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Abstract

Active control of wrinkling in soft film-substrate composites using electric fields
is a critical challenge in tunable material systems. Here, we investigate the electro-
mechanical instability of a soft dielectric film bonded to a hyperelastic substrate, re-
vealing the fundamental mechanisms that enable on-demand surface patterning. For
the linearized stability analysis, we use the Stroh formalism and the surface impedance
method to obtain exact and sixth-order approximate bifurcation equations that signal
the onset of wrinkles. We derive the explicit bifurcation equations giving the crit-
ical stretch and critical voltage for wrinkling, as well as the corresponding critical
wavenumber. We look at scenarios where the voltage is kept constant and the stretch
changes, and vice versa. We provide the thresholds of the shear modulus ratio 70 or
pre-stretch \Y below which the film-substrate system wrinkles mechanically, prior to
the application of a voltage. These predictions offer theoretical guidance for practical
structural design, as the shear modulus ratio  and/or the pre-stretch A can be chosen
to be slightly greater than r? and/or A2, so that the film-substrate system wrinkles with
a small applied voltage. Finally, we simulate the full nonlinear behavior using the Fi-
nite Element method (FEniCS) to validate our formulas and conduct a post-buckling
analysis. This work advances the fundamental understanding of electro-mechanical
wrinkling instabilities in soft material systems. By enabling active control of surface
morphologies via applied electric fields, our findings open new avenues for adaptive
technologies in soft robotics, flexible electronics, smart surfaces, and bioinspired sys-
tems.
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1. Introduction

Surface wrinkling of soft materials and biological tissues is ubiquitous in nature
and engineering (Li et al., 2012; Tan et al., 2020), typically occurring when a soft
substrate coated with a stiffer film is loaded mechanically beyond a critical threshold
(Liu et al., 2024). In biology, countless wrinkling morphologies appear, such as the
folds of brain matter (Griffiths et al., 2009; Fernandez et al., 2016; Balbi et al., 2020;
Riccobelli and Bevilacqua, 2020), the track of oesophageal mucosa (Li et al., 2011),
and the wrinkles of skin (Autumn et al., 2002; Zhao et al., 2020b). In engineering, the
wrinkling of film-substrate systems can be harnessed to design specific patterns and
alter optical properties (Li et al., 2017), probe the surface characteristics of materials
(Stafford et al., 2004), reduce effective surface tension (Lee et al., 2021), design novel
nonlithographic phase masks (Zhao et al., 2020a), and help design novel flexible sensors
(Wang et al., 2022; Lee et al., 2022; Yin et al., 2024), etc. Therefore, exploring
the buckling and post-buckling regimes of film-substrate systems helps us understand
and further control multiple pattern formations. However, the purely mechanical
actuation of wrinkling/creasing in film-substrate systems does not allow for efficient
active control of such surface patterns (Psarra et al., 2017).

The emergence of soft smart materials provides a great opportunity for applied
research on film-substrate systems. Specifically, soft dielectric elastomers (DEs), which
deform significantly under an external electric field (Pelrine et al., 1998), offer the
advantages of extensive actuation strains (Li et al., 2013), fast response (Chen et al.,
2019), and low elastic modulus (Shian et al., 2015), enabling their use in artificial
muscles (Brochu and Pei, 2009), electrical energy storage devices (Li et al., 2018),
sensors (Pelrine et al.,; 1998; Lee et al., 2022; Yin et al., 2024), grippers (Shian et al.,
2015), and soft robots (Liang et al., 2020; Guo et al., 2021).

The coupling of Maxwell’s equations of electricity with those of continuum mechan-
ics complicates the study of film-substrate instabilities. For pure elastic film-substrate
systems, early studies concentrated on analyzing linearized stability in the neighbor-
hood of large contractions (Shield et al., 1994; Ogden and Sotiropoulos, 1996; Cai and
Fu, 1999), and were followed by advanced explorations of wrinkling, post-buckling,
semi-analytic methods, and finite element simulations (Cai and Fu, 2000; Cao and
Hutchinson, 2011, 2012; Hutchinson, 2013; Fu and Ciarletta, 2015; Cheewaruangroj
and Biggins, 2019; Alawiye et al., 2019, 2020; Liu et al., 2024). Regarding pure DE
systems, many works have focused on instability (Bertoldi and Gei, 2011; Fu et al.,
2018; Su et al., 2018, 2019b, 2023, 2024; Zhu et al., 2024; Si et al., 2025).

Kofod et al. (2003); Wang et al. (2011a,b) and Wang and Zhao (2013) carried
out a series of experiments on pre-stretched elastic dielectrics bonded to rigid sub-
strates and subjected to high voltages, leading to localized creasing-like instabilities
(see Fig. 1), which were later studied theoretically and numerically by Hutchinson
(2021) and Landis et al. (2022). In those cases, however, the rigidity of the substrates
imposes significant limitations on applications. Systems comprising a dielectric film
bonded to a soft substrate have also been studied: for example, Su et al. (2020Db)
investigated the bending deformation of a dielectric-elastic bilayer in response to a
voltage; Almamo et al. (2024) studied the axisymmetric vibrations of a dielectric-
elastic tubular bilayer system; and Sriram et al. (2024) used a data-driven approach to
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Figure 1: Examples of electrically induced surface instabilities in soft polymer films. These patterns
are formed not on a soft substrate as studied in this work, but on a rigid one, which limits the
system’s deformability but still illustrates key principles of electro-responsive wrinkling. (a) Wrinkle
patterns can be switched from regular to random by tuning the spacing d between the underlying
electrodes (Lin et al., 2020); (b) Highly aligned parallel lines can be formed by applying a voltage to
a uniaxially pre-stretched film (Wang et al., 2012); (c¢) On films without pre-stretch, increasing the
voltage causes a flat surface to buckle into random wrinkles and craters above a critical threshold
(Ende et al., 2013).

model the onset of wrinkling in composite DE bilayer structures subjected to combined
electro-mechanical loading conditions.

The conclusion of this survey is that the potential instabilities and pattern forma-
tion of DE films bonded to a soft hyperelastic substrate (Fig. 2) are yet to be analyzed
theoretically and numerically. This work combines the advantages of DEs (a type of
smart material) and film-substrate systems to investigate the stability of a soft dielec-
tric film bonded to a hyperelastic substrate under a plane-strain mechanical load and
a uniform transverse electric field (or voltage) (Fig. 2(b)). We work within the frame-
work of nonlinear electro-elasticity theory and the associated linearized incremental
theory developed by Verma and Chaudhury (1966) and Dorfmann and Ogden (2014).
To overcome the complexity of conventional displacement-based methods, we use the
Stroh formulation and the surface impedance method (Su et al., 2018) to derive ex-
act solutions and approximate explicit expressions for the bifurcation equations. In
addition, we use the finite element method based on FEniCS to conduct a wrinkling
analysis of the DE film-substrate system, and the results are compared with the theo-
retical solutions. Finally, a post-buckling analysis of the DE film-substrate system is
also conducted.

Our results show that the onset of wrinkling in a soft dielectric film-substrate sys-
tem can be actively tuned by electro-mechanical loading, provided the material param-



eters are chosen appropriately. In particular, we find explicit formulas for the critical
stretch and critical voltage at which wrinkles emerge, along with the corresponding
wrinkle wavelength.

We look at two loading path scenarios: first, the applied voltage is fixed at the equi-
librium value at which there is no applied traction, and a mechanical load is applied;
second, the stretch is fixed at a given contractile or extensile level, and the voltage
is increased. The analytical bifurcation results reveal a threshold stiffness ratio and
pre-stretch (denoted r? and A\?) below which the film-substrate system wrinkles under
purely mechanical compression, even with no voltage applied. Unsurprisingly, this
corresponds to the bifurcation criterion for the compression of non-coupled, hypere-
lastic systems. Above these thresholds, however, the film remains flat until a sufficient
voltage triggers the instability, in the contractile as well as the extensile regimes. This
behavior provides a practical design guideline: by selecting the substrate-to-film stiff-
ness ratio and pre-stretch just above r? and A2, one can ensure the system stays smooth
under mechanical load and then wrinkles on demand with a small applied voltage (note
that if the system is pre-stretched in extension, a potentially high voltage is required
for wrinkling). We verify these predictions through finite element simulations, which
not only confirm the accuracy of the critical stretch and voltage estimates, but also
capture the post-buckling evolution of the wrinkle patterns, including the potential
development of period-doubling and period-tripling patterns. Importantly, our sta-
bility analysis indicates that the wrinkle formation is a supercritical bifurcation in
most cases, meaning the pattern amplitude grows gradually from zero at the critical
point (rather than jumping suddenly). This benign, progressive onset is favorable for
applications because it ensures smooth and reliable actuation of the wrinkle pattern
as conditions change.

Active control of surface instabilities via electric fields is a promising strategy in
soft materials research. This approach aligns with major efforts in morphing soft
robotic components, flexible and stretchable electronics, smart surface engineering,
and bioinspired interfaces, where on-demand reconfigurability is a must. Here, we
combine theoretical modeling and finite element simulations to elucidate the electro-
mechanical instability of a soft dielectric film bonded to a hyperelastic substrate, ad-
dressing this timely challenge from both fundamental and computational perspectives.
Our findings not only shed light on the mechanics of electrically induced wrinkling but
also demonstrate how electric fields can be exploited to actively tune surface patterns,
thereby broadening the design space for functional soft materials.

2. Materials and methods

2.1. Setup

The system consists of a semi-infinite elastic substrate and an elastic dielectric film
glued on its surface. In the initial undeformed configuration, the substrate and the
film occupy the Xy > 0 and —H < X, < 0 regions, respectively, where (X7, X, X3)
are the Cartesian coordinates and H is the film thickness. In the current deformed
configuration, the film-substrate system is deformed homogeneously along the principal
directions of stretch x; (parallel to the X;), with corresponding stretch ratios A;. Hence,
the current film thickness is h = Ay H. The film and substrate are perfectly bonded and
both are incompressible so that they undergo the same deformation and A\ A3 = 1.
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Figure 2: Schematic diagram of a soft dielectric film bonded to a hyperelastic substrate, confined
between two lubricated rigid walls. (a) Initial undeformed configuration; (b) Current deformed con-
figuration, prior to (c) the onset of wrinkles.

The deformation is due to the application of an electric field inside the film, gen-
erated by the potential difference V' between two flexible electrodes coated on its top
and bottom faces. In general, a soft dielectric film expands in its plane under a volt-
age. Here, for simplicity and to make connections with known results, we focus on the
plane-strain deformation \; = A\, Ay = A™!, A\3 = 1, which is achieved by confining
the system between two fixed, lubricated, rigid plates, normal to the x3-direction, and
applying external forces in the z;-direction (see Fig. 2b; note that in Appendix A, we
treat the general triaxial case).

To characterize the materials, we choose the neo-Hookean model for the hypere-
lastic substrate and the neo-Hookean ideal dielectric model for the film, so that their
total free energy density functions take the form

V2
Wy =2p, (N +A12%-2), Wi =2ps(NV+A72-2)— %6)\2@’ (1)
respectively, where the u; (i = s, f) are the initial shear moduli in the undeformed
configuration, and ¢ is the film’s electric permittivity, which remains unaffected by the
deformation. The subscripts s and f refer to the physical quantities of the substrate
and film, respectively.

When the film is under voltage V', the whole film-substrate system deforms homo-
geneously. Because the top surface at xo = —h is free of electro-elastic traction, the
normal component of the total stress vanishes there. By continuity, it also vanishes
at the perfectly bonded interface. Then, the following total Cauchy stress component
along the x;-direction is required to keep the plane-strain deformation in the film under
voltage V and stretch A (Su et al., 2018): o = AW(A) = pp(A =A%) —eX*(V/H). Tt
follows that at equilibrium, when no lateral traction is applied along z; (i.e., oy = 0),
the corresponding stretch Ay and voltage Vj are linked as (Su et al., 2019a)

Ao = (1 —E2)~14, or Ey=1/1- )", (2)

where Ey = /e/ps(Vo/H) is a non-dimensional measure of the voltage at this equi-
librium.



2.2. Exact bifurcation

To model the small-amplitude wrinkles appearing at the onset of linearized in-
stability, we assume sinusoidal variations in the z;-direction with wavelength 27 /k,
where k is the wrinkling wavenumber, and introduce the generalized, non-dimensional
displacement-traction vector n(kxs) = [Uy, Ug,A,Sgl,Sgg,CD]T, where U;, U,y are the
components of the incremental mechanical displacement vector, A is a measure of
the incremental electric displacement in the xo-direction, Sa; and S are the compo-
nents of a measure of the incremental mechanical traction, and ® is a measure of the
incremental electric potential (all quantities depend on the variable kxs only).

In the film and substrate, the incremental equations of equilibrium can be formu-
lated as a first-order differential equation, ' = iNn, where i = v/—1 is the imaginary
unit, the prime denotes differentiation with respect to kxs, and N is the (constant)
Stroh matrix, with components given explicitly in Appendix A. It is then straightfor-
ward to solve the boundary value problem (decay condition as x5 — oo, continuity of
1 at the interface x5 = 0, and the conditions of zero traction and a constant applied
voltage on the top surface xo = —h). As shown in Appendix A, the exact bifurcation
equation can be put into the compact form

det (Z; —rZs) = 0, (3)

where r = ps/py is the substrate-to-film stiffness ratio, and Z; and Z, denote the
impedance matrices of the film and substrate, respectively. This equation depends
only on the non-dimensional quantities r, \, kh, and E, = \/e/u;(V/H).

We may then plot the dispersion curves (also referred to as bifurcation curves) for
a given stiffness ratio: either the A\ — kh curves when we are interested in wrinkling
instability under an increasing mechanical compression for a given voltage, or the
Er — kh curves when we focus on an increasing electric load for a given stretch.
Typically, these curves exhibit an extremum: a maximum A = A, in the former case,
a minimum E;, = E$ in the latter case (although not always), see Section 3. These
extrema are the sought critical stretches and critical voltages of primary bifurcation.

2.8. Approzimate bifurcation and critical fields

In the Results section, we show that the critical fields occur in the early part of
the kh span, typically when kh < 2. Moreover, the critical value (kh). decreases as
the dielectric film becomes stiffer than the substrate (i.e., r is small). It thus makes
sense to seek Taylor series expansions of the bifurcation condition (3). As detailed
in Appendix A, we expand the relationship n(—kh) = exp(—ikhIN)n(0) up to the
sixth power in kh, apply the incremental boundary conditions, and observe that the
resultant approximate expansion captures accurately the extrema corresponding to
the critical wrinkling values in the early parts of the bifurcation curves.

Furthermore, under the assumption that the film is significantly stiffer than the
substrate (i.e., 7 is small, of order (kh)?), we perform an asymptotic analysis based
on the sixth-order approximate expansion to obtain explicit asymptotic expressions in
kh for the stretch A and the voltage E;. Then we can derive asymptotic expansions
of the critical wavenumber (kh). and critical loads A (stretch) and E$* (voltage)
explicitly by finding the first extremum of the kh-polynomial asymptotic expressions
for the stretch A\ and voltage E;. Each of these critical quantities can be expressed
in an 7'/% power series, allowing us to extend the scaling laws of Allen (1969) to



electro-elasticity. The detailed derivation is presented in Appendix B, with explicit
asymptotic expansions provided in Section 3.3.

2.4. Numerical post-buckling analysis

Complex nonlinear behaviors may be expected beyond the bifurcation, such as
secondary bifurcations, period doubling, and self-contact folding (Brau et al., 2011;
Fu and Cai, 2015). Here, we rely on the finite element method to investigate the
post-buckling behavior of the soft dielectric film-substrate system.

We use a quasi-incompressible formulation of the problem to avoid element lock-
ing, with the following energy functionals for the substrate and the dielectric film,
respectively,

= [ W,(F)AV,  &lu, o] = [ Wi(F, Ep)adV, (4)
Bs By

where u and ¢ are the mechanical displacement vector and the electric-potential field,
F is the deformation gradient (two-point) tensor, E; = — Grad ¢ is the Lagrangian
electric field vector, /WS and /Wf are the strain energy densities of the substrate and
dielectric film, respectively, and B, and B are the domains of the substrate and film.
For the nearly incompressible versions of the total energy densities (1), we take

Wo = 4p(I; =3) + K, (T, Wy = up(If =3) + 3K (In J)* = JeJE - E, (5)
where E = F~TE, is the Eulerian electric field vector, J = det(F), I; = J~2/3tr(FTF)
and the K; (i = s, f) are the initial bulk moduli (chosen to be much larger than
the p;). It can be shown that the stationary points of the total energy functional
€ = &r+ &, correspond to equilibrium configurations of the system, see Toupin (1956)
and Dorfmann and Ogden (2014). To approximate the fully incompressible case, we
set K; = 500u; (i = s, f), so that the initial Poisson ratio is

V; =

~0.499, (i=s,f). (6)

The system is modeled by using a rectangular computational domain [0, L] x
[D, —H], where the depth D of the substrate is large compared to the film thickness H
(specifically, we set D = 30H ), and the length L is chosen as half of the wavelength of
the wrinkling pattern. On the left and right sides of the domain, we impose symmetry
boundary conditions to mimic the infinite layered half-space. We use a triangular
structured mesh in the dielectric film (with at least ten elements along the width),
while the mesh is unstructured in the substrate, with a coarser mesh as we move away
from the film-substrate interface.

To track the bifurcated branch, an arclength continuation algorithm is used, as de-
scribed in Su et al. (2023), where either the stretch A or the non-dimensional voltage
E;, are used as the control parameter. However, the handling of a control parameter
that enters the boundary conditions is not straightforward using the arclength con-
tinuation algorithm. To avoid this issue, we split the displacement field additively as
u = uy, + u;, where u, = (A — 1)X1L + (A= ].)XQiQ is the displacement field corre-
sponding to the homogeneous deformation, and u; is the inhomogeneous displacement
field corresponding to the wrinkles, with I; and I, representing the unit basis vectors



of the initial undeformed configuration. As uy, is known, we can solve the problem
with respect to u; to reconstruct the full displacement field. A similar splitting is
performed for the electric potential, i.e., ¢ = @ + ¢; with ¢ = —V X5. The Dirichlet
boundary conditions on u; and ¢; are homogeneous, facilitating a more straightfor-
ward implementation of the arclength method (see also Riccobelli et al. (2024)). A
piecewise quadratic polynomial basis is employed for the inhomogeneous displacement,
while a piecewise linear polynomial basis is used for the electric potential. A small
imperfection is applied to the top surface to trigger the instability.

We solve the problem using the finite element method implemented in FEniCS (Al-
naes et al., 2015), which allows for automatic differentiation of the weak form and
efficient assembly of the linear system. We obtain the solution by solving a Newton-
Raphson problem, where the Jacobian matrix is computed using the automatic dif-
ferentiation library UFL. For the continuation algorithm, we use the arclength method
implemented in BiFEniCS.

3. Results and discussion

3.1. Chritical bifurcation stretch for a prescribed electric field

First we consider the scenario where the applied voltage is fixed at its initial
traction-free equilibrium value V4, and the film-substrate system is deformed homoge-
neously under the action of a uniaxial stress along x;. Hence, the total Cauchy stresses
op = pur(A2 =A%) —eX*(Vp/H)? and o5 = ps(A* — A72) are applied to the dielectric
film and the substrate, respectively.

Fig. 3 shows the bifurcation curves of stretch A against wavenumber kh for different
shear modulus ratios r = ps/u; under four given non-dimensional voltages Ey =
0,0.25,0.5,0.75. When Ej = 0, we have excellent agreement with Cai and Fu (1999),
who used the classical displacement solution method for a coated hyperelastic half-
space, confirming the effectiveness of the surface impedance method, see Fig. 3(a). All
bifurcation curves, except for the » = 0 one, start at A = 0.5437, the Biot critical
stretch of instability for an elastic neo-Hookean half-space, which corresponds to kh =
0 (vanishing film thickness). When r = 0, there is no substrate; then, in the kh — 0
limit, the dielectric film is infinitesimally thin and wrinkles immediately once oy is
applied. Hence, the limit is found by solving oy = 0, which according to Eq. (2),
gives the limits A = 1.000,1.016,1.075,1.230 for E, = 0,0.25,0.5,0.75, respectively.
Conversely, in the kh — oo limit, the soft dielectric film becomes a semi-infinite ideal
dielectric, and all bifurcation curves tend to the root of

N AT 32— 1 =2\ (1 + \)ES, (7)

which corresponds to the surface instability criterion in plane strain (see Appendix
A for more general formulas and details). It yields A — 0.5437,0.5454,0.5508, 0.5607
when Ey = 0,0.25,0.5,0.75, respectively.

Between these two limits, the bifurcation curve goes through a maximum, which
determines the critical stretch A, and critical wavenumber (kh)... We collected these
critical values for six given voltages and two stiffness ratios in Table 1. When there
is no applied voltage (Ey = 0), the values of the critical compressive strain are €, =
1 — Ao = 0.165 and 0.052 for » = 1/5 and 1/30, respectively, in reasonable agreement
with Cao and Hutchinson (2012). We observe from Fig. 3 and Table 1 that, for a
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Figure 3: Bifurcation curves of stretch A as a function of kh with different substrate-to-film shear
modulus ratios r = ps/py = 0,0.1,0.5,1.0 under four non-dimensional voltages applied to the soft
dielectric film, subjected to a plane-strain load: (a) Ey = 0; (b) Ey = 0.25; (c) Ey = 0.5; (d)
Ey = 0.75. Solid curves: antisymmetric-dominated modes; Dashed curves: symmetric-dominated
modes. The onset of instability occurs at the maximum of the bifurcation curve, always corresponding
to an antisymmetric-dominated mode. In Fig. 3(a), solid lines show the proposed surface impedance
results, and symbols indicate the displacement solution predictions (Cai and Fu, 1999).

fixed modulus ratio r, the critical stretch A, monotonically increases with increasing
applied voltage Ej, and that, for a prescribed voltage, Ao also increases as r decreases.
While the applied voltage exerts only a negligible influence on the critical wavenumber
(kh)er, the latter progressively decreases with decreasing modulus ratio.

To further elucidate the influence of the applied voltage Ey on A, and (kh)e, we
seek their asymptotic expansions in terms of r and E,. But prior to that, Fig. 4 shows
that the bifurcation curves of stretch A versus kh predicted by the sixth-order Taylor
approximate solution (A.8) agrees remarkably well with the exact bifurcation equation
(3) over a broad range of kh, thereby validating its accuracy in capturing the extrema
of the bifurcation curves and providing a solid foundation for an asymptotic analysis
of the critical parameters A.; and (kh)c,.

Then we use the sixth-order approximation to perform the asymptotic analysis (see
Appendix B and Section 3.3) and derive the explicit leading-order correction for the
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Critical values when r = 1/5

Acr 0.8354 0.8481 0.8933 0.9372 1.0119 1.1005
Ao 0.8353 0.8481 0.8936 0.9378 1.0134 1.1085
Agsymp 0.8569 0.8756 0.9605 1.1097 2.3088 ——
(kh)er 0.88 0.88 0.88 0.88 0.86 0.86
(kh)asymp 0.87 0.88 0.89 0.91 0.99 ——
super /subcritical super- super- super- super- super- sub-

Critical values when r = 1/30

Aer 0.9482 0.9674 1.0401 1.1190 1.2822 1.5874
Ao 0.9486 0.9680 1.0408 1.1200 1.2842 1.6013
A2symp 0.9493 0.9689 1.0435 1.1277 1.3548 ——
(kh)er 0.46 0.46 0.46 0.46 0.44 0.44
(kh)asymp 0.47 0.47 0.46 0.46 0.45 ——
super /subcritical super- super- super- super- super- sub-

Table 1: Critical stretch and wavenumber values, together with the classification of bifurcation type
(supercritical or subcritical), for different electric loadings Ey and shear modulus ratios r. The
notation “——" indicates cases where the asymptotic solution is inapplicable. Superscripts “num”
and “asymp” represent the critical values calculated by finite element numerical simulations and the
asymptotic expansion expressions (14)-(15), respectively.
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Figure 4: Exact and approximate (sixth-order) bifurcation curves of stretch A as functions of kh for
different shear modulus ratios r = y/ps under two non-dimensional voltages, (a) Ey = 0.25 and
(b) Ey = 0.75, showing that the approximations capture the critical points accurately, thus enabling
asymptotic expansions of Ac; and (kh)c, in terms of r and Ej.

relative extension of wrinkling instability due to electro-mechanical loading, as

= 2/3
- 11 1++/1—-E2 s
=== = st ) ®)
41—E0 2 Hy

where we recall that F, < 1. This expression recovers the classical 2 /3 power scaling

10



law with respect to the modulus ratio r = p/ s for the purely elastic case, as originally
reported by Allen (1969), while additionally revealing that the multiplicative factor
associated with Ej is a monotonically increasing function of the applied voltage. This
indicates that a higher initial voltage permits a larger relative compressive strain,
quantified as \g — A, to trigger instability. In other words, once the initial traction-
free voltage Ej is applied, the system can sustain greater homogeneous deformation
before the onset of instability, thereby postponing the emergence of wrinkles. Note
that using Eq. (2), the result can equivalently be expressed in terms of the initial
traction-free pre-stretch \g as

Ew (9)

_ 2/3
:/\_% —1+)‘023ﬁ :
1 2 )

Similarly, the scaling relation governing the leading-order correction to the critical
wavenumber is derived as

1/3 _ 1/3

1 1—E2 _pu, 14+ M2 s

(kh)er = L V] gHs — (A 3M_) : (10)
2 [if 2wy

see Appendix B and Section 3.3, which provides details and further approximations
and expansions.

3.2. Chritical bifurcation electric voltage for a fived pre-stretch

Conversely, we may hold the pre-stretch at an initial fixed value A and observe
wrinkling as the applied voltage V' changes. In that scenario, the pre-load is achieved
by applying the uniaxial Cauchy stresses o; = pup(A\? — A72) — eA*(V/H)? in the
dielectric film and o, = p,(A\? — A72) in the substrate.

The bifurcation curves of the non-dimensional voltage Ej, = /e/us(V/H) as func-
tions of the wavenumber kh are presented in Fig. 5 for various shear modulus ratios
r = pis/py under six prescribed pre-stretch values A = 1.3,1.2,1.1,1.0,0.9,0.8. The
results reveal that the bifurcation curves of E with respect to kh generally exhibit
non-monotonic behavior, except in the special case of » = 0, where the curve increases
monotonically. However, all bifurcation curves exhibit a minimum, corresponding to
the critical voltage ES* of primary interest. Moreover, Fig. 5 reveals that both de-
creasing pre-stretch A and reducing modulus ratio r lead to a progressive decline in
the critical voltage E$", thereby indicating an increased susceptibility of the system to
wrinkling instability. In particular, if the pre-stretch is sufficiently contractile (A < 1)
and the film is sufficently stiff (r small), we expect that wrinkling may occur for small
values of the voltage loading, which is confirmed by the trend in Figs. 5(e) and 5(f).

To investigate the effect of the applied pre-stretch A on the critical voltage E$* and
the critical wavenumber (kh)®, we seek their asymptotic representations with respect
to r and A. Again, the sixth-order Taylor expansion leads to an excellent agreement
with the exact bifurcation condition across a wide interval of kh, establishing a rigorous
basis for the asymptotic characterization of the critical quantities £ and (kh)<, see
Fig. 6.

Moreover, Fig. 6 reveals that, for a prescribed modulus ratio r, a decrease in the
applied pre-stretch A leads to a gradual reduction in the corresponding critical voltage
E$, a trend consistent with the behavior previously identified in Fig. 5. Particularly,
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Figure 5: Bifurcation curves of the non-dimensional voltage E; as a function of kh for different
stiffness ratios » = 0,0.1, 0.5, 1.0 and six fixed pre-stretches: (a-c) extensile stretches A = 1.3,1.2,1.1;
(d-f) contractile stretches A = 1.0,0.9,0.8. The minima correspond to the critical voltage E$* and
critical wavenumber (kh)*. For a sufficiently contractile stretch (A < \?) and a sufficiently stiff film
(r < r9), the system wrinkles before the application of voltage, as shown in Fig. 5(f) for » = 0.1, for
example.

(2) (b)

2.0 2.0

Exact Exact
— — - Approximate — — - Approximate

E, 10- 2=0.933,0.95, 1.0
0.5
0.0 T T T
0.0 0.5 1.0 1.5 2.0

Figure 6: Exact and approximate (sixth-order) bifurcation curves of voltage Ey, as functions of kh for
different pre-stretches A and two shear modulus ratios, (a) » = 0.05 and (b) r = 0.1, demonstrating
that the approximations accurately capture the critical points, thus enabling asymptotic expansions
of ES* and (kh)®" in terms of r and A. For a pre-stretch A\ marginally exceeding A} = 0.933 (a) and
0.895 (b), even a small applied voltage is sufficient to induce instability.

the critical voltage £ may eventually reach zero for r = 0.05, A ~ 0.933, and r = 0.1,
A =~ 0.895, at which point we recover the critical values for the stretch and wavenumber
of a purely elastic film-substrate system (Cai and Fu, 1999; Cao and Hutchinson, 2012).
When r or ) is further reduced, the incremental analysis breaks down, and the negative
value of the minimum has no physical meaning (e.g., the case A = 0.8 and r = 0.1 in
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Fig. 5(f)).

1.6 Exact
— — Approximate
1.2- (kh),
\\
084 o
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0.5437 0. 0.7 0.8 0.9 1.0

Figure 7: Lower curve: A} — r{ critical curve corresponding to a vanishing critical voltage (i.e.,
the purely elastic limit), below which the film-substrate system wrinkles mechanically, prior to the
application of a voltage. Upper curve: corresponding critical wavenumber (kh)?.

Fig. 7 shows the domain in the A — r plane where the soft dielectric film-substrate
system can be expected to wrinkle under an applied voltage. The demarcation curve,
referred to as the A} — r¥ critical curve, corresponds to a vanishing critical electric
field (i.e., the purely elastic limit). This critical curve is found by solving the ex-
act or the sixth-order approximate bifurcation condition when E$* = 0, and behaves
asymptotically as

A =1 1(3r0)%/3, (11)

C

according to Eq. (8) written at Fy = 0 and )y = 1, in agreement with Cai and Fu
(1999). In Fig. 7, we denote by (A2, r!) the coordinates of points on that critical
curve, with (kh)? representing the corresponding critical wavenumber. Parameter
combinations of pre-stretch and stiffness ratio underneath that critical curve lead to
wrinkling prior to the application of any voltage, whereas those above the critical curve
require a finite applied voltage to trigger wrinkling instability.

We also employ the sixth-order approximation and perform the asymptotic analysis
(see Appendix B and Section 3.3) to obtain an explicit expression for the leading-order

correction to the squared critical voltage in terms of » and A as,

_ A
(B =1-2"+ (% 37") , (12)

provided the values of (A, r) are not in the shaded area of Fig. 7. This is equivalent
to (E$)? > 0, or, by expansion for small r, A > 1 — (1/4)(3r)?/3, in agreement with
Eq. (11).

We collected the critical values of voltage and wavenumber for six given pre-
stretches and two stiffness ratios in Table 2. It shows that a reduction in the pre-stretch
A or a decrease in the modulus ratio 7 diminishes the critical voltage £, thereby indi-
cating an enhanced propensity of the soft dielectric film-substrate system to undergo
wrinkling instability, as mentioned earlier. In addition, under pre-compression (A < 1),
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only a tiny voltage is required to trigger wrinkling when the dielectric film is much
stiffer than the substrate. We also see that an applied (albeit larger) voltage can
render the system unstable when it is pre-elongated (A > 1), because the film tends
to expand in its plane under the applied voltage, which is prevented when A is fixed,
eventually leading to wrinkles.

Value for Value for Value for Value for Value for Value for
A=08 AX=09 A=095 A=1.0 A=1.1 A=12

Critical values when r = 1/5

Es 0.3207 0.6280 0.7825 0.8814 0.9996 1.0535
Ee 0.3214 0.6278 0.7819 0.8808 0.9913 1.0038
Eg;ymp 0.3962 0.6605 0.8034 0.8967 1.0098 1.0724
(kh)er 0.88 0.87 0.87 0.86 0.86 0.86
(kh)ggymp 0.82 0.82 0.82 0.82 0.82 0.83
super /subcritical super- super- super- super- sub- sub-

Critical values when r = 1/30

B —— —— 0.0937 0.4729 0.7213 0.8407
Ee —— —— 0.0949 0.4723 0.7210 0.8407
Eg;ymp —— —— 0.0985 0.4732 0.7216 0.8409
(kh)er —— —— 0.47 0.46 0.45 0.45
(kh)ggymp —— —— 0.47 0.46 0.45 0.44
super /subcritical —— —— super- super- super- super-

Table 2: Critical voltage and wavenumber values, together with the classification of bifurcation type
(supercritical or subcritical), for different mechanical loadings A and shear modulus ratios r. The
notation “——" indicates cases where the wrinkling has occurred prior to the application of the voltage.
Subscripts “num” and “asymp” represent the critical values calculated by finite element numerical
simulations and the asymptotic expansion expressions (19)-(20), respectively.

3.3. Asymptotic expansions for high-contrast stiffness ratios

The numerical root-finding procedure for the exact bifurcation equation (3) incurs
a heavy computational cost, such that asymptotic expansions may provide a much-
needed rapid alternative way to find the critical values of stretch and voltage.

For small 7 and kh, and under the assumption that r is of order (kh)?, we show
in Appendix B how a fourth-order series expansion can be derived for the stretch
through asymptotic analysis,

A 1 r 1 1
=1 NAEN) (=) - SN ER)P (N2 -1
=L NN () — )+ 8- 1
1 1
- 4—8()\3 — 1)(34TA2 +8)g + 5\5)r(kh) + @)\3(2 +372) (kh)*

1 2 4 6 WERS
+ 35 (2 — 402+ 3Xg + 6A5 + 5A3) <E> , (13)

where \g = (1 — E2)~Y* and we neglect terms of order (kh)S and higher. Then,
by differentiating Eq. (13) with respect to kh, we find where the stretch is (locally)
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maximized in the bifurcation curve. Disregarding contributions of order %3 and
higher, the expression for the critical wavenumber is obtained as

- /3 10 8 6 4 2
T+ 252 N7 12010 4 5408 + 1928 + 1902 — 532 — 15
kh)e = 3 , 14
(kh) ( T) * 120\A(1 + A2) noo (14
and neglecting terms of order 7% and higher, the critical stretch is given by
A 1, (1+02 N\ 1
T —1-2-) 0 —(A2 -1
" 1 ( 5 37‘) + 4( o— )r
1 10 8 6 4 2 2 23 1/3
—— (237 354\g + 139X\ — 176)\; — 98X\ — 60) | ———— 3 )
+ Tggp (37A0 + 3544 + 13945 ‘ ’ )()‘0(1_'_)‘(2))) r{én)
(15)

Given that \g = (1 — E2)~Y* > 0, the validity of Eqgs. (13)-(15) is restricted to the
regime Fy < 1. This regime, £, < 1, also corresponds to the parameter range where
we expect wrinkles to arise under a small electric voltage.

In the absence of an applied voltage (Ey = 0, Ay = 1), we recover the asymptotic
formulas of the hyperelastic film-substrate system (Cai and Fu, 1999; Alawiye et al.,
2019) for the stretch,

1/r 1 o 3/ 1r\2 13 4
A=1——(—)——(kh - — —(kh 1
5 () ~ 2+ 5 () + a0 (16)
and for the critical stretch and critical wavenumber,

1 33 3
—1_ = 2/3 1/3 = 34 = 1
Aer 4(37’) + 160 r(3r)°, (kh)e = (3r)7° + 50 r (17)
Similarly, we obtain the asymptotic expansion of the squared non-dimensional volt-

age in the form

B = 1 a2+ (070 (1) 07t
- i(l -7 (%)2 - %(1 A1+ 3A) r(kh) — @10(1 + 6 (kR). (18)

In the absence of voltage, E, = 0 and we recover Eq. (16). By setting the derivative of
Eq. (18) with respect to kh to zero, we determine the location of the (local) minimum.
Neglecting terms of order 2 and higher, the asymptotic expression for the squared
critical voltage is obtained as

14272
2

B 2/3
(BEP =1-1"+ ( 3r> LAy,

6A10 4+ 1208 4 1706 — 88)M* — 49\ — 30 4/3
B 40 - 21/3 . 32/3 \14/3 (A2 + 1)2/3 r

, (19)

an expression that is valid provided A is greater than the right-hand side of Eq. (17);.
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Again, we may verify that when ES* = 0, Eq. (19) is consistent with Eq. (17);. The
asymptotic expansion for the corresponding critical wavenumber is

T. (20)

o (THATZONYE 12010 4 2408 — 1106 4+ 19M% — 532 — 15
(kh)™ = [ ——Z—3r) +
2 12004(A2 + 1)

(a) (b)

1=0.85,09,1.0,1.1,1.5

E,=0,03,0.5,0.75

A, 1.0
0.8 0.4 /
— Exact / Exact
- — - Asymptotic ” - - - Asymptotic
0.6 T T 0.0 T T
0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6
r r

Figure 8: Variations in critical fields with the shear modulus ratio r = ps/pus: (a) critical stretch
Aer for different applied voltages Ey; (b) critical voltage Ef for various pre-stretches A. Solid curves:
exact solutions given by Eq. (3); Dashed curves: asymptotic expansions provided by Eqs. (15) and
(19). Asymptotic expansions of the critical fields provide a fast alternative to solving the exact
bifurcation criterion when the soft dielectric film is much stiffer than the substrate (r small).

The validity of the asymptotic expansions provided by Egs. (15) and (19) is illus-
trated in Fig. 8, exhibiting excellent agreement for small values of r and reasonable
accuracy for moderate r.

3.4. Post-buckling analysis by the finite element method

We now turn to post-buckling analysis. First we plot the non-dimensional ampli-
tude of the free surface wrinkles, Ay/H, as a function of the stretch A for r = 1/5 and
various non-dimensional electric voltages Fy = 0.3,0.6,0.75, see Fig. 9(a). Here, Ay
denotes the difference between the maximum and minimum vertical positions of points
on the free surface. The resulting diagrams are reminiscent of supercritical pitchfork
bifurcations.

To verify this hypothesis, we fit the following function

=Y VT @1

to the finite element numerical data near the bifurcation point. Such a parabolic
function represents the amplitude of the wrinkling pattern for a pitchfork bifurcation
in the weakly nonlinear regime. From the numerical simulations, we retain only the
data satisfying 0.05H < Ay < 0.2H in the fitting procedure. This filtering eliminates
the influence of strong nonlinear effects and surface imperfections. The upper bound
of 0.2H is chosen to ensure optimal fitting across all parameter sets reported in Ta-
bles 1-2, although in some cases (see Figs. 9 and 11) the range of validity of Eq. (21)
extends beyond this limit. Eq. (21) allows to fit the data both in the case of a super-
critical and subcritical transition. Indeed, the bifurcation is classified as supercritical
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Figure 9: (a) Plot of the non-dimensional amplitude of the wrinkling of the free surface, Ay/H,
against the stretch A for 7 = 1/5 and Ey = 0.3 (light blue line), 0.6 (blue line), and 0.75 (purple line).
The green square denotes the marginal stability threshold obtained from the linearized stability
analysis, while the cross indicates the onset of self-contact of the free surface. Letters mark the
positions on the bifurcation diagram corresponding to the configurations shown below. The dashed
lines show the best fit of the finite element data close to the bifurcation point with the function
Ay Apum A with A, Ao > 0; see the main text for details. Here, the fitted parameter A=
6.0952, 5.7925, 5.5954 and AMW™ = (.8481, 0.8936, 0.9378 for Ey = 0.3, 0.6, 0.75, respectively. (b)
Deformed configurations corresponding to the points A, B, C indicated in the bifurcation diagram,
where the maximum principal stretch Apax (i-e., the square root of the maximum eigenvalue of FTF
for each point of the domain) and the non-dimensional electric potential field, ¢ = /¢/p(p/H), are
reported. A progressive strain localization is observed in the furrows of the wrinkling pattern beyond
the turning point B, eventually leading to crease formation in the point C.

if, in the filtered data, A < \°; otherwise, it is subcritical. In Eq. (21), A modulates
the amplitude of the wrinkling close to the bifurcation point, while A\J;"™ represents the
numerical threshold of the wrinkling bifurcation. The resulting fit demonstrates excel-
lent agreement with the finite element results near the bifurcation point, see Fig. 9(b).
Moreover, the numerically determined critical stretches \J}*" closely match the thresh-
olds A predicted by the linearized stability analysis, with a precision of the order of
10~*, see Table 1. The only exception occurs for the case where r = 1/30 and £y = 1,
where the discrepancy between the theoretical and numerical thresholds is of the order
of 1072. In this case, the bifurcation is subcritical and abrupt, becoming nonlinear
very close to the bifurcation threshold and influencing the fitting procedure.

We note a turning point in all bifurcation diagrams in the fully nonlinear regime.
Corresponding to these turning points, the finite element simulations reveal a progres-
sive localization of the deformation, indicating that the strain becomes concentrated
in narrow regions near the furrows of the wrinkling pattern rather than remaining
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Figure 10: Results of the finite element simulations for » = 1/30 and Ey = 0.3. (a) Non-dimensional
amplitude of the wrinkling of the free surface Ay/H versus the stretch A. The light blue line represents
the wrinkling solution with a constant wavelength, while the blue and purple lines show the amplitude
of the wrinkling pattern when period-doubling and period-tripling secondary bifurcations occur. The
green square denotes the marginal stability threshold predicted by the linearized stability analysis,
while the cross indicates when self-contact of the film occurs. The fitting of Eq. (21) is not shown
here, as its range of validity is too limited compared to the large amplitude of the wrinkling pattern.
(b) Final morphologies of the finite element simulations at the onset of self-contact (represented in
the inset), for the fixed-wavelength, period-doubling, and period-tripling solutions.

uniformly distributed across the surface. This process eventually leads to self-contact
(see the deformed configurations corresponding to points A, B, C' indicated in the bi-
furcation diagram in Fig. 9), a transition reminiscent of the creasing onset observed
by Hohlfeld and Mahadevan (2011).

Recall that film-substrate systems may also exhibit period-doubling and period-
tripling secondary bifurcations, see the works by Brau et al. (2011), Cao and Hutchin-
son (2012), Fu and Cai (2015), and Budday et al. (2015). For our soft dielectric
film-substrate systems, we take a film 30 times stiffer than the substrate (r = 1/30).
To investigate secondary bifurcations, we conduct finite element simulations in compu-
tational domains that are twice and three times the fundamental length, respectively,
while superposing imperfections corresponding to double and triple the critical wave-
length. An intriguing feature of the system is the emergence of secondary bifurcations
in the form of period-doubling and period-tripling (see Fig. 10), whose occurrence is
strongly influenced by the selected computational domain size and the characteristic
length of the imposed imperfections. Again, we note turning points in the nonlin-
ear regime. In these cases as well, the turning points correspond to a localization of
the deformation close to the wrinkling furrows, which later evolve into self-contacting
creases.

We also analyze the behavior of the system when ) is held fixed and the applied non-
dimensional voltage F, is used to trigger the wrinkling instability. It is observed from
Fig. 11 that the system undergoes a supercritical transition at the onset of instability.
In contrast to the stretch-induced case, the finite element simulations in this scenario
terminate before the onset of strain localization. We conjecture that this may be due to
dielectric breakdown through catastrophic thinning (Zurlo et al., 2017), a phenomenon
associated with the loss of convexity in the energy functional, potentially leading to
the non-existence of energy minimizers.

As in the previous case, the bifurcation curves closely resemble those of supercritical
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Figure 11: Bifurcation diagrams showing the non-dimensional wrinkling amplitude Ay/H versus the
applied non-dimensional voltage Ey, for 7 = 1/5 and A = 0.85, 0.9, and 0.95 (purple, blue, and light
blue lines, respectively). The green squares denote the marginal stability thresholds obtained from
the linearized stability analysis. The dashed lines show the best fit of the finite element data close
to the bifurcation point with the function AE — Ee_ with fl, Ec > 0, see the main text for

num num

details. Here, the fitted parameter A= 1.9198, 2.9683, 3.6174 and E_’ﬁflm = 0.3214, 0.6278, 0.7819 for
A =0.85, 0.9, 0.95, respectively.

(a) (b)

Figure 12: (a) Bifurcation diagrams showing the non-dimensional wrinkling amplitude Ay/H versus
the applied non-dimensional voltage Ep for » = 1/30 and A = 0.95. The green square denotes
the marginal stability threshold obtained from the linearized stability analysis. The light blue line
represents the wrinkling solution with a constant wavelength, while the blue line corresponds to
the amplitude of the pattern after a period-doubling bifurcation occurs. The fitting of Eq. (21) is
not explicitly shown here, as its range of validity is too limited compared to the large amplitude of
the wrinkling pattern. (b) Final morphology from the finite element simulations for both the fixed-
wavelength and period-doubling solutions.

pitchfork transitions. To verify this observation, we fit the finite element numerical
data using the function A\/|E;, — E¢_|, following the same fitting procedure described
earlier. The bifurcation is considered supercritical if £, > E<_ close to the bifurcation
point, and otherwise subcritical. The agreement is excellent near the bifurcation point,
with the numerically predicted thresholds £ deviating from the theoretical values by
less than 1% in almost all cases, see Fig. 11 and Table 2 for a quantitative comparison
with the theoretical thresholds. For the case r = 1/5 and A = 1.2, the finite element

simulations are highly sensitive to the imposed imperfection. To trigger the instability,
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we have to increase the imperfection amplitude to 1.5 x 10~* (compared to the baseline
value of 5 x 107°, with all lengths scaled by the coating thickness). This adjustment
causes the finite element numerical prediction of the critical voltage to appear at a
lower value. Although decreasing the imperfection amplitude improves the accuracy of
the critical threshold, in this case the simulations fail to converge once the bifurcation
point is reached.

Furthermore, we observe period-doubling bifurcations when the soft dielectric film
is sufficiently stiff relative to the substrate (r = 1/30), as illustrated in Fig. 12(a).
In the bifurcation diagram, we find excellent agreement with the linearized stability
analysis. Similarly to the simulations shown in Fig. 11, we do not observe any strain
localization or self-contact. Instead, the resulting post-bifurcation morphology features
ridges separated by elongated furrows, as displayed in Fig. 12(b). Interestingly, a ridge
morphology emerges here as a result of the instability for relatively large values of r
compared to purely elastic passive systems, where r < 1073, see Wang and Zhao
(2015).

4. Conclusions

We presented a comprehensive theoretical analysis of the wrinkling instability of
a soft dielectric film bonded to a hyperelastic substrate under the combined action of
applied voltage and plane-strain mechanical loading.

By relying on the Stroh formulation and the surface impedance matrix method, we
obtained exact bifurcation equations and accurate sixth-order approximate bifurcation
equations. We also derived explicit bifurcation equations of critical stretch A, volt-
age Ep. and wavenumber (kh)er. The asymptotic solution agrees well with the exact
solution when 7 is small, meeting the assumptions (of order (kh)® for small kh). Fur-
thermore, we found that the thresholds of the shear modulus ratio r? and pre-stretch
A\ for electro-elastic wrinkling correspond to the purely mechanical instability case.

Finally, our finite element simulations further enriched these findings by exploring
post-buckling behavior and complex pattern evolution beyond the initial wrinkle for-
mation. The simulations confirmed that the analytical critical points accurately mark
the onset of instability, and revealed what happens beyond this point. We observed sec-
ondary bifurcations such as period-doubling and tripling of the wrinkle pattern when
the film is relatively stiff compared to the substrate. These secondary patterns imply
that a single system can support multiple modes of surface morphology, which could
be harnessed to achieve different functional states (for example, switching between two
distinct wrinkle wavelengths under different electrical inputs).

The simulations also uncovered a limit to the tunability, because at high voltage
levels (beyond a turning point in the bifurcation diagram), localized strain concen-
trations can lead to the formation of a sharp crease with self-contact. This incipient
creasing is a critical consideration for applications, as it represents a material failure
or extreme deformation state that designers might wish to avoid.

Thus, our results not only map out the desired regime for reversible wrinkling but
also delineate the boundaries where the surface topology might become unstable in a
destructive way.
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Appendix A. Exact and approximate bifurcation equations

The basic equations governing the finite electro-elastic deformations of an incom-
pressible soft electro-elastic body are well-established, and there is no need to repeat
them here. The same remark applies to the Stroh formulation of the equations of
incremental deformations with sinusoidal variations along x; and exponential varia-
tions along z5. We refer the interested reader to the works of Dorfmann and Ogden
(2014); Su et al. (2018); Dorfmann and Ogden (2019); Broderick et al. (2020); Su et al.
(2020a); Yang and Sharma (2023), for example.

As summarized in Section 2.2, the generalized, non-dimensional displacement-
traction vector 1 satisfies n’ = iN7, where i = v/—1 is the imaginary unit, the prime
denotes differentiation with respect to kxs, and N is the (constant) Stroh matrix,
N; N,
N; N7
we find that for the dielectric film characterized by the neo-Hookean ideal dielectric
model (1),

which is partitioned as N = { } . For a general triaxial pre-stretch (Ay, Ao, A3),

[0 -1 0 NAZ 0 MAEL
N,=|-1 0 0|, Ny= 0 0 0 :
0 0 0 MANEL 0 1+ NE?
[—(A2 + 30202+ 3N2N2E2) 0 22\ EL
N; = 0 A2 = A2 NN 0 ;o (A
I 220N\ B 0 -1

in our non-dimensional form, with Ef, = \/e/u;(V/H) representing the non-dimensional
voltage (for more general formulas, see Su et al. (2018), where N is derived for a generic
total free energy density function). The eigenvalues of N with positive imaginary parts
are ¢, = i, o = iA?)3, g3 = i, and the corresponding eigenvectors are the columns of
the 6 x 3 matrix below,

a2 inig 0
R o 0
D[ (213 — —1)\1>\3E7L —1)\1)\3EL B 1 B A2
P IOT = g XN 1 N S ANE AE, (A-2)
i(1+AD2) 2NN M ES
| ANEL CNNE 1

The eigenvalues with negative imaginary parts are qq, ¢5, ¢¢ With associated eigen-
vectors ¥, n®  n© which are the complex conjugates of qi, ¢, ¢3 and n™,
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n®, n® respectively. The 6 x 6 complete matrix of eigenvectors is defined as
N = [77(1)|7’I(2)|77(3)’77(4)‘77(5)|77(6)]-

If the soft dielectric material were to occupy an entire half-space, then its impedance
matrix would be Z = —iBA ™!, where A and B are the 3 x 3 top and bottom subma-
trices of Eq. (A.2), respectively, or

ACPASZ A AT AINER (AT - AT MINER) —MNEL
Z = |i(A7°A57 — A5t 4+ AINED) A4+ —iMAsEL| . (A3)
—MAsEL iIMAEL 1

The bifurcation condition for the Biot-type surface instability would then be: det Z = 0
(Destrade et al., 2008; Destrade, 2015), or

AN NIAZ 30205 — 1 = AIA3(1 + A2)3) B2, (A.4)

In plane strain (A\; = A\, A3 = 1), the bifurcation equation (A.4) reduces to Eq. (7),
while in equi-biaxial strain (A; = A3 = \), it recovers the formula established by Su
et al. (2018).

Here, however, the soft dielectric film has a finite thickness and is in contact with
the elastic substrate. The 3x 1 generalized, non-dimensional traction S = [Sa;, Sa2, (IJ]T
and displacement U = [Uy, Us, A]T vectors on each side of the interface at x5 = 0 are
related through

S;(0) = iZyUf(0),  S,(0) = iZ,U,(0), (A.5)

so that the boundary conditions of perfect bond at the interface, U;(0) = U4(0) and
prSe(0) = psSs(0), yields the bifurcation condition as Eq. (3): det(Zy — rZs) = 0
(see e.g., Shuvalov and Every (2002)). Here, the film impedance matrix Z; at x, =
0, assuming the zo = —h surface is traction-free and the applied voltage remains
constant, is defined as Z; = —iM3M; !, where M and M3 are, respectively, the 3 x 3
upper-diagonal and lower-off-diagonal submatrices of the 6 x 6 exponential matrix
M = exp(ikhIN), which can be computed as M = NAN !, with A the diagonal

matrix with elements €%*" (j = 1,...,6). The substrate impedance matrix Z, reads
as follows,
D PR P |0 V2 P Ve ()
Z,= [iO02A57 = A5 A2 4510 0, (A.6)
0 0 0

which is consistent with Eq. (A.3) written at £y, = 0, provided the last diagonal entry
there is replaced with a zero to account for the two-dimensional nature of the traction
and displacement vectors in the hyperelastic substrate (with no electric field).

We can solve the exact bifurcation equation (3) numerically, but it can prove
computationally costly, which is why we may wish to use small-parameter expansions
and conduct asymptotic analysis.

The solution of the first-order differential equation, ' = iN#, with a constant
Stroh matrix N, is n(kzy) = exp(ikzoIN)n(0). Therefore, the relationship between
the generalized displacement-traction vectors of the upper and lower surfaces of the
soft dielectric film reads m(—kh) = exp(—ikhN)n(0) = Mn(0). From the continuity
conditions of 1 at the interface zo = 0 (Uf(0) = U,(0) and Sf(0) = rS4(0)), and the

conditions of zero traction and a constant applied voltage on the top surface xo = —h
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(S¢(—kh) = 0), it follows that

{ Us (kR) ] — NI { :éi%)) ] . (A7)

For thin dielectric films, where kh < 1, we substitute (A.5)y into (A.7) and write
the power series M = exp(—ikhN) = Y~ L (—iN)"(kh)" to arrive at the sixth-order
approximation of the exact bifurcation equation,

irZs + (erz — iNg)(k:h) — 3i(rK )(kh)
det | —1(rKPZ, — iKY (kh)? + i41(r z - K )(kh) =0, (A8)
+120(7"K(5)Z — K(5))(kh) _%(TK&)ZS K3 )(kh)

where K ) and K are respectively, the 3 x 3 lower-off-diagonal and lower-diagonal
submatrlces of the 6 x 6 matrix K™ = N".

Solving this approximate bifurcation equation (A.8) numerically is much more effi-
cient and less computationally expensive than solving the exact bifurcation condition
(3), and it is highly accurate for small kh and small r.

Appendix B. Asymptotic analysis of approximate bifurcation equation (A.8)

Following Cai and Fu (2000), we can use the approximate bifurcation equation
(A.8) in this appendix to derive power-series asymptotic expansions in kh for the
stretch A and voltage £, when the soft dielectric film is much stiffer than the substrate,
and further, explicit asymptotic expansions of the critical values A\, and E in powers
of 71/3. Here we focus on the plane-strain loading case.

Assuming kh < 1 and 7 of order (kh)3, an expansion of the sixth-order approximate
bifurcation condition (A.8), followed by elimination of the common factor, leads to

wo + wy (k) + twa(kh)? + Lws(kh)® + Lwa(kh)!
+ sws (kh)® + swe(kh)® + O ((kh)7) =0, (B.1)
where
wo = (—=1+3N+ A\t 4 2\%)r?
wy=—(1+N)[1=3N+ (EZ - 1) X (1+X)]r,
wo=2(E2 1) [(E -1 M =2] A" =6-8(\—=1)r,
wy =—(L+ M) {2 —4X2 + M[=7 = 2E}A* — X2 (7 + 3X2 4+ \*)

+E2 (6 +4X% + 5\ + \9)]}r, (B.2)
wi= =16+ 47" |5 — 282 +2 (3 — 4B} + Bf) M+ (B3 - 1)),

wg = —40 — 8 (Ef — 9) A* +2 (91 — 92E7 + 16E7) A®
+4 (17 — 27E2 + 10E2) A2 4 6(E2 — 1)\,

where we omit the explicit form of f()\, E?) for brevity. Because ws depends linearly
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on r, the sixth term in Eq. (B.1) is of order (kh)® and may consequently be discarded.

Appendiz B.1. Critical stretch under a prescribed electric voltage

For a prescribed non-dimensional electric voltage E; = Ej, we first derive a power-
series asymptotic expansion of the stretch A in kh, from which the explicit asymptotic
expansion of the critical stretch A, in powers of /3 follows.

As r = O ((kh)?), the leading-order term arises from the third term in Eq. (B.1),
which is of order (kh)?. Thus, Eq. (B.1) reduces to the leading-order bifurcation
condition,

3—(L—EH) XN [24 (1-E5) A'] =0, (B.3)

which gives the leading-order expression for the (critical) stretch, Ao = (1 — E2)~/4,

as presented in Eq. (2).

Examination of Eq. (B.1) reveals that the coefficient ¢; in the first-order asymptotic
expansion A = )\g + ¢1kh vanishes, and that the next-order expansion is A = Ay +
¢o(kh)?. Substituting this into Eq. (B.1) and equating the coefficients of (kh)? yields

1+3(1+X%) r/(kh)® + 12X05°¢ = 0, (B.4)

which gives ¢, and the second-order correction to the stretch as

1 r 1
R (E) — Sa(kh)® (B.5)
In a similar manner, substituting the third- and fourth-order asymptotic expan-
sions, A = Ao + ¢2(kh)? + ¢3(kh)? and X = Ao + ¢2(kh)? + ¢3(kh)? + ¢4(kh)?, into
Eq. (B.1) and equating the coefficients of (kh)® and (kh)® yields ¢3 and ¢y, respec-
tively. Their explicit forms are omitted here for brevity. The resulting fourth-order
asymptotic expansion of the stretch A is presented in Eq. (13).
Subsequently, we determine, in turn, the critical wavenumber (kh). in Eq. (14)
and the critical stretch A, in Eq. (15) by setting the derivative of Eq. (13) with respect
to kh equal to zero.

Appendiz B.2. Critical electric voltage for a fixed pre-stretch

Here we derive a power-series asymptotic expansion in kh for E? at a fixed pre-
stretch A, from which the explicit asymptotic expansion of the squared critical voltage
(E$)? in powers of 71/3 can be obtained.

Analogous to the derivation of the asymptotic expansion of the stretch A pre-
sented in Appendix B.1, the leading-order term of the squared voltage is obtained
from Eq. (B.3) as £?, = 1 — A~%. In a similar manner, the second-order asymptotic
expansion of the squared voltage can be derived as

1
3

(kh)? + (1 + \72) (kj"—h> , (B.6)

and the resulting fourth-order asymptotic expansion of E? is formulated in Eq. (18).

By subsequently setting the derivative of Eq. (18) with respect to kh to zero, the
asymptotic expansions of the critical wavenumber (kh)°" and the critical squared volt-
age (E¢")? in powers of r'/3 are obtained, as given in Egs. (20) and (19), respectively.
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