction vectors, defined as U = (Ur, Uθ, r∆r)

and S = (rΣrr, rΣrθ, Φ), respectively. Then, using Eq. (3.9), the incremental boundary conditions
(3.8)1,3 can be rewritten as

Sd (ri) = P

−2 M 0

M −1 0

0 0 0

Ud (ri) , Se (ro) = 0, (3.12)

and the incremental interfacial condition (3.8)2 can be rewritten as

Sd (rm) =Se (rm) , Ud (rm) =Ue (rm) . (3.13)
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(c) The surface impedance matrix method
Here we exploit the so-called surface impedance matrix method to build a robust numerical
procedure to solve the governing equation (3.11) associated with the incremental boundary
condition (3.12) and interfacial condition (3.13).

For each layer, we introduce the conditional impedance matrices Zd(r, ri) and Ze(r, ro) [38].
In particular, we have

Ss = ZsUs (s= d, e). (3.14)

Then we can expand Eq. (3.11) to obtain (with s omitted)

d

dr
U =

1

r
G1U +

1

r
G2ZU ,

d

dr
(ZU) =

1

r
G3U +

1

r
G4ZU . (3.15)

Elimination of U in Eq. (3.15) gives the following Riccati differential equation for Z

dZ

dr
=

1

r
(−ZG1 − ZG2Z+ G3 + G4Z) . (3.16)

From the incremental boundary condition (3.12), we have

Zd (ri, ri) = P

−2 M 0

M −1 0

0 0 0

 ,
Ze (ro, ro) = 0.

(3.17)

The marginal stability curves for the layered balloon can be determined as follows. First,
we determine the deformation and material constants for a given voltage V and a given inner
pressure P , based on the results presented in Section 2. Then, we integrate Eq. (3.16) in the DE
layer from ri to rm, in order to obtain Zd(rm, ri), with the initial condition (3.17)1. In the elastic
layer, we integrate Eq. (3.16) from ro to rm to obtain Ze(rm, ro), with the initial condition (3.17)2.
We finally iterate on the stretch until the following bifurcation criterion is satisfied

det
[
Ze(rm, ro)− Zd(rm, ri)

]
= 0. (3.18)

For the considered problem, the critical inner stretch for the onset of a mechanical instability
can be solved from the dispersion equation (3.18), which is a function of the applied voltage, the
pressure, the mode m, and the material and structural parameters of the balloon, such that:

λci = λci (V, P,m;µd, µe, ε, td, te). (3.19)

4. Marginal stability curves for Gent dielectric-elastomer
balloons

(a) Constitutive Equations
In order to illustrate the results of the linear stability analysis, we adopt the following ideal
Gent dielectric model [10] and the Gent elastic model [39] to describe the DE and elastic elastomers,
respectively,

W d(F, DR) =−µ
dGd

2
ln

(
1− I1 − 3

Gd

)
+
I5
2ε
, (4.1)

W e(F) =−µ
eGe

2
ln

(
1− I1 − 3

Ge

)
,

where µs and Gs are the shear modulus and the dimensionless stiffening parameter of the s-
th (s= d, e) elastomer, respectively, ε is the strain independent permittivity of the DE elastomer.
These constitutive laws model the strain stiffening behavior of soft polymers. In the following, we
fix Gd =Ge = 97.2, an experimental parameter collected for unfilled vulcanized rubber [24,39].
Note that in the limit of Gs→∞, the Gent model reduces to the neo-Hookean model [40,41].
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(b) Marginal stability curves
We now derive the marginal stability curves to investigate the influence of the presence of the
elastic inactive layer on the deformation and instabilities of the DE active balloon, and explore
the possibility of realizing the selection of specific instability mode in layered DE devices through
structural and material design. For this purpose, we compare the nonlinear responses, as well
as the onsets of the snap-through and the buckling instabilities of a monolayer elastic balloon, a
monolayer DE balloon and a layered dielectric-elastic balloon.

For convenience and generality, we introduce the following dimensionless quantities,

P =
P

µd
, T

s
ii =

T sii
µd

(s= d, e), (4.2)

V =
V

Rm −Ri

√
ε

µd
, DR =

DR√
µdε

.

(i) Results for a monolayer elastic balloon

We first consider the case of an elastic balloon (V = 0, td = 1) subject to an internal pressure P ,
whose results are depicted in Fig. 3. We can see that the P − λi curve of the balloon is clearly non-
monotonic and the snap-through behavior can be observed at the critical stretches highlighted
by the round markers. The stretch λi first increases as the pressure P (> 0) increases. Once
the pressure reaches a critical value, the stretch increase suddenly and the pressure inside the
balloon decreases due to the dramatic increase of the volume. Due to the strain-stiffening effect
of the material, the internal pressure increases again as the stretch approaches the extensible
limit of the material. The snap-through enables a large strain change in the balloon, which is
a desired actuation mechanism in many engineering applications. It is noted that the critical
internal pressure for triggering the snap-through instability of a thin balloon is smaller than that
of a thick balloon.

On the other hand, buckling may occur in an elastic balloon subject to critical compression
(P < 0). Compared with a thick-walled balloon, a balloon with a smaller thickness is more
susceptible to buckling. We note that the critical mode m (i.e. the first mode to become
unstable as the pressure decreases) can be selected by properly designing the thickness of the
balloon. Typically, the outer contour of a buckled thick-walled balloon maintains the spherical
configuration and wrinkles appear on the inner face (Fig. 3a). While for a thin-walled balloon,
buckling affects the whole body (Figs. 3b, 3c).

In Fig. 4, we plot the critical stretch versus the aspect ratio te at different buckling modes,
computed from the dispersion equation (3.18). Buckling occurs once the stretch reaches the
marginal stability threshold, i.e. the bold black curve in the figure. We note that the buckling
mode m= 1 is not allowed independently of the thickness of the balloon. The buckling mode
m= 2 can occur in moderately thick balloons (0.45< te < 0.7), while for thick balloons (te ≤ 0.45)
and thin balloons (te ≥ 0.75), higher mode (m> 2) are selected, strongly depending on the aspect
ratio. We remark that for thick balloons with te ≤ 0.45, buckling always occurs once the inner
circumferential stretch reaches λci=0.684, which is thickness independent.

We emphasize that a critical compression (P < 0) is required for a Gent elastic balloon to trigger
the onset of buckling, which is different from the DE case presented below.

(ii) Results for a monolayer DE balloon

Here, we consider a thin DE balloon (te = 1, td = 0.9) subject to a combination of an internal
pressure P and a voltage V , whose results are collected in Fig. 5. In order to investigate the effect
of the applied voltage on the onset of buckling, we consider the cases of V = 0.1 and V = 0.3 as
illustrative examples.

For a DE balloon subject to a small voltage (V = 0.1), the response is similar to the case of a
purely elastic monolayer presented in Fig. 3. The balloon buckles only when a critical compression
(P < 0) is applied. On the other hand, the snap-through instability is triggered once a critical
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Figure 3. Inflation and buckling responses of (a) thick, (b) moderately thick and (c) thin elastic balloons (V = 0, td = 1),

respectively. The cross × and circle • markers indicate the thresholds for buckling in compression and snap-through

instabilities of the material, respectively. The upper row presents the P − λi curve, and the lower row shows the shape

of the balloon at the onset of buckling. Note that we have set a finite amplitude of the incremental displacement for the

sake of graphical illustration of the buckling pattern.

Figure 4. Plots of the critical strains of a Gent elastic balloon as functions of the radius ratio te, shown at different buckling

modes m= 1, 2, . . . , 11 (dashed lines). The bold black line corresponds to the marginal stability curve.

inner pressure P (> 0) is applied, and the balloon survives the snap-through instability, without
encountering the buckling failure.

When the applied voltage is sufficiently large (V = 0.3), we see that in addition to buckling in
compression, the possibility of a bifurcation in extension (P > 0) emerges along the path of the
snap-through. In this case, the balloon can not reach a homogeneous state characterized by a large
strain.

We plot in Fig. 6 the critical stretch λci versus td for monolayer DE balloons subject to either
V = 0.1 or V = 0.3. Here we use the notation λVi to denote the inner circumferential stretch of the
balloon induced by the applied voltage only, i.e. considering P = 0.

For the case V = 0.1, the balloon expands radially to λVi = 1.014, until buckling occurs at a
critical compression. The snap-through instability of the elastomer will be triggered at a critical
inner pressure P > 0 (See Fig. 5 (left) for the special case td = 0.9). We note that no bifurcation
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Figure 5. Inflation and buckling responses of thin DE balloons (te = 1, td = 0.9) subject to a fixed voltage: (a) V = 0.1

and (b) V = 0.3. The cross ×, circle • and square � markers indicate the thresholds for buckling in compression, snap-

through and buckling in extension instabilities of the material, respectively. Inset: the shape of the balloon at the onset of

buckling; and the sectional view of the balloon at necking.

Figure 6. Plots of the critical strains versus the radius ratio td for a single layer of DE (te = 1): (a) V = 0.1 and (b)

V = 0.3. The black dashed line depicts the snap-through instability threshold, the blue dot-dashed line depicts the inner

circumferential stretch λV
i of the balloon induced by the applied voltage only, i.e. considering P = 0. The magenta solid

line finally depicts the threshold for necking. For simplification, here we do not show the instability thresholds for the

different modes m= 1, 2, . . . , 11 (dashed lines as in Fig. 4), but only present the actual marginal stability curve.

occurs during the snap-through process, thus the balloon can achieve a large actuation strain (In
Fig. 6 (left) the snap-through curve is not presented).

For the case V = 0.3, in addition to the buckling in compression, a bifurcation in tension also
occurs. The snap-through occurs prior to the bifurcation, thus snap-through cannot be exploited to
obtain a large actuation strain, since the balloon would lose its spherical configuration during the
snap-through process. As shown in Fig. 5 (right), the critical mode for the bifurcation in tension is
m= 1, and a localized thinning of the DE occurs, which is the typical feature of necking instability
[32,33]. It is noted that we can design the buckling mode in compression by properly selecting the
thickness of the balloon, while m= 1 is always the critical mode in tension.

We conclude that due to the electro-mechanical coupling effect, the DE balloon may undergo
snap-through-induced necking, thus limiting its applicability as an actuating device.

(iii) Results for a bi-layered dielectric-elastic balloon

Finally, we investigate the case of a bi-layered dielectric-elastic balloon, as both voltage and
pressure tuning methods are considered.
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Figure 7. Inflation of voltage-activated (P = 0 top, P = 0.06 bottom) dielectric-elastic balloons with td = 0.9 and varying

te. Left: V − λi curve of the balloon at fixed µe/µd = 10 and varying te, with the square � marker indicating the necking

threshold. Right: stability diagram of the balloons with varying te and logµ
e/µd

10 . The black, blue and red curves on the

left column correspond to three specific balloons: balloon A with td = 0.9, te = 1, balloon B with td = 0.9, te = 0.95,

and balloon C with td = 0.9, te = 0.85 (balloon C beyond the scope of the phase diagram thus is not presented in the

plots on the right).

In Fig. 7 (left) we show the voltage-stretch curves and the necking thresholds of electro-active
bi-layered balloons (P = 0 and 0.06) with td = 0.9 and varying te, µd and µe. We consider the
balloons with fixed material parameter µe/µd = 10. The results for a monolayer DE balloon
are presented here for comparison. We remark that the snap-through instability always exists
in bi-layered balloons, which is independent of the thickness of the elastic layer. Compared
with balloons with a thin elastic layer, a larger voltage is required to activate the snap-through
instability in balloons with a thick elastic layer, increasing the risk of electric breakdown failure.
It is worth noting that for dielectric-elastic balloons with a thin elastic layer (here te = 1 for
example), a bifurcation in tension (i.e. necking instability) occurs after the snap-through instability
is triggered, although the thresholds of the critical stretches for the two mechanical instabilities are
very close. As expected, covering the DE balloon with an elastic layer with specific thickness (here
te = 0.95, 0.85 for example) can suppress the bifurcation in tension. As a result, the structure can
survive the snap-through procedure and achieve large deformation without necking, thus being
suitable for engineering applications as an actuator. We also notice that as the pressure increases,
the critical voltage required to trigger the snap-through instability decreases.

In order to study the influence of the thickness of the elastic layer on the necking instability of

the bi-layered balloon, we plot the te− log
µe/µd

10 phase diagram on Fig. 7 (right). For P = 0, we can
see that the necking may occur when the thickness of the elastic layer is small. As the thickness
of the elastic layer increases (e.g., te < 0.976 for balloons with µd = µe), the necking of the balloon
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Figure 8. Inflation and buckling responses of pressure activated (V = 0.3) dielectric-elastic balloons with td = 0.9

and varying te. The P − λi curve is shown on the left, and the buckling shapes are shown on the right. The cross

×, circle • and square � markers indicate the thresholds for buckling in compression, snap-through and buckling

in extension, respectively.

can be suppressed. As the internal pressure or the stiffness of the elastic layer (µe = 10µd for
example) increase, we notice a decrease in the critical thickness of the elastic layer required to
suppress the necking instability.

Fig. 8 presents the inflation-stretch curves bi-layered balloons (V = 0.3) with td = 0.9, µe/µd =
10 and varying te. We remark that for the case of a monolayer DE layer (te = 1), both buckling
and necking can be induced by properly tuning the pressure P . The presence of the elastic layer
can not only decrease the risk of buckling but can also suppress the necking of the balloon. The
selection of buckling pattern of the balloons can be designed by setting the thickness of the elastic
layer.

We conclude that for a monolayer DE balloon, the tensile necking may be triggered during the
snap-through process, limiting the actuation strain. The application of the elastic layer outside
the DE layer can enhance the snap-through instability to avoid a bifurcation in tension, thus
can dramatically increase the actuation strain of the balloon. That is, a monolayer DE balloon is
more suitable for making functional devices with complex surface morphology, while a bi-layered
dielectric-elastic balloon is more suitable as an actuating device as stable large deformation can
be achieved.

5. Fully nonlinear numerical simulations
In this Section, we first implement a numerical scheme to approximate the nonlinear BVP given
by Eqs. (2.3)-(2.15). Second, we perform the numerical simulations, discussing the morphological
transitions in the fully nonlinear regime in some cases of practical interest.

(a) Variational formulation
We take the displacement field u and the electric potential field φ as the unknowns of the
problem. We assume radial symmetry of the solutions performing numerical simulations of an
axis-symmetric section of the balloon, namely on S0 =B0 ∩ (X3 = 0 and X1 > 0).
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For the sake of numerical robustness, we use a quasi-incompressible approximation. The BVP
given by Eqs. (2.3)-(2.15) rewrites

S=
∂W ?

∂F
, DL =−∂W

?

∂EL
,

Div S= 0 in S0

DivDL = 0 in Sd0
STN =−PF−TN , φ= 0 if R=Ri

STN = 0 if R=Ro

φ= V if R≥Rm

u · e1 = 0, e2 · ST e1 = 0 if X1 = 0∫
S0

ρu · e2 dX1dX2 = 0

(5.1)

where (e1, e2, e3) is the canonical vector basis in Cartesian coordinate and ρ=
√
X2

1 +X2
2 . The

last equation in (5.1) removes rigid body translations along the vertical direction e2, while the
energy density W ?(F, EL) is linked to W (F, DL) through the following Legendre transform

W (F, DL) =W ?(F, EL) +DL ·EL. (5.2)

The boundary value problem given by Eqs. (2.3)-(2.15) can be cast into an equivalent variational
formulation. The integral condition in (5.1) is enforced by means of a Lagrange multiplier α.

Let us introduce the energy functional

E [u, φ, α] = 2π

∫
S0

ρ
[
W ?(F, EL) + αu · e2

]
dX1dX2. (5.3)

Then, the solutions of the BVP (2.3)-(2.15) must satisfy [42]

δE(u, φ, α)[δu, δφ, δα] + 2π

∫
R=Ri

JρPF−1δu ·N dS = 0. (5.4)

where J =detF, δE is the first variation of the energy functional E and δu, δφ, δα are admissible
variations of the unknown fields.

As a compressible counterpart of Eq. (4.1), we take the energy densities for the DE and the
passive elastomer as follows

W ?d(F, EL) =−µ
dGd

2
log

(
1− I1 − 3

Gd

)
+
Kd

2
(log J)2 − εJ

2
EL · C−1EL

W ?e(F) =−µ
eGe

2
log

(
1− I1 − 3

Ge

)
+
Ke

2
(log J)2

(5.5)

where Kd and Ke are parameters regulating the compressibility of each layer and I1 = J−2/3I1.

(b) Mixed finite element implementation
The problem is approximated by means of the finite element method. The computational domain
S0 is discretized by using a triangular mesh. In order to impose homogeneous boundary
conditions on the potential field, we decompose the potential φ into two contributions

φ(X) = φr(X) + φinh(X) (5.6)

where φr(X) = V (R−Ri)/(Rm −Ri) if R≤Rm, while φr(X) = V if R>Rm. Thus, the
unknowns of the problem are u, φinh and the Lagrange multiplier α. The fields u and φinh
are approximated by means of a mixed finite element formulation, using continuous piecewise
quadratic functions for the displacement field and continuous piecewise linear functions for φinh.
In order to trigger the bifurcation, we apply a small perturbation to the mesh. The expression
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of the perturbation is given by the critical mode provided by the results of the linear stability
analysis [43].

The numerical scheme is implemented in Python by using the open-source computing
platform FEniCS, version 2019.2 [44]. We use PETSc as a linear algebra back-end. In order to
reconstruct the bifurcation diagram, we use a pseudo-arclength continuation algorithm [45],
where we use the pressure P as a control parameter of the problem. The nonlinear problem is
solved by using a predictor-corrector method. In particular, we adopt a secant predictor to obtain
a first guess of the solution and a SNES Newton solver as a corrector. The variational formulation,
as well as the Jacobian of the linearized problem, are computed by means of the library UFL
[46]. We exploit the library BiFEniCS (https://github.com/riccobelli/bifenics) for the
implementation of the continuation algorithm [47].

(c) Results of the numerical simulations
In the following, we show the results of simulations for the cases analyzed in Fig. 8. Specifically,
we take td = 0.9 and te = 0.9, 0.95, 1 (the latter case corresponds to a single DE layer), with
µe/µd = 10 and V = 0.3.

We apply a perturbation of amplitude δA=±10−5Ro. In Fig. 9 we show the bifurcation
diagram for P < 0. As a measure of the amplitude of the bifurcated pattern, we use the following
scalar dimensionless quantity

A=± 1

Ro

(
max

|X|=Ro

|u| − min
|X|=Ro

|u|
)
, (5.7)

where we take a plus or a minus in front of the amplitude depending on the sign of δA.
In the cases te = 0.95, 1, the buckling mode is m= 5, which is symmetric with respect to

the substitution δA→−δA. As expected, the bifurcation diagram for this case is symmetric
with respect to the P -axis. In both cases, the shape of the bifurcation is a subcritical pitchfork.
Conversely, for te = 0.9 the buckling mode is even. In such a case, the buckling mode is not
symmetric with respect to the substitution δA→−δA . As depicted Fig. 9, the bifurcation related
to this case becomes transcritical. In all the cases, the numerical outcomes are in good agreement
with the theoretical buckling thresholds, as shown in Fig. 9.
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Figure 9. Post-buckling behavior showing P versus the dimensionless amplitude of the deformation at the free surface,

setting V = 0.3, µe/µd = 10, td = 0.9, and te = 0.9, 0.95, 1 (blue, orange, and green lines, respectively). The ×
marker denotes the theoretical buckling threshold.

https://github.com/riccobelli/bifenics
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Figure 10. (left) Plot of the actual configuration of the planar section of spherical bilayers, with td = 0.9, te = 0.9,

µe/µd = 10. Here, we show a section of the shell, where on the left we show ‖u‖/Ro, while on the right each layer

is identified using different colors (orange: DE, blue: elastomer). On the right, we show the corresponding points to each

configuration on the bifurcation diagram.

Figure 11. (left) Plot of the actual configuration of the planar section of spherical bilayers, with td = 0.9, te = 0.95,

µe/µd = 10, V = 0.3. Here, we show a section of the shell, where on the left we show ‖u‖/Ro, while on the right each

layer is identified using different colors (orange: DE, blue: elastomer). On the right, we show the corresponding points to

each configuration on the bifurcation diagram.

In Figs. 10-11, we show the evolution of the buckled configurations for the bi-layered balloon.
In particular, in the case where te = 0.9 we have two possible buckled configurations: in the
former we observe the formation of a protrusion along the equatorial line; while in the latter
the two poles collapse until we reach the self-contacting configuration of the shell. Instead, if
te = 0.95, 1 the bifurcation diagram is symmetric, and only one branch will be shown. We observe
that the formation of a dimple closes to one of the poles. The initial amplitude of such a dimple is
dictated by the critical buckling mode.

In extension, only the DE balloon (te = 1) undergoes necking. As shown in Fig. 12, the
bifurcation is symmetric with respect to the P -axis, exhibiting a pitchfork bifurcation at a stretch
that is higher than the snap-through threshold, see Fig. 7. Therefore, P first increases beyond
the necking threshold, then decreases before undergoing necking. In Fig. 13, we show the actual
configuration of the DE balloon. We observe a progressive thinning of the dielectric elastomer,
which is a sign of criticality since it is regarded as a precursor of the DE failure [34].

6. Conclusions
DEs are promising electro-mechanical materials, especially suitable for applications as soft
actuators and functional wearable devices. The mathematical analysis of layered DE balloons
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Figure 12. Bifurcation diagram showing P versus the dimensionless amplitude of the deformation on the free surface A

for V = 0.3, µe/µd = 10, td = 0.9, and te = 1, V = 0.3. The marker × denotes the theoretical buckling threshold.

Figure 13. (left) Plot of the actual configuration of DE balloons, with td = 0.9, µe/µd = 10, V = 0.3. Here, we show

a planar section of the balloon, where on the left we show ‖u‖/Ro, while on the right each layer is identified using

different colors (orange: DE, blue: elastomer). On the right, we show the corresponding points to each configuration on

the bifurcation diagram.

is of considerable complexity, due to many theoretical and numerical challenges given by the
geometric and material nonlinearities, as well as the electromechanical coupling. In this paper,
we have proposed a theoretical framework for the analysis of the nonlinear response and
the bifurcation diagram of layered dielectric-elastic balloons, reporting complex morphological
transitions due to the interplay of snap-through, buckling, and necking instabilities. After
performing a linear stability analysis based on incremental methods in nonlinear elasticity,
we have implemented a numerical algorithm using an original mixed finite element approach
coupled with a pseudo-arclength continuation method to investigate the shape transitions of
the balloon in the fully nonlinear regime. The onset of the bifurcated branches in the numerical
simulations are in excellent agreement with the theoretical marginal stability thresholds.

In the nonlinear regime, we found that axisymmetric odd modes result into pitchfork
bifurcations for balloons subject to negative inner pressure, while even modes are associated with
transcritical bifurcations, as shown in Fig. 9. Not surprisingly, the two branches associated with
such transcritical bifurcation exhibit very different behaviors, leading to distinct morphologies,
see Fig. 10. Conversely, if the shell is inflated we observe necking, where the critical mode is
always equal to one. The finite element simulations show a progressive thinning of the DE in the
nonlinear regime. This is regarded in the literature as a precursor of failure of the DE [34]. Such a
transition takes place in the unstable region of the snap-through instability, see Fig. 13.

In summary, we have shown that during the snap-through process, a mono-layered DE balloon
may be subject to necking, which limits its applications. A layered dielectric-elastic balloon allows
to overcome this drawback. Our numerical results also demonstrated that the presence of the
elastic layer outside the DE layer has a stabilizing effect on the contractile buckling, and can
suppress the necking induced by the snap-through instability of the balloon.
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In this work, we adopted some simplifications that deserve a final discussion. For example,
the DE and elastic layers of the balloon are taken to be perfectly bonded. While imperfections
may exist in layered structures due to manufacturing problems. However, they have been found
of negligible influence on the mechanical response of the structures [48]. In addition, we did not
take into account the influences of viscoelasticity [49] and electric breakdown failure [50], which
have been experimentally observed in DEs, and that will be the focus of future studies. As regards
the nonlinear finite element analysis, other non-axisymmetric modes could also occur. Future
efforts will be devoted to the extension of the proposed numerical scheme to three-dimensional
simulations. Furthermore, it would also been interesting to compare our theoretical results with
some experiments on spherical DE balloons.

Despite making specific constitutive assumptions for illustrative purposes, the findings in
this paper can be generally applied to give new paradigms for the design and fabrication of
functional DE devices. Indeed, we have shown that the presence of an elastic layer can modulate
the response of the DE. By tuning the stiffness and the thickness of the elastic layer, we have
sown how either to select the balloon morphological transition or to delay (or even inhibit) the
DE necking.

Data Accessibility. The source code is available on GitHub: https://github.com/riccobelli/

dielectric_elastomer_balloon.
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