GENERALIZED WITT GROUPS

B. A. Dubrovin UDC 519 .4

In this paper we construct a functor from the category of one-dimensional commutative for-
mal groups to the category of topological Abelian groups. For a multiplicative formal group,
this function is the usual Witt functor. We study certain properties of the constructed func-
tor. This functor is then used to describe multiplicative operations in the theory of unitary
cobordisms.

1. BASIC DEFINITIONS

1. Let R be a commutative associative ring with unity, R[[X, Y]] the ring of formal power series in
two variables, F(X, Y) € R[[X, Y]], @ one-dimensional commutative formal group over R, I{X) € R[[X]] its
inverse element, and

w(X) = (2;0piXi>dX (1.1)
its canonical invariant differential (p; = 1). If R is a Q-algebra there then exists a series [(X) = Z:o]%
Xi*1 guch that w(X) = dI(X) and

F(X,7) =1 ((X) +1(Y) (1.2)

(see [2]). The symbol A will denote the topological space of formal power series over R without a free
term, with the usual topology of formal power series. We impose on A the structure of an Abelian topologi-
cal group A(R, F), setting

(f + FeiX) = F (f (X), g (X)). (1.3)

It is trivial to check that the axioms of a topological group hold. Let R not have elements of finite order.

LEMMA 1.4. Let f(X)=23

o]

a;X'. Then, the series f(X) is uniquely represented in the form

oo

FX) = D, FaiX (1.5)

Moreover, if am is the first nonzero coefficient in f(X) then oy = aj when i = m.

Proof. Expression (1.5) is meaningful since its right side converges in group A(R, F). We have an
equation over

R@Q: 137, aX) = 3, 16X
From this we have
anX™ 40 (X7) = anX™ o (X",
le.,am = am, which means that

! (Ei aiXi> — @ X" = S (X1, (1.6)
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Now applying the series for I to both sides of (1.6), we obtain
F(F(X), {anX™) = Sy, FouX. (1.7)

But, the left side of {(1.7) is a series over R which begins with a power greater than m. The remainder of
the proof is an obvious induction.

COROLLARY 1.8. A (R, F)c A(R® Q. F) is a subgroup.

Example 1.9. Let Fm(X, Y) = X+ Y~ XY be a multiplicative formal group. Consider the mapping

2 A
A A R[[X)], setting f—1—7 (X). Then, (f + T (X) = f(X) + g(X) — [(X) g (X) —~11 —F(XIlt -
g(X)], i.e., A is a continuous monomorphism of group A(R, Fp,) info the multiplicative group of invertible
elements of ring R{[X]].

2. Definition 2.1. We call the generalized Witt group W(R, F) the set of infinite vectors x = (xy, Xy,
. .), where z; &= RVi, with the mappings

wn(2) = 2y dpn g m=1,2 (2.2)
d

defining a collection of homomorphisms in the additive group of ring R.

We shall call x4, %y, . . . the true coordinates of vector x, while w;(x), wy(x), . . . are illusory coordi-
nates. Itfollows from (2.2) that the transition from true to illusory coordinates is invertible over the ring
R® Q,i.e., addition in group W(R ® @, F) is univocally defined by (2.1). We now show that W(R, F) is a sub~
group in WR® Q, F.

Definition 2.3. Mapping E : W(R, F) — R[[X]]1® Q, defined by the formula

Y

EX)=1" (an-1 1w (@) X) , (2.4)

is called the Artin-Hasse exponent.

THEOREM 2.5. The Artin-Hasse exponent defines an isomorphism of the groups E : W(R, F) —
AR, F).

Proof. From (2.4) we have:

E(x+y) =17 (Z; L (2) X" S w. ) Xn) =
= LB @)+ LE )] = E () + "E (4). (2.6)

Furthermore:

E@) =1 (S (o Spudpn ) X7) =12 (S i P (XY =
=1 -1(2; I(zq Xd)> = 2‘::1 Fp, X, (2.7)

The theorem now follows from (2.6), (2.7}, and Lemma 1.4.

COROLLARY 2.8. The structure of the group on W(R, F) is univocally defined by (2.1).

The proof follows directly from (1.8) and (2.5).

Example 2.9. For group Fp, of example (1.9) we have: pj=1fori=1,2,...,1i.e., formulas (2.2)
assume the form w, (z) = S yedai®. Consequently, group W(R, Fyy) is the additive group of a Witt ring
(see [1]). This motivated our choice of name for group W(R, F).

In W(R, F) we introduce the topology induced by the natural valuation: v(x) = n, if xn is the first non-
zero true coordinate. Then, E becomes an isomorphism of topological groups.

Let F be the category whose objects are the pairs (R, F), with F being a formal group over ring R.
A morphism f of category F is a ring homomorphism f: Ry — R,, where F, = Fy,i.e., F, is obtained by
applying f to the coefficients of F;. We note that then pifz = f(p;Fi)where p; is aefined by (1.1). We define
W(f) : W(Ry, Fy) — W(Ry, Fy, setting W(f) (x4, X5, . « ) = (f(Xy), f(xy), . . .). This, obviously, is a continu-
ous isomorphism of the groups.
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There is a universal object (see [3]) in category F. We denote it by the symbol (L, U). Since L is a
torsion-free ring we have then defined the group W(L, U). If, now, (R, F) is an object of F and f: (L, U) —
(R, F) is the canonical homomorphism, then W(R, F) is defined as the image of group W(L, U) under the
homomorphism of W(f) into the set of all vectors with coordinates in R. Thus, W becomes a functor from
category F to the category of topological Abelian groups and their continuous homomorphisms.

2. ENDOMORPHISMS OF FUNCTOR W
1. Definition 1.1. We define the family of mappings by shift V;: W — W, setting

Tm, if nim,
Va(@)m ={ = (1.2)

0 otherwise
LEMMA 1.3. Vp, is a monomorphism forn =1, 2, .. ..

Proof. We compute the action of Vy on the illusory coordinates. We have:

Wi (V@) = Zjan AP _ i
m_
i.e.,
. 14 .
i (V(2) = {Zﬁ’m Wkpuagh = miomn @), 3 nlm,

otherwise (1.4)

The assertion of the lemma then follows from the obvious injectiveness of mapping (1.2) and the additivity
of expression (1.4).

Definition 1.5. We define the family of Frobenius mappings Fp: W — W by their action on isomor-
phic group A. Let &, ..., &n be the formal n-th roots of X. We set

Fo (X)) = D e (1.6)

The right side of (1.6), being symmetric in the {; by virtue of the commutativity of group F, is the kernel
of R[[X]]. The additivity of mapping Fj is obvious.

LEMMA 1.7.
Wi (Fr (2)) = Wi (7). (1.8)
Proof. Due to the simplicity of the computations we verify our assertion on element E((1, 0, . . .) =
X. We have:

FolX) = UM (1E) +- o+ LGN =0 (Gt T )+
R E B ) =P X P X L),
But, wm(1, 0, 0, ... = pp-y- Now, (1.8) follows from the previous éomputations and (1.2.4).
THEOREM 1.9. V, and Fj have the following properties:
() Vm ° Vn = Vinns
(2) Fm ° Fn = Fpns
(8) Fn ° Vi = Vi © Fp when (m, n} = 1,

{4) Fp ° Vp is multiplication by n in Z-module W,

(6) (1/n) Vp ° Fp is the projector of W(R ® Q, F) on vector x such that wy(x) = 0 when n { m,

(6) 1ty =2,(nv p):liflﬂ- V.ol is the projector of W(R ® Zj, F) on vector x such that wy(x) = 0 when
m = ph (u is the Mpbius function).

Proof. By virtue of (1.4) and (1.8), the action of Fy, and V, on illusory components in generalized
Witt groups is identical to the action of the shift and Frobenius homomorphisms in ordinary Witt groups.
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With this in mind, we reduce asszrtions (1)-(6) of the theorem to the corresponding agsertions about ordi-
nary Witt groups, proven by computations on the illusory components {see, for example, [1]).

Now, let ring R be an algebra over the ring of p-adic integer Zp.
Definition 1.10. Formal group F is p-typical if, in group W(R, F), wip(x) = ¢ when m # ph,
The equivalence of this definition with that given by Cartier (see [4]) follows immediately from (1.8).

THEOREM 1.11. Let fp(X) = E(mp(1)). Then, formal group Gp(X, Y) =f§1 F(fp(X), fp(Y)) is p-typi-

cal.

Proof, Follows directly from assertion (6) of Theorem (1.9).

3. CONNECTION WITH TOPOLOGY

1. Let F{u, v) be the formal group of geometric cobordisms, and

gl =D Ewn = U (CPIRQ (1.1)
its logarithm (Mishchenko series) (see [6]). Here, u € U¥(CP®) = Qq[[u]] is 2 universal element, i.e., in
this case the coefficients of the invariant differential (1.1.1) have the form p; = [CPl], and formulas (1.2.2)
take the form

Wy () = Xy, 4 {CPYT 2 (1.2)

dn
LEMMA 1.3. Let ¢ € AU ® Q be the multiplicative operation in the theory of unitary cobordisms;
then, @{g(u) = glu).
Proof. By definition, g(u) is a primitive element under the mapping U* (CP=)® Q- U* (CP~) &
U* (CP*) ® ¢, induced by the H~-structure on CP®. Any operation of AU commutes with the diagonal, i.e.,
the multiplicative operation takes primitive elements into primitive ones. But, the Qy-module of primitive
elements is one-dimensional and, since ¢(g(u)) = u * o(u), then @(glu)) = glu).

Let ¢(u) be a formal power series in f(u). As is known (see [6]), from the series f(u) = Qu{[ull ® Q
one reconstitutes, univocally, the multiplicative operation ¢ € AU ® Q. We denote by g?(u) the series ob-
tained from g(u) by the action of ¢ on its coefficients. We have:

g () =¢(g) = g (f (),
consequently,
g (W) = g (),
ie.,
) = g7 (g% (). (1.4

Let x ¢ W(GU @ Q, F) be a vector such that wp(x) = go[CPn'1]. We then obtain from (1.1), (1.4), and (1.2.3)
that f~1(u) = E(x), i.e., the Artin-Hasse exponent established the connection between the action of the multi-
plicative operation on the coefficient ring and its action on the cobordisms of infinite-dimensional projec-
tive space.

COROLLARY 1.5. Let wy, wy, . . ., €Qy. There exists multiplicative operation ¢ € AU, with ¢ [CPn‘1]=
Wwp, if and only if there exists a collection x4, Xp, . . . €8 such that

Xy
Wy = Qg AICPY 12, 2, =1
Proof. This follows directly from the previous discussion and from (1.2).

This latest corollary makes it possible to obtain diverse information about the multiplicative opera-
tions of AU, For example:

COROLLARY 1.6. For any multiplicative operation ¢ € AU we have:
(1) Td(e[cPP™1)) = 1 (mod p),
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(2) Lig [CPPP1)) = 1 (mod p) for odd p,

(3) Lig [CP®™1) = 0 (mod 2),

(4) x(@ [CP21)) =0 (mod n).

Here, Td is the Todd genus, L is the Hirzebruch L-genus, and x is the Euler characteristic.

Proof. All these assertions are of the same type, so we shall prove only the first. Let x ¢ W(Qy, F)
be a vector such that wp(x) = @ [CPP1]. 1t exists, by virtue of (1.5). Let y; = Td xi. Then, by virtue of

(1.2) we have: Tdw, (z) = Zundys” . In particular Tdw j (z) = Zrz;opiyg?_l. But, yq = wy(x) = @(1) = 1,
whence follows the required assertion.

COROLILARY 1.7. Operation ?p cAU @ Zp, corresponding to vector wp(l), acts as follows:

Op [cP"-] = [CcPr-],
¢p [CP"] = 0 whenn == p — 1.
Proof, This follows directly from assertion (6) of Theorem (2.1.9) and from (1.1) (see [6]).
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