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Abstract

The Plateau–Rayleigh instability shows that a cylindrical fluid flow can be destabilized by surface
tension. Similarly, capillary forces can make an elastic cylinder unstable when the elastocapillary
length is comparable to the cylinder’s radius. While existing models predict a single isolated bulge
as the result of an instability, experiments reveal a periodic sequence of bulges spaced out by thinned
regions, a phenomenon known as beading instability. Most models assume that surface tension is
independent of the deformation of the solid, neglecting variations due to surface stretch.

In this work, we assume that surface tension arises from the deformation of material particles
near the free surface, treating it as a pre-stretched elastic surface surrounding the body. Using
the theoretical framework proposed by Gurtin and Murdoch, we show that a cylindrical solid can
undergo a mechanical instability with a finite critical wavelength if the body is sufficiently soft or
axially stretched. Post-buckling numerical simulations reveal a morphology in qualitative agreement
with experimental observations. Period-halving secondary bifurcations are also observed. The re-
sults of this research have broad implications for soft materials, biomechanics, and microfabrication
applications where surface tension plays a crucial role.

1 Introduction

A common observation, such as when tap water is gently opened, is that a thin, cylindrical stream of fluid
can undergo a hydrodynamic instability. This instability causes the formation of sinusoidal bulges along
the stream, which eventually break apart into droplets. This phenomenon is known as Plateau–Rayleigh
instability: fluid-air surface tension tends to minimize the surface area, which leads to the formation of
droplets (Plateau, 1873; Rayleigh, 1892).

Similarly to fluids, solids also possess a surface tension at the interface with other materials. While,
for most solids, surface energy is negligible compared to the elastic energy of the object, when the
material is very soft or small, capillarity becomes significant and can deform elastic solid bodies (Style
et al., 2017; Bico et al., 2018). In particular, surface tension can induce large elastic deformations in soft
solids, such as hydrogels filaments (Mora et al., 2013; Ang et al., 2020), rubber-like materials (Py et al.,
2007; Elettro et al., 2016), and even biological matter (Riccobelli and Bevilacqua, 2020; Yadav et al.,
2022; Ang et al., 2024; Riccobelli, 2025).

In recent years, several studies have investigated the classical counterparts of fluid-dynamical insta-
bilities in solids, like the elastic Rayleigh-Taylor (Robinson and Swegle, 1989; Plohr and Sharp, 1998;
Piriz et al., 2009; Mora et al., 2014; Riccobelli and Ciarletta, 2017) and Faraday (Shao et al., 2018;
Bevilacqua et al., 2020; Shao et al., 2020).

Similarly, experiments show that elastic filaments can undergo a surface-tension-driven instability,
resulting in a periodic sequence of bulges along the elastic body (Matsuo and Tanaka, 1992; Zuo et al.,
2005; Naraghi et al., 2007; Mora et al., 2010), a phenomenon known as beading. This elastic analogue
of the Plateau–Rayleigh instability has been investigated in recent years; see, for instance, (Mora et al.,
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Figure 1: Surface tension in solids and fluids exhibits different constitutive responses. In fluids, it
remains constant due to intermolecular forces, whereas in solids, deformation alters surface stress due to
the elastic nature of intermolecular interactions.

2010; Ciarletta and Ben Amar, 2012; Taffetani and Ciarletta, 2015b; Xuan and Biggins, 2016). However,
existing theoretical models predict only the formation of an isolated bulge (Lestringant and Audoly, 2020;
Fu et al., 2021), which contradicts experimental observations, leaving the phenomenon unexplained.

In most of these papers, surface tension in solids is treated as a constant quantity, similarly to fluids
(Mora et al., 2010). Although this might be an acceptable approximation in many cases, studies have
shown that surface tension in solids has an elastic nature, i.e. its value depends on the deformation of
the surface, see fig. 1. The pioneering idea behind this phenomenon is due to Shuttleworth (1950), who
postulated a linear dependence of the surface stress with respect to the surface deformation.

The inclusion of nonlinear elasticity effect in surface stress has been recently investigated in the
context of the Plateau–Rayleigh instability by Bakiler et al. (2023) and Yu and Fu (2025), who proposed
an additive decomposition of the surface stress into a constant term, equal to the classical surface tension
in a fluid, and an elastic contribution. However, the resulting critical buckling mode still corresponds to
an isolated bulge (Yu and Fu, 2025).

In this work, we present a different approach, modelling surface tension in solids as a pre-stretched
elastic surface. Indeed, the rheology of fluids and solids is drastically different: particles close to the
free surface are stretched by intermolecular cohesion forces, similarly to what happens in fluids, but this
causes an elastic distortion of the material. Given the elastic nature of the body, this phenomenon is
equivalent to imposing a pre-stretch on this thin layer of particles close to the surface. In the following,
we explore how this different approach applies to the stability of cylindrical soft solids. Specifically, in
Section 2 we propose a theoretical framework for pre-stretched elastic surfaces, building upon the work
of Gurtin and Murdoch (1975). The proposed framework is specialized for a cylindrical geometry in
Section 3. The linear stability of the system is analysed in Section 4 and a numerical post-buckling
analysis is performed in Section 5.

2 Pre-stretched elastic surface surrounding an elastic solid

In this section, we present a mathematical theory of a three-dimensional elastic solid surrounded by an
elastic surface subject to pre-stretch. The model is derived from the theoretical framework proposed by
Gurtin and Murdoch (1975) and later extended by Holland et al. (2013) to account for morphoelastic
phenomena.

2.1 Notation and basic kinematics

We consider a body with reference configuration B0 surrounded by a material surface S0 = ∂B0. Let χ
be the deformation field mapping B0 to the current configuration B. Similarly, the material reference
surface S0 is mapped to its deformed counterpart S via the surface deformation map χs, which represents
the restriction of χ to the surface. We denote by TX and Tx the tangent spaces to S0 in X and to S in
x respectively. Let N(X) and n(x) denote the outward normal of S0 in X and of S in x, respectively.
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We introduce the surface identity tensors

Is (X) = I (X)−N (X)⊗N (X) , (1)

Hs (x) = I (x)− n (x)⊗ n (x) , (2)

where I is the identity tensor. We can now define the bulk and the surface deformation gradient as

F = ∇χ, Fs = F Is, (3)

where ∇ denotes the gradient operator using referential coordinates. Similarly, we introduce a surface
determinant operator, indicated with dets, that accounts for the local area change induced by Fs, see
appendix A. In this respect, we set

Js := dets Fs; (4)

see Appendix A for a definition of the surface determinant and some recalls on differential calculus on
material surfaces.

Since Is is a rank-deficient tensor, the surface deformation gradient Fs is non-invertible. To overcome
this issue, we introduce a generalized inverse for a general rank-deficient tensor A following Holland et al.
(2013). To this end, we exploit the singular value decomposition

A = VΣWT , (5)

where Σ is a diagonal tensor whose diagonal components correspond to the singular values of A, while
V and W represent the tensors whose columns are the left- and right-singular vectors, respectively. The
generalized inverse can be defined as

A−1 = W
[
Σ+
]−1

VT , (6)

where [Σ+]
−1

is the pseudoinverse of Σ obtained substituting each non-zero entry on the diagonal of Σ
with its reciprocal value. By construction, we observe that (Yu and Fu, 2025; Javili et al., 2014)

F−1
s Fs = Is, FsF

−1
s = Hs.

We are now ready to describe the mechanics of elastic surfaces.

2.2 Pre-stretched elastic surfaces: balance equations

In what follows, we present a model of pre-stretched elastic surfaces surrounding a three-dimensional
continuum. To this end, inspired by the work of Holland et al. (2013), we can perform a multiplicative
decomposition of the surface deformation gradient in a similar fashion as is done in bulk elasticity

Fs = Fe
s F

p
s , (7)

where Fp
s accounts for the elastic pre-stretch, while Fe

s is the elastic distortion from the relaxed state to
the current configuration. Specifically, Fp

s describes the local distortion of each point on the referential
surface to its relaxed state, see fig. 2.

We assume quasistatic deformations, so that inertia terms can be neglected. Let Ps be the first
surface Piola-Kirchhoff stress tensor and b0 the density of body force per unit referential area. From the
balance of forces we obtain (Gurtin and Murdoch, 1975)

∇s · Ps + bs = PN on S0, (8)

where ∇s· denotes the surface divergence operator (see Appendix A for a definition). We remark that
eq. (8) provides the boundary condition for the classical balance equation of linear momentum of a three
dimensional body

∇ · P+ b = 0. (9)

In isothermal conditions, if we assume the existence of a surface strain energy density ψs = ψs(Fs),
standard thermodynamic considerations allow us to write (Dehghany et al., 2020)

Ps =
∂ψs

∂Fs
. (10)
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This equation characterizes hyperelastic material surfaces, similarly to classical hyperelastic materials.
Using the multiplicative decomposition of the deformation gradient eq. (7), we assume that the surface
strain energy density depends on Fe

s only, i.e. there exits a function ψs0 such that

ψs(Fs) = ψs0

(
Fs(F

p
s)

−1
)
.

Therefore, a direct computation shows that

Ps =
∂ψs

∂Fe
s

(Fp
s)

−T
. (11)

We can now specialize this framework to a solid cylinder coated by a pre-stretched membrane.

3 Solid elastic cylinder surrounded by a pre-tensioned elastic
surface

Let B0 ⊂ R3 be the reference configuration representing the cylinder, with R0 denoting its radius. We in-
troduce the referential cylindical coordinates (R, Θ, Z) and the corresponding vector basis (ER, EΘ, EZ).
We assume that its axial length is much greater than the radius, so that we can assume B0 to be infinite
in the direction EZ .

We introduce the current position x ∈ B ⊂ R3 of a point X, where x = χ (X) and B = χ (B0)
is the current configuration of the cylinder. Moreover, let (r, θ, z) be the cylindrical coordinate system
in the current configuration. The corresponding orthonormal basis vectors is given by (er, eθ, ez). We
denote by u : B0 → R3 the displacement field, so that x (X) = χ (X) = X + u (X). The cylinder is
free of body forces, so that the balance equations (8) and (9) become

∇ · P = 0 in B0, (12a)

∇s · Ps = PN on S0. (12b)

Furthermore, we assume that the system is elongated by a mean stretch λ acting along the Z direction.
In order to proceed with our analysis we have to make some constitutive assumptions. The material

composing the cylinder volume is assumed to be incompressible, implying

J := detF = 1. (13)

We take a neo-Hookean volumetric strain energy density, so that

ψ =
µ

2
(I1 − 3) , (14)

where µ is the bulk shear modulus and I1 = tr
(
FTF

)
.

We assume that the elastic surface is isotropically stretched with

Fp
s = λpIs, (15)

Figure 2: Representation of the multiplicative decomposition Fs = Fe
sF

p
s .
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where λp is the stretch from the reference to the relaxed state of the body, see fig. 2. Here, we assume
that λp ∈ (0, 1] so that the elastic surface is under tension. The case λp = 1 corresponds to the absence
of surface stress in the reference configuration.

As a surface strain energy density, we use

ψs =
µs

2

(
Ies − 2− 2 lnJe

)
+

Λs

2

(
1

2

(
J2
e − 1

)
− ln Je

)
, (16)

where µs is the surface shear modulus and Λs modulates surface extensibility. The quantity Ies is defined

as Ies = tr
(
(Fe

s)
T Fe

s

)
, while Je = dets F

e
s represents the elastic part of the surface Jacobian Js.

Since we are dealing with hyperelastic materials, the bulk Piola-Kirchhoff stress tensor is given by

P =
∂ψ

∂F
− pF−T = µF− pF−T , (17)

where p, usually called pressure, is a Lagrange multiplier introduced to enforce the incompressibility
constraint.

Assuming the multiplicative decomposition (5) for Fs and using eq. (11), we obtain the following
expression for the surface Piola-Kirchhoff stress tensor

Ps = µs

(
Fs (F

p
s)

−1
(Fp

s)
−T − F−T

s

)
+

Λs

2

(
Js
Jp
s
− 1

)
F−T
s . (18)

Remark 1. In the undeformed reference configuration, i.e. when F = I, the surface stress Ps corresponds
to an isotropic surface stress, as in fluids, so that

Ps = γIs.

We call γ initial surface tension. It is a function of λp and the material parameters µs and Λs, specifically

γ =
1− λ4p
2λ4p

Λs +
1− λ2p
λ2p

µs. (19)

In particular, the surface is under tension for 0 < λp < 1, see fig. 3. For small deformations from
the reference configuration, the stress Ps obeys to the Shuttleworth equation, as discussed by Yu and Fu
(2025), with the initial surface tension γ given by eq. (19).

In the next section, we show that the cylinder can undergo a beading instability when subjected to
a homogeneous uniaxial stretch.
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Figure 3: Plot of the surface tension γ in the reference configuration, nondimensionalized with respect
to µs, as a function of λp for Λs/µs = 5, 10, . . . , 40. The arrow denotes the direction in which Λs/µs

grows.
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4 Stability analysis

In this section we conduct a linear stability analysis of the cylindrical configurations. First, we show
that the cylinder always admits a solution with cylindrical symmetry.

4.1 Cylindrical solution

Cylindrical solutions representing homogeneous uniaxial extensions are represented by the following class
of deformations

r =
R√
λ
, z = λZ, (20)

which satisfies the incompressibility constraint (13). Indeed, the deformation gradient associated to
eq. (20) is given by

F = λ−
1
2 (er ⊗ER + eθ ⊗EΘ) + λez ⊗EZ .

The corresponding surface deformation gradient can be obtained through eq. (3), so that

Fs = λ−
1
2 eθ ⊗EΘ + λez ⊗EZ .

From eq. (17), we compute the bulk Piola-Kirchhoff stress tensor

P =

(
µ√
λ
−
√
λp

)
(I− ez ⊗EZ) +

(
λµ− p

λ

)
ez ⊗EZ (21)

and its surface counterpart through eq. (18)

Ps =

(
1

2

(
λ3/2

λ4p
−
√
λ

)
Λs +

(
1√
λλ2p

−
√
λ

)
µs

)
eθ⊗EΘ+

(
1

2

(
1

λ4p
− 1

λ

)
Λs +

(
λ

λ2p
− 1

λ

)
µs

)
ez⊗EZ .

(22)
Finally, we can find the expression of the pressure field p by enforcing the boundary condition eq. (12b).
Using eqs. (21) and (22) we get

PRR = −PsΘΘ

R0
.

By solving this equation with respect to p we obtain

p =
2λ2p

(
µR0λ

2
p + µs

)
− λλ4p (Λs + 2µs) + λ2Λs

2λR0λ4p
. (23)

We can now investigate possible bifurcations of the cylindrical configuration that can eventually lead to
a beading instability.

4.2 Incremental relations

We make use of the theory of incremental deformations to analyse the linear stability of the cylindrical
configuration (Ogden, 1997). We introduce the incremental displacement and pressure fields, denoted
by δu : B → R3 and δp : B → R, respectively. We set Γ := grad δu.

Similarly, let Γs be the surface gradient of the incremental displacement, so that Γs = ΓHs. The bulk
and surface incremental Piola-Kirchhoff stress tensors are given by (Yu and Fu, 2025)

δP = A0 : Γ+ p ΓT − δp I,

δPs = C0 : Γs,
so that

δPij = A0 ijhkΓhk + pΓji − δp Iij ,

δPs ij = C0 ijhkΓs hk.
(24)

where A0 and C0 are the fourth-order tensors of the bulk and surface instantaneous elastic moduli,
respectively. Their components are given by

A0 ijhk = FjmFkn
∂2ψ

∂Fim∂Fhn
, (25a)

C0 ijhk = J−1
s F s

jmF
s
kn

∂2ψs

∂F s
im∂F

s
hn

, (25b)
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where we assume summation over repeated indices. The incremental counterpart of eqs. (12a) and (12b)
and eq. (13) are given by

div δP = 0 in B, (26a)

tr Γ = 0 in B, (26b)

divs δPs = δPn on S. (26c)

If the material is isotropic, a convenient way of computing the components of the tensors A0 and C0

is to rely on the principal stretches, indicated in this case by λr = λθ = λ−1/2 and λz = λ. Indeed, by
using cylindrical coordinates with i, j ∈ {r, θ, z} and α, β ∈ {θ, z} we get (Ogden, 1997)

A0 iijj = λiλjψ,ij , (27a)

A0 jiji =
λ2i

λ2i − λ2j
(λiψ,i − λjψ,j) if i ̸= j, (27b)

A0 ijji = A0 jiij = A0 jiji − λiψ,i if i ̸= j, (27c)

while, for the surface elastic moduli we obtain (Yu and Fu, 2025; Chadwick and Ogden, 1971)

JsC0ααββ = λαλβψs,αβ ,

JsC0 βαβα =
λ2α

λ2α − λ2β
(λαψs,α − λβψs,β) if α ̸= β,

JsC0 βααβ =
λαλβ
λ2α − λ2β

(λβψs,α − λαψs,β) if α ̸= β,

JsC0 rαrα = λαψs,α.

4.3 Axisymmetric solutions of the incremental problem and linear stability
analysis

We can now proceed with the solution of the incremental problem (26) and the construction of a bifur-
cation criterion.

While an axially compressed cylinder can undergo a non-axisymmetric instability, similarly to the
classical Euler buckling problem (Goriely et al., 2008), in the presence of surface tension and axial traction
the buckling mode is axisymmetric (Mora et al., 2010; Fu et al., 2021). Therefore, in the following we focus
on axisymmetric perturbations to the base solution, i.e. we assume that the incremental displacement
δu and the incremental pressure δp have the following structure:

δu = u (r, z) er + w (r, z) ez, δp = δp(r, z). (28)

By exploiting a matrix representation of second order tensors through the cylindrical basis, we can
write the gradient of the incremental displacement as

Γ = grad δu =

 ∂u
∂r 0 ∂u

∂z
0 u

R 0
∂w
∂r 0 ∂w

∂z

 . (29)

The surface counterpart of Γ can be obtained through eq. (2), so that

Γs = ΓHs =

0 0 ∂u
∂Z

0 u
R 0

0 0 ∂w
∂Z

 .

In order to proceed with the analysis, we assume the following separation of variables

u (r, z) = U(r) sin (kz), (30a)

w (r, z) =W (r) cos (kz), (30b)

δp (r, z) = Q(r) sin (kz), (30c)
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where k is the wavenumber of the perturbation. Hence, we can obtain W (r) and Q(r) as a function of
U(r) and its derivatives from eq. (26b) and the expression of δPrr in eq. (24), respectively, so that

W (r) =
rU ′(r) + U(r)

kr
,

Q (r) =
µ
(
r
(
r
(
rU (3)(r) + 2U ′′(r)

)
−
(
k2λ3r2 + 1

)
U ′(r)

)
+ U(r)

(
1− k2λ3r2

))
k2λr3

.

From eq. (26a), we finally obtain a fourth order ordinary differential equation for U(r):

r
((
k2
(
λ3 + 1

)
r2 − 3

)
U ′(r) + r

((
k2
(
λ3 + 1

)
r2 + 3

)
U ′′(r)− r

(
rU (4)(r) + 2U ′′′(r)

)))
k2λr4

+

−
U(r)

(
k4λ3r4 + k2

(
λ3 + 1

)
r2 − 3

)
k2λr4

= 0.

(31)

The general solution of eq. (31) for U(r), ensuring the continuity of the body along the cylinder’s
axis, is given by a linear combination of two independent functions, U1(r) and U2(r) (Bigoni and Gei,
2001), i.e.

U(r) = c1U1(r) + c2U2(r), (32)

where c1 and c2 are arbitrary constants. In particular, when λ ̸= 1,

U1(r) = J1(krq1) U2(r) = J1(krq2), (33)

where Jm is the modified Bessel function of the first kind of order m, while q1 and q2 are two coefficients
given by

q21, 2 =
λ3 + 1± (λ3 − 1)

2
. (34)

Instead, if λ = 1, we get (Bigoni and Gei, 2001)

U1(r) = J1(kr), U2(r) = rJ0(kr). (35)

We are now left with the imposition of the boundary condition eq. (26c). Given the solution eq. (32),
such a boundary condition reduces to a linear system whose unknowns are (c1, c2) = c, i.e.

Mc = 0.

Here, M is a 2× 2 matrix whose elements are reported in appendix B.
Non-trivial solutions of the incremental problem exist when the matrix M is singular, that is

φ (k, µ, λ, µs,Λs, λp, R0) := detM = 0. (36)

It is convenient to proceed with a non-dimensionalization, identifying the dimensionless groups that
control the bifurcation. In particular, we choose R0 and µs as characteristic length and stiffness of the
system, respectively. This choice allows us to identify the following dimensionless quantities

µ̂ =
µR0

µs
, Λ̂s =

Λs

µs
, k̂ = kR0.

We observe that µs/µ can be interpreted as the counterpart of the classical elasto-capillary length of the

system (Style et al., 2017), while Λ̂s measures the extensibility of the free surface. Equation (36) can
now be rewritten in dimensionless form as

φ̂
(
k̂, µ̂, λ, Λ̂s, λp

)
= 0, (37)

where φ̂ is the nondimensionalized counterpart of the function φ.
Equation (37) is highly nonlinear and it is not possible to find analytic expressions for the roots.

Thus, we rely on numerical computations to find its solutions, using a Newton algorithm implemented
with the software Mathematica 13.3 (Wolfram Research, Champaign, IL, USA).
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4.4 Results of the linear stability analysis

In this section, we report and discuss the results of the linear stability analysis. We refer to the first
mode that becomes unstable as the critical buckling mode. The corresponding dimensionless critical
wavenumber is denoted by k̂cr.

We first explore the stability of the cylindrical configuration with respect to the control parameter
µ̂, analysing the effect of surface pre-stretch. In all the studied cases, as we decrease µ̂, the critical
mode has a non-zero wavenumber, see fig. 4. The marginal stability curves in fig. 4 show a similar
trend as we change the parameters. Specifically, we observe a decrease in the critical thresholds for µ̂
as λp approaches 1. Moreover, axial stretching appears to stabilize the cylinder: a bifurcation occurs at
larger values of µ̂ when λ = 1.4 with respect to the case with λ = 1, as shown in fig. 4. In fig. 5 we
report the trend of the critical wavenumber and of the critical shear modulus. Our results show that µ̂cr

monotonically decreases as λp increases.
We now analyse the effect of surface extensibility. The results are reported in fig. 6. As the surface

becomes less extensible, i.e. as Λ̂s grows, also µ̂cr monotonically grows. From fig. 7 we can notice that
this trend is linear for both λ = 1 and λ = 1.4. In particular, the axial strain has a stabilizing effect
on the cylinder, increasing µ̂cr as the axial stretch grows. Furthermore, we observe that the critical
wavenumber rapidly increases for small Λ̂s, and saturates to a constant value when the surface is nearly
inextensible. From a physical standpoint, these results suggest that the periodic beading pattern can be
triggered more easily when the surface is stiffer and nearly inextensible. We also remark that, as before,
the critical wavenumber predicted by the linear stability analysis is finite and non-zero, in agreement
with the beading pattern observed in the experiments (Mora et al., 2010).
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Figure 4: Plot of µ̂ versus the dimensionless wave number k̂ for λ = 1 (fig. 4a) and λ ̸= 1 (fig. 4b). Here,

Λ̂s = 40 and λp = 0.4, 0.5, 0.6, 0.7, 0.8. The arrow denotes the direction of growth of λp.
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Figure 5: Plot of µ̂cr (turquoise) and k̂cr (blue) against λp for λ = 1 (fig. 5a) and λ ̸= 1 (fig. 5b). Here,

Λ̂s = 40.
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Figure 6: Plot of µ̂ versus the dimensionless wave number k̂ for λ = 1 (fig. 6a) and λ ̸= 1 (fig. 6b). Here,

λp = 0.8 and Λ̂s = 40, 60, 80, 100, 120. The arrow denotes the direction of growth of Λ̂s.
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Figure 7: Plot of µ̂cr (turquoise) and k̂cr (blue) against Λ̂s for λ = 1 (fig. 7a) and λ ̸= 1 (fig. 7b). Here,
λp = 0.8.
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Figure 8: Plot of λp versus the dimensionless wavenumber k̂ for λ = 1 (fig. 8a) and λ ̸= 1 (fig. 8b). Here,

Λ̂s = 40 and µ̂ = 0.5, 10.5, 20.5, 30.5, 40.5. The arrow denotes the direction of growth of µ̂.

We also explore the stability of cylindrical configurations by modulating the surface tension through
λp. The results are shown in fig. 8. We find again a non-zero critical wavenumber, accordingly with the
beading phenomenon. From fig. 9 we can also notice that when µ̂ decreases, the critical threshold for
λp decreases as well, while the wavenumber sharply increases for small values of µ̂ and saturates at a
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Figure 9: Plot of λcrp (turquoise) and k̂cr (blue) against µ̂ for λ = 1 (fig. 9a) and λ ̸= 1 (fig. 9b). Here,

Λ̂s = 40.
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Figure 10: Plot of the axial stretch λ versus the dimensionless wavenumber k. The arrow denotes the
direction of growth of λp with uniform steps of amplitude 0.05, from 0.5 to 0.7.
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Figure 11: Plot of λcrp (turquoise) and k̂cr (blue) against λ. Here, we set Λ̂s = 10 and µ̂ = 0.8.

constant value when the non-dimensional shear modulus is sufficiently large.
Finally, we analyse the stability of the cylindrical configuration with respect to the axial strain λ. As

shown in fig. 10, we find a finite positive critical wavenumber, consistently with all other cases explored in
this section. Interestingly, the marginal stability curves form closed loops, suggesting that while buckling
occurs initially, the system may return to the unbuckled state if λ becomes sufficiently large. This aspect
will be investigated in the following through finite element simulations. Moreover, from fig. 11, we notice
that both the critical thresholds for λp and for the dimensionless wavenumber increase sublinearly as λ

is incremented. We observe that the critical wavenumber k̂cr is always between 0.5 and 0.7 in all the
cases examined in this section. In the next section, we characterize the post-buckling behaviour of the
critical mode in the fully nonlinear regime.
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5 Numerical simulations

In this section, we detail the numerical methods and present the results of the simulations for the
nonlinear boundary value problem (12a)-(18).

5.1 Weak formulation and finite-element approximation

Since the problem we are studying is axisymmetric, we can simplify our analysis by reducing it to the
rectangular domain Σ = (0, L)× (0, R0) placed in the (Z, R) plane, where L = 2π/ (kcrλ) is the critical
wavelength of the perturbation. The fully 3D solution can be reconstructed by symmetry from the 2D
solution on this cylindrical section.

The upper boundary side, i.e. Γ4 = {(Z, R) ∈ Σ : 0 ≤ Z ≤ L, R = R0}, represents the free surface
of the cylinder, where the pre-stretched elastic surface is present. The following Dirichlet boundary
conditions are imposed on the remaining edges

uZ = 0 on Γ1 = {(Z, R) ∈ Σ : Z = 0, 0 ≤ R ≤ R0},
uZ = (λ− 1)L on Γ2 = {(Z, R) ∈ Σ : Z = L, 0 ≤ R ≤ R0},
uR = 0 on Γ3 = {(Z, R) ∈ Σ : R = 0, 0 ≤ Z ≤ L}.

while homogeneous Neumann conditions are assumed for the remaining component of the traction.
A small imperfection is applied to the mesh close to Γ4 to initiate the mechanical instability. In order

to follow the bifurcated branch, we employ an arclength continuation algorithm (Seydel, 2010), briefly
reviewed in the following.

Let us consider the system of parametrized equations stated in an abstract setting

f (y, η) = 0, (38)

where y represents the state of a (physical) system and η is the control parameter of the bifurcation
problem. In our application, y = (u, p) and η is one of the dimensionless parameters of eq. (37).

Continuation algorithms allow to find the region of the plane (y, η) where eq. (38) is satisfied. Specif-
ically, we exploited a pseudo-arclength continuation algorithm, which requires to adopt the control
parameter η as an additional unknown of the system. As a consequence, we must add a further equation
to the problem. Assuming that we know that f(yj , ηj) = 0, we look for a couple (yj+1, ηj+1) that
satisfies eq. (38) and a constraint of the form

∥yj+1 − yj∥2Y + ∥ηj+1 − ηj∥2H = ds2 (39)

where ds is the pseudo-arclength parameter and ∥ · ∥Y and ∥ · ∥H are suitable norms for y and η. This
equation restricts the search of

(
yj+1, ηj+1

)
to the points that are at a distance ds (in terms of the

norms ∥ · ∥Y and ∥ · ∥H) from the previous solution found at the previous step.
The problem given by eqs. (38) and (39) usually admits multiple solutions. In order to proceed

along a specific path in the bifurcation diagram, a predictor-corrector method is frequently exploited.
Specifically, assume that at least one solution of eq. (38) can be found, say, (y1, η1). Then, the j-th
continuation step attempts to find the solution

(
yj+1, ηj+1

)
starting from the previously calculated(

yj , ηj
)
. This process is usually split into two parts: the former is called predictor step and denoted by(

ȳj+1, η̄j+1

)
. It is aimed at finding a good approximation of

(
yj+1, ηj+1

)
without necessarily being a

solution of eq. (38). The latter is named corrector step and, starting from the output of the predictor
step, will produce an effective solution of eq. (38). It usually consists in a Newton-Rapson algorithm.(

yj , ηj
) predictor−−−−−−→

(
ȳj+1, η̄j+1

) corrector−−−−−→
(
yj+1, ηj+1

)
.

This induces the corrector to modify the predictor output in order to find a solution that satisfies eq. (39).
In our application, in eq. (39) for the state y = (u, p) and the control parameter η, we adopt the

L2 norm over the referential domain B0. In the simulations presented in this work, we used a secant
predictor, i.e (

ȳj+1, η̄j+1

)
=
(
yj , ηj

)
+
(
yj − yj−1, ηj − ηj−1

)
,

meaning that the predictor is chosen on the prolongation of the segment
(
yj − yj−1, ηj − ηj−1

)
.
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To introduce the weak formulation of the two-dimensional problem, we define the following functional
spaces

V =
{
v ∈

[
H1 (Σ)

]2
: vR = 0 on Γ3, vZ = 0 on Γ1, vZ = (λ− 1)L on Γ2

}
,

V0 =
{
v ∈

[
H1 (Σ)

]2
: vZ = 0 on Γ1 ∪ Γ2 ∪ Γ3

}
,

Q = L2 (Σ) .

Specifically, V and V0 represent the spaces where the trial and test functions for the displacement,
respectively, will be sought, while Q is the functional space for trial and test functions associated to the
pressure field. The parameter space is simply R. To sum up, the weak formulation of the arclength
problem reads: find (uj+1, pj+1, ηj+1) ∈ V ×Q× R such that∫

Σ

Pj+1 : ∇v dA0 +

∫
Γ4

Ps j+1 : ∇sv dℓ0 = 0 ∀ v ∈ V0, (40a)∫
Σ

(detFj+1 − 1) q dA0 = 0 ∀ q ∈ Q, (40b)

δη

(∫
Σ

(
|uj+1 − uj |2 + (pj+1 − pj)

2
)
2R dA0 + (ηj+1 − ηj)

2 |Σ|R0

)
= δη ds2|Σ|R0 ∀ δη ∈ R, (40c)

where the Piola-Kirchhoff tensors and the deformation gradient tensor are evaluated at (u, p) = (uj+1, pj+1).
We introduce the discretization of the problem by defining an isotropic triangulation T =

⋃ne

i=1 Ki

over Σ, where, for every i, Ki is a triangle in Σ and ne is the total number of triangles. In each
simulation, we discretize the computational domain using a structured mesh with 30 elements along
the radial direction. Equations (40a) to (40c) are discretized using a stable pair of continuous finite
dimensional spaces belonging to the family of Taylor-Hood elements (Quarteroni, 2018). In particular,
we use P2 elements for the displacement field and P1 elements for the pressure over each triangle Ki

in T , where Pr denotes the space of polynomials of degree r over the triangle Ki that are continuous
over the physical domain. The proposed numerical scheme is implemented in Python using the finite
element computing platform FEniCS (Logg et al., 2012) and library BiFEniCS that allows to implement
the continuation algorithm (Riccobelli et al., 2020).

5.2 Results of the numerical simulation

We start by choosing as control parameter η = µ̂. The bifurcation diagram, reported in fig. 12, shows
the amplitude of the beading pattern ∆r versus the dimensionless shear modulus µ̂, where

∆r = max
Z∈[0, 2πR0/(λk̂cr)]

r (R0, Z)− min
Z∈[0, 2πR0/(λk̂cr)]

r (R0, Z) .

The plot in fig. 12 shows that the cylinder undergoes a subcritical pitchfork bifurcation when it reaches
the marginal stability threshold predicted by the linear stability analysis. In particular, we notice that
the cylindrical configuration remains stable as long as µ̂ is greater than the bifurcation threshold. The
buckled morphology exhibits the formation of bulges spaced with long, extremely thinned regions: this
phenomenon is caused by an increasingly localized beading pattern due to a progressive decrease in µ̂.
Structures like these are typically observed in damaged axons, where a similar morphological instability
occurs when the degraded cytoskeleton is squeezed by the action of the surrounding actin cortex (Datar
et al., 2019; Riccobelli, 2021; Fu et al., 2021; Dehghany et al., 2024).

Similarly, we study the behaviour of the cylinder by choosing η = λp as control parameter, simulating
the increase of surface tension induced by the change of the medium surrounding the cylinder, as in the
experiments of Mora et al. (2013). In fig. 13 we show the dimensionless beading amplitude against
λp. Similarly to µ̂, the bifurcation diagram shows a subcritical pitchfork bifurcation that stabilizes in
the nonlinear regime. We deduce that the morphology remains stable in a cylindrical shape when λp
is sufficiently high, i.e. for small surface pre-stretch. Close to the bifurcation value, the cylindrical
profile begins to deform, leading to a similar periodic beading as in fig. 12. Therefore, a decrease of λp
corresponds to a more and more pronounced separation between bulges and thinned regions. We recall
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Figure 12: (Left) Bifurcation graph showing the dimensionless beading amplitude ∆r/R0 versus the

control parameter µ̂ for λ = 1.4, Λ̂s = 40 and λp = 0.8. The cylindrical configuration becomes unstable
when µ̂ decreases below the critical threshold µ̂cr. The orange triangle denotes the theoretical stability
threshold obtained with the linear stability analysis. (Right) Buckled morphology obtained for the three
values of µ̂, corresponding to the three points A, B and C reported in the bifurcation diagram.
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Figure 13: (Left) Bifurcation graph showing the dimensionless beading amplitude ∆r/R0 versus the

control parameter λp for λ = 1.4, Λ̂s = 40 and µ̂ = 20.5. The cylindrical configuration becomes unstable
when λp decreases below the critical threshold λcrp . The orange triangle denotes the theoretical stability
threshold obtained with the linear stability analysis. (Right) Buckled morphology obtained for the three
values of λp, corresponding to the three points A, B and C reported in the bifurcation diagram.

that the relation between λp and surface tension is discussed in Remark 1, and smaller values of λp are
associated with an increased surface stress.

Finally, we perform the continuation analysis using λ as the control parameter. We observe different
behaviors depending on λp. As shown in fig. 14, for moderate pre-stretch, we observe a supercritical
bifurcation. If the body is further axially stretched, the system returns to the unbuckled cylindrical
configuration. This possibility was also explored by Taffetani and Ciarletta (2015a). On the other hand,
for smaller values of λp, a subcritical pitchfork bifurcation occurs (fig. 14b). In the nonlinear regime,
if the cylinder is further stretched, the instability is not suppressed, as in the previous case. Instead,
a sequence of period-halving secondary bifurcations appears. Secondary bifurcations characterized by
period halving are a hallmark of a possible transition to chaos (Alligood et al., 1998). This might be the
case for systems where the cylinder becomes extremely soft due to structural damage, as reported in the
experiments of Matsuo and Tanaka (1992) on cylindrical gels and in neurons (Datar et al., 2019).

6 Final remarks

Surface phenomena in soft elastic media have attracted significant attention due to their relevance in
material science, biophysics, and engineering. In this work, we have incorporated elastic effects into
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Figure 14: (Top) Bifurcation diagram showing the dimensionless beading amplitude ∆r/R0 versus the

axial stretch λ for µ̂ = 0.8, Λ̂s = 10, λp = 0.7 (a) and λp = 0.6 (b). The orange triangles denote the
marginal stability thresholds obtained with the linear stability analysis. (Bottom) Beaded morphology of
the buckled cylinder for λp = 0.6, corresponding to the points A, B, C, and D reported in the bifurcation
diagram of panel (b).

surface tension to effectively describe the Plateau-Rayleigh instability in solids.
Specifically, we have adopted the theory of material surfaces proposed by Gurtin and Murdoch (1975)

to account for elastic pre-stretch. Through linear stability analysis, we have shown that a cylindrical
solid can undergo mechanical instability when surface energy is sufficiently high relative to bulk elastic
energy. In particular, a mechanical instability can be triggered by

• decreasing bulk elastic stiffness,

• applying axial stretch,

• increasing surface tension.

All these scenarios are thoroughly analysed in section 4, where we prove that the critical wavenumber
falls within the interval 0.5R0 < kcr < 0.7R0, R0 being the reference radius. This range qualitatively
aligns with experimental findings from (Matsuo and Tanaka, 1992; Mora et al., 2010) and has not been
captured by previous mathematical models, highlighting the crucial role of surface tension elasticity in
reproducing this phenomenon. The only exception is provided by Taffetani and Hennessy (2024), which
incorporated bending elastic energy alongside a constant surface tension, suggesting that elasticity may
play a role in triggering a periodic pattern. We remark that the boundary layer generated by capillary
effects is relatively small, meaning that stretching energy should dominate over bending terms, thereby
justifying the approach proposed in this paper. Nevertheless, a promising avenue for exploring the
interplay between stretching and bending is offered by the theoretical framework proposed by Tomassetti
(2024).

The postbuckling behavior is investigated using a finite element approximation combined with a
continuation algorithm, with results presented in section 5. Depending on the parameter values, the
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resulting buckled states stem from either subcritical or supercritical pitchfork bifurcations. Interestingly,
when buckling is induced by axial stretching, we observe either a reversal of the bifurcation, where the
system returns to a straight cylindrical configuration after transient buckling at higher stretches, or a
sequence of period-halving bifurcations.

Our findings underscore the importance of incorporating strain-dependent surface tension at the
interface of soft solids. Indeed, key characteristics of the elastic Rayleigh-Plateau instability, such as
the finite wavelength, cannot be captured without accounting for this elastic dependence. Future efforts
will be devoted to understanding the behaviour of this system when subjected to structural damage.
Hydrogel filaments have been observed to develop voids following mechanical instability (Matsuo and
Tanaka, 1992), a phenomenon reminiscent of elastic cavitation. Studying this system may shed light
on the structural damage occurring in neurons during neurodegenerative diseases, where similar beaded
structures are observed in axons (Pullarkat et al., 2006; Datar et al., 2019).
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A Differential operators in curvilinear coordinates

In this appendix we suppose that indices i and j run from 1 to 3, while α and β run from 1 to 2. We
denote by E = {e1, e2, e3} the canonical basis of R3. Let G = {g1, g2, g3} be an arbitrary basis in E .
We say that G∗ = {g1, g2, g3} is the dual basis to G if and only if gi ·gj = δji for every i and j, where δji
denotes the Kronecker delta. Duality is a reflexive property and, given the basis G, there always exists
its dual G∗. It is straightforward to see that E∗ = E .

Given an arbitrary vector v, we denote by {v1, v2, v3} its covariant components and by {v1, v2, v3}
its contravariant components. Let us assume that {g1, g2, g3} be the basis of a generic curvilinear
coordinates system {ξ1, ξ2, ξ3} and let dr denote an arbitrary infinitesimal vector expressed in terms
of the Cartesian coordinates {x1, x2, x3}. It is always possible to express dr in terms of the curvilinear
coordinates {ξ1, ξ2, ξ3} through the linear, invertible relation α between the two coordinates systems,
that is ei = αj

ig
j . The relation between gi, g

i and dr are expressed as

gi =
∂r

∂ξi
, gi =

∂ξi

∂r
.

Moreover, we denote by gij the map from the contravariant basis to the covariant one and by gij the
mapping from the covariant basis to the contravariant one, namely

gi = gijgj ,

gi = gijg
j .

The coefficients of these two maps are called covariant and contravariant metric coefficients, respectively.

They are defined as gij = gi · gj and gij = gi · gj and are such that [gij ] =
[
gij
]−1

.
We can introduce the gradient and divergence operators using the general curvilinear coordinates intro-
duced above (Javili et al., 2014)

grad {·} =
∂{·}
∂ξi

⊗ gi, (41a)

div {·} =
∂{·}
∂ξi

· gi = grad {·} : I, (41b)

where I is the identity tensor in R3.
Let us consider a regular surface S in the current configuration. Being P = (ξ̂1, ξ̂2) ⊂ R2, let

ξ : P → S be a parametrization of the surface. In analogy to the procedure derived for the bulk, we
define the covariant and contravariant surface basis vectors for the curvilinear coordinates as

ĝα =
∂r

∂ξ̂α
, ĝα =

∂ξ̂α

∂r
.

As for the bulk, there exists an invertible relation between co- and contravariant surface basis vectors,
that is

ĝα = ĝαβ ĝβ ,

ĝα = ĝαβ ĝ
β ,

where [ĝαβ ] =
[
ĝαβ
]−1

with ĝαβ = ĝα · ĝβ and ĝαβ = ĝα · ĝβ . Now, it is possible to define the contra-

and covariant base vectors that are normal to the surface S as ĝ3 := ĝ1 ∧ ĝ2 and ĝ3 =
[
ĝ33
]−1

ĝ3 in such
a way that

ĝ3 · ĝ3 = 1,
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coherently with the definition of dual basis. As a consequence, the normal unit vector to the surface is

n =
ĝ3
|ĝ3|

=
ĝ3

|ĝ3|
, (42)

where the last equality holds since ĝ3 and ĝ3 are parallel. The surface identity tensor in the current
configuration is defined as

Hs = I− ĝ3 ⊗ ĝ3 = I− n⊗ n, (43)

that is exactly eq. (2).

We can finally define the surface gradient, divergence and determinant operators as (Javili et al.,
2014)

grads {·} =
∂{·}
∂ξ̂α

⊗ ĝα, (44a)

divs {·} =
∂{·}
∂ξ̂α

· ĝα = grads {·} : Hs, (44b)

dets {·} =
|[{·} · ĝ1] ∧ [{·} · ĝ2]|

|ĝ1 ∧ ĝ2|
. (44c)

To conclude, the surface divergence theorem holds: let σ be a regular subsurface of S with a smooth
boundary ∂σ and let m be the outward unit normal to ∂σ. Then∫

σ

T ·m =

∫
∂σ

divs T , (45)

for every tangent field T to σ. In the computations and definitions of this appendix we have exploited
the notation we have used for material bodies and surfaces in the current configuration. Nonetheless, all
these results are general and can be applied to every framework. However, particular attention should
be devoted to the surface identity tensors: if on one hand the reference and actual bulk identities are
invariant and equal (Javili et al., 2014), the same cannot be stated for the surface ones. Indeed, while
the surface actual identity has been defined in eq. (43), given a surface S0 in reference configuration, we
have

Is = I−N ⊗N ,

where N is the normal unit vector to S0. Since, in general, S0 ̸= S, also N ̸= n. Thus, we conclude
that in general Is ̸= Hs.

B Coefficients of the matrix M

In this appendix we provide the explicit expressions of the components of the 2 × 2 matrix M arising
from the imposition of the boundary condition eq. (26c). Since the expression for U(r) depends on the
value of λ (see eqs. (33) and (35)) we distinguish the two cases.

When λ = 1 we obtain

M11 = J1 (kR0)
(
2λ4p (−2µR0 + Λs + 2µs)− k2

(
λ2p − 1

)
R2

0

(
λ2pΛs + Λs + 2λ2pµs

))
+

+ kR0J0 (kR0)
(
2λ2p

(
2λ2pµR0 − λ2pµs + µs

)
−
(
λ4p + 1

)
Λs

)
,

M12 = −R0

(
J0 (kR0)

(
Λs

(
k2
(
λ4p − 1

)
R2

0 + 2
)
+ 2λ2pµs

(
k2
(
λ2p − 1

)
R2

0 − 2
))

+

+ kR0J1 (kR0)
(
−4λ4pµR0 + λ4pΛs + Λs + 2λ4pµs − 2λ2pµs

) )
,

M21 = k
(
kR0J0 (kR0)

((
λ4p + 1

)
Λs + 2

(
λ2p + 1

)
λ2pµs

)
+

− J1 (kR0)
(
−4λ4pµR0 + λ4pΛs + Λs + 2λ4pµs − 2λ2pµs

) )
,

M22 = R0

(
J1 (kR0)

(
k2R0

(
λ4pΛs + Λs + 2λ4pµs + 2λ2pµs

)
+ 4λ4pµ

)
+

+ kJ0 (kR0)
(
4λ4pµR0 + λ4pΛs + Λs + 2λ4pµs + 6λ2pµs

) )
.
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If λ ̸= 1, we get

M11 =
1

λ3

(
− 2J1 (kλR0)

(
k2R2

0

(
2λ2λ2pµs + λΛs −

(
λ4p (Λs + 2µs)

))
− λ2Λs + λλ4p (Λs + 2µs) + 2λ2pµs

)
+

+ kλR0J0 (kλR0)
(
−2λ2p

(
2λ2pµR0 + µs

)
+ λ2Λs + λλ4p (Λs + 2µs)

)
+

+ kλR0J2 (kλR0)
(
−2λ2p

(
2λ2pµR0 + µs

)
+ λ2Λs + λλ4p (Λs + 2µs)

) )
,

M12 =
1

λ2

(
2
√
λJ1

(
kR0√
λ

)(
k2R2

0

(
2λ2λ2pµs + λΛs −

(
λ4p (Λs + 2µs)

))
+

+ 2λ3λ4pµR0 − 2λ4pµR0 − λ2Λs + λλ4p (Λs + 2µs) + 2λ2pµs

)
+

+ kR0J0

(
kR0√
λ

)(
2λ3λ4pµR0 + 2λ2p

(
λ2pµR0 + µs

)
− λ2Λs − λλ4p (Λs + 2µs)

)
+

+ kR0J2

(
kR0√
λ

)(
2λ3λ4pµR0 + 2λ2p

(
λ2pµR0 + µs

)
− λ2Λs − λλ4p (Λs + 2µs)

) )
,

M21 =
k

λ3/2

(
4
(
λ3 + 1

)
λ2pJ1 (kλR0)

(
λ2pµR0 + µs

)
+ kλ2R0J0 (kλR0)

(
2λ2λ2pµs + λΛs + λ4p (Λs + 2µs)

)
+

+ kλ2R0J2 (kλR0)
(
2λ2λ2pµs + λΛs + λ4p (Λs + 2µs)

) )
,

M22 =
k

λ5/2

(
4λλ2pJ1

(
kR0√
λ

)(
2λ2pµR0 + λ3µs + µs

)
+

+ kλ3/2R0J0

(
kR0√
λ

)(
2λ2λ2pµs + λΛs + λ4p (Λs + 2µs)

)
+

+ kλ3/2R0J2

(
kR0√
λ

)(
2λ2λ2pµs + λΛs + λ4p (Λs + 2µs)

) )
.
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