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12 B.A. Dubrovin

Introduction

In recent years the development of methods for the exact solution of non-
linear equations of mathematical physics (the inverse scattering method; see
[13] and the literature cited there) has involved several function-theoretical
constructions related to Riemann surfaces. This refers first of all to the
theory of multidemensional theta functions in terms of which one can
express the so-called "rank 1 solutions" of a wide class of non-linear
equations (the theory of solutions of higher rank is connected with
holomorphic vector bundles over Riemann surfaces and is presented in the
survey [ 14]; a complete bibliography is given there). In the present survey
we present the basic principles of the application of theta functions to the
integration of equations, together with important examples of this application.

We recall briefly the history of this question. In 1974 in a series of
papers Novikov, the present author, Matveev and Its ([20], [53], [54], [60],
[17]), and Lax ([55]) introduced and studied the class of "finite-zone"
periodic and quasi-periodic potentials of the Schrodinger operator (Sturm-
Liouville, Hill). On the basis of this class a program for the construction of
a wide class of solutions of the Korteweg-de Vries (KdV) equation was
proposed and realized. Some results of these studies were also obtained by
McKean and van Moerbeke in 1975 [56]. As was later proved rigorously
(Marchenko and Ostrovskii [57]), the set of periodic finite-zone potentials is
dense in the space of periodic functions with given period. In these articles
a connection was established between the spectral theory of operators with
periodic coefficients and algebraic geometry, the theory of finite-dimensional
completely integrable Hamiltonian systems and the theory of non-linear
equations of KdV type. A generalization of this theory to spatially two-
dimensional ("2+ 1"; x, y, t) systems, among which there is the important
two-dimensional analogue of the KdV equation—the Kadomtsev-Petviashvili
equation (KP)—was realized by Krichever [59], [15], [16]. Krichever's
approach also gives a methodologically very convenient and lucid presentation
of an algebro-geometric procedure of constructing the above-mentioned
finite-zone solutions of the KdV equation and its numerous analogues. In
the case of (2+ l)-systems this method reveals new important connections
with algebraic geometry, which are used essentially in the statement of the
problem of Chapter IV of this paper.

As Novikov and Natanzon have pointed out to the author, the
determination of conditions for the selection of real solutions in various
problems of this kind turns out to be a non-trivial and as yet unsolved
problem, except for individual cases literally analogous to the KdV equation,
which do not, however, include the sine-Gordon equation or the non-linear
Schrodinger equation with repulsing interaction, nor all the (2+ l>systems.
An essential advance was made by Cherednik in [49] and developed in [14].
The results of [49] hardly pretend to completeness and are not effective
even in the simplest cases.
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The first two chapters of this survey are devoted to the most important
results of the theory of theta functions, their connection with Riemann
surfaces and Abelian varieties. The material of these chapters basically goes
back to the classical works of Abel, Jacobi, and Riemann (see the books
[ 1 ] - [8] ; for a modern account a detailed bibliography can be found in [4]).
In the third chapter we explain Krichever's method (see [15], [16]) for
constructing exact solutions of non-linear equations (in §2 we also use
results of [21]). This method allows us to express the solutions thus
constructed in terms of theta functions. The basic instrument for
constructing such solutions is the so-called Baker-Akhiezer functions, that is,
meromorphic functions on a Riemann surface with an essential singularity of a
given form (see [ 18], [ 19]; apparently, the first functions of this type were
considered by Clebsch and Gordan). It is essential to note that in the
applications to non-linear equations it is not arbitrary theta functions that
arise, but only theta functions of Riemann surfaces. Novikov has conjectured
that the identities on a theta function (or on the Riemann matrix defining it),
obtained after making an elementary substitution of it in the Kadomtsev-
Petviashvili (KP) equation, precisely distinguish the theta functions of Riemann
surfaces from all other theta functions. A partial realization of this program—
the derivation of a system of identities connecting the parameters of a theta
function of Riemann surfaces (without proving the completeness of this
system)—was obtained ( 1 ) by the author in [23]); the corresponding results
are presented in Chapter 4. Incidentally we also solve Novikov's problem on
the effectivization of formulae for the solution of non-linear equations in the
case of small genera, where restrictions on the theta functions do not yet
arise. Moreover, the use of the KP equation allows us to give an explicit
construction for the recovery of an algebraic curve from its Jacobian (that is,
to give a new proof to the classical Torelli theorem, which asserts the
uniqueness of this correspondence; see [4]), and this construction does not
require a knowledge of the solutions of the transcendental equation θ(ζ) = 0.
Very recently the author has succeeded in proving Novikov's conjecture in a
weaker version: the relations on a theta function that follow from the KP
equation distinguish the variety of theta functions of Riemann surfaces in
the space of all theta functions up to possibly superfluous irreducible
components. The idea of the proof is also given in Chapter 4. Thus, the use
of the KP equation allows us effectively to solve the classical problem of
Riemann on the relations between the periods of holomorphic differentials
on Riemann surfaces. Finally, in the last Chapter we list the dynamical

statements of some results of [23] were published (and used) in [37]. We also
mention that after [23] was published, the author was shown a preprint by Hirota [24];
the methods of this preprint intersect with some technical arguments of [23]. Hirota
solves the problem of constructing exact solutions of non-linear equations of KdV type
by means of the theory of theta functions. The account in [24] does not give explicit
formulae.
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systems that are integrable in terms of theta functions of genus 2. Except
for equations of the theory of two-zone potentials, which are interpreted in
[20] and [17], and also multidimensional Euler equations, all these systems
are classical, although the structure of their solutions is not well known.
The invariant varieties of these systems are Abelian varieties of genus 2. This
allows us to obtain explicit formulae of various types for the universal
bundle of Abelian varieties of genus 2 (the first such formulae were obtained
in [35]). As an application we give the work of Krichever on the integration
of the non Abelian Toda chain by algebraic-geometric methods.

The author thanks S.P. Novikov and I.M. Krichever for their interest in
this work and for a number of useful discussions. In the process of writing
Chapter 4 the author consulted A.N. Tyurin, to whom he expresses his deep
appreciation.

CHAPTER Ι

THETA FUNCTIONS, GENERAL INFORMATION

§ 1 . Definition of theta functions and their simplest properties

Definition 1.1.1. A symmetric (g χ g)-matrix Β = (Bjk) with negative
definite real part Re Β = (Re Bjk) is called a Riemann matrix.
Definition 1.1.2. A Riemann theta function is defined by its Fourier series
of the form

(1.1.1) Q(z\B)=

Here ζ = (z1, ..., zg) G C* is a complex vector. The diamond brackets denote
e χ

the Euclidean scalar product: < N, z) = 2 Nizu {BN, Ν) = Ύ BijNtNj.
i = l i, 3=1

The summation in (1.1.1) is taken over the lattice of integer vectors
Ν = (Ni, ..., Ng). The general term of this series depends only on the
symmetric part of the matrix B. From the obvious estimate Re (BN, N) <
< —b (N, TV), b > 0 (as —b we can take the largest eigenvalue of the matrix
Re B), one derives easily that series (1.1.1) is absolutely convergent,
uniformly on compact sets. Thus, the function θ(ζ\Β) is analytic in the
whole space C*.
Remark. We often use the abbreviated notation 0(z) = θ(ζ\Β) if the matrix
Β is fixed.

Let elt ..., eg be the basis vectors in C* with the coordinates

(1-1-2) (ek)} = 8hj;

we also introduce vectors fx, ..., fg, setting

(1.1-3) Vk)i=BhJ (k,j = 1, · . .,g).
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The vectors fk can also be written in the form

(1.1.3') h = Beh,

where Β is the linear operator corresponding to Bkj.

Assertion 1.1.1. When the argument is shifted by the vectors 2mek, the
Riemann theta function fk is transformed according to the law

(1.1.4)

(1.1.5)

Proof. The periodicity of (1.1.4) is obvious: the general term of (1.1.1)
does not change under the shift ζ -> z + 2mek. To prove (1.1.5) we change
the summation index Ν in (1.1.1), setting Ν = M~ek, Μ G Zg. We have

= Σ exp{^(BM, Λί>-<ΛΓ, B<?ft> + y<flek, eft> +

+ (Μ, ζ) + (Μ, / f t > - <eft, ζ)- (ek, fk)} =

= exp{—y5 f t h —zft}6(z).

This proves the assertion.
Thus, the function 0(z) is g-fold periodic with basis of periods 2me1, ...,

2nieg. The vectors fu ..., fg are called its quasiperiods. Loosely speaking, we
call the whole system of the vectors {2mek, f^) the periods of the 0-function.
Any vector of the form 2πΐΝ+ BM, where Ν, Μ G Zg are integer vectors, is a
period of the Riemann 0-function. From Assertion 1.1.1 we immediately get
the transformation law:

(1.1.6) 9(z + 2jtiiV + SM) = e x p [ ~ ^ - ( 5 M , M) — {M, ζ)}θ(ζ).

The vectors of the form 2mN+ BM constitute the period lattice.
We also define θ-functions with characteristics. Let a and β be arbitrary

real g-dimensional vectors. We introduce a function θ [α, β] (or θ [α, β](ζ\Β)
in case we have to indicate the dependence on Β explicitly):

(1.1.7) θ [α, β](ζ)

For a = β = 0 we obtain the Riemann 0-function: 0[O, 0] (ζ) Ξ 0(Ζ) .
Moreover, it follows from (1.1.6) that Θ[Ν, Μ] (ζ) = θ {ζ). Therefore, it
suffices to consider the functions θ [α, β] (ζ) with characteristics α and β,
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such that 0 < α,·, fy < 1. It is not hard to indicate the expansion of
θ [α, β] (ζ) in a Fourier series. It has the form

(1.1.8) θ[α,β](ζ)

By analogy with Assertion 1.1.1 we obtain the transformation law under a
shift by a period of 0-functions with characteristics. Omitting the calculations,
we give the final formula

(1.1.9) θ[α, $](z + 2mN + BM) =

= exp{-i-(5M, M)-(z, M) + 2ni((a, Ν)-φ, Μ))}θ[α, β] (ζ).

When we multiply 0-functions of the type (1.1.7), we obtain θ-functions
of higher orders. The transformation law of a θ -function of order η with
characteristics [α, β], which we denote by θη [α, β] (ζ), under a shift by a
period is as follows:

(1.1.10) θ η [α, β]

= e x p { - y ( 5 i W , Μ) —η (Μ, *> + 2πί«α, Ν)-φ, Μ » } θ η [ α , β] (ζ).

It is easy to show (but we omit this here) that the entire functions of g
variables zlr ..., zg subject to the transformation law (1.1.10) form a linear
space of dimension ng. As basis 0-function of order n with characteristics
[α, β] we can take, for example, the functions

(1.1.11)

where the coordinates of y range independently over all values from 0 to η - 1.

Definition 1.1.3. The characteristics [α, β] for which all the coordinates
ah ββ are 0 or ̂  are called half-periods. A half-period [α, β] is said to be
even if 4<α, β) = 0(mod 2) and odd otherwise.

Assertion 1,1.2. The function θ[α, β] (ζ) is even or odd according as [oc, β]
is an even or odd half-period.

Proof. Under the substitution ζ ->- —ζ, ./V >-*• —Ν — 2α the general term of
the series (1.1.8) is multiplied by

exp {— (Μ + β, 4jua>} = exp {4πζ(α, β>}.

The sign of this factor is completely determined by the parity of the number
4<α, β). This proves the assertion.

It is not hard to compute that there are precisely 2*~1(2* + 1) even half-
periods and 2A T-X(2' — l)odd ones.
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§2. Theta functions of a single variable

In the classical theory of elliptic functions (the case g = 1) there occur
only theta functions corresponding to half-periods. The Riemann matrix
here is the single number b = Bn, Re b < 0. There are 4 half-periods:

(1.2.1) (1/2, 1/2), (1/2, 0), (0, 0), (0, 1/2).

They correspond to 4 basic 0-functions:

fcez

(1.2.2) { k e Z

θ3 (ζ) == θ [Ο, 0] (ζ) = 2 exp {y bk* + kz} ,
fcez

θ4 (ζ) = θ [θ, -1] (ζ) = y, exp {-ι 6fr2 + fe (z + πι)) .
t fcez

For comparison with the literature we mention that the following notation is
more generally accepted:

b = 2JUT (Im τ > 0), ζ = 2πιζ.

The first half-period is odd, the others are even. Consequently, the
function #i(z) is odd and the others are even. The function 0,(z) vanishes at
all vertices of the period lattice ζ = 2mm + bn. From this it is not hard to
find the zeros of the remaining 0-functions. In particular, Θ3(ζ) vanishes at
all points ζ = m + b/2+2mm + bn. We claim that there are no other zeros.
For convenience we take 03. We need to prove that

(1.2.3) -±r

c
where C is the contour of the parallelogram spanned by the vectors 2vn and b.
The general transformation formulae (1.1.9) for 03(z) take the form

(1.2.4) Θ,(ζ + 2 π θ = θ 3 ( ζ ) , Θ 3(ζ + δ ) - e x p ( - | — ζ ) Θ 3 (ζ) .

We split the integral (1.2.3) into two:

log 93(2) = - ^ j [d Iog8 3( 2)-dlog 63(2 + 6)] +
c Ό

b

+ Έΰ j [d l o g 9s (z + 2ni) * d l o g θ3 (ζ)]'
ο

From the relations (1.2.4) it follows that the second integral is zero, and the
first integral has the form

2πί

as required.
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§3. On Abelian tori

Assertion 1.3.1. The vectors 2niex, . . ., 2nieg, / l t . . .,fg in the space

QS = R 2 # define(i fry (1.1.2) and (1.1.3) are linearly independent over the

field of real numbers.

Proof. We assume the contrary: that some linear combination of these
vectors vanishes:

(1.3.1) 2m2Xe f t + SlW*=0, λΑ, μΛ G R.

From (1.1.3) we obtain immediately that the real part of this equality has
the form

Hence, all the μ& are zero because the matrix Re Β is non-singular. From
(1.3.1) it then follows that all \k are zero, which proves the assertion.

Let Γ be the lattice generated by the vectors (2mek, fx). The vectors of Γ
have the form

(1.3.2) 2niN + BM,

where Ν and Μ are integer vectors. This is precisely the period lattice of the
0-function in the sense of § 1. It is convenient to associate with Γ another
geometric object—the quotient of C* = R2* by this lattice. From Assertion
1.3.1 it follows immediately that this quotient C*/F is a 2g-dimensional torus
T2g. Moreover, T2g has the natural structure of a complex compact Lie
group, and the expression

(1.3.3) ds2 = — Υ, (Re B)l\ dzk dz,

gives a Kahler metric on T2g, which is even a Hodge metric (see [4]). If ak

and β,· are real coordinates in R2g = Cg, where ζ = 2πΐβ + Βα, then the
imaginary part Ω of this metric has the form

(1.3.3') Ω=Σ^Λ^·

Such tori are called Abelian. We denote the Abelian torus T2g constructed
from the Riemann matrix Β = (Bjk) by T2g(B).

The meromorphic functions on T2g(B) are called Abelian functions. In
other words, Abelian functions are :2g-fold periodic functions of g complex
variables. Thus, the quotient of two 0-functions of the same order with the
same characteristics is single-valued on T2g(B) and is therefore an Abelian
function. It is known that any Abelian function can be obtained in this
way. A number of examples in which certain Abelian functions are
expressed explicitly in terms of 0-function, will be given in Ch. II, §4.
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Let (2nie'j, f'h) be another basis of Γ, where f'h = B'e'h and B' = (B/k) is
another Riemann matrix. The transition from the basis (2niej, fh) to
{2nie'j, f'h) (and back) is given by an integer unimodular matrix

!

2nie[ = 2 dlj2mej + 2

where a = (ai;·), 6 = (btJ), c = (c i ;), d = (d{y) are integer (g χ g)-matrices,
and

(1.3.5) det(J J) = l.

Here

(1.3.6) β ' = 2πί{αΒ + 2nib){cB + 2nid)-1.

The requirement on 5 ' to be a Riemann matrix imposes a strong restriction

on the matrix i " dj; it must be symplectic:

(1-3-7) (* b

d) €Sp(g f Z),

that is
ί α b W 0 1\ / a 1 c < \ _ / ° ^\
U i/ l - l θ) U ( d'/ ~ l - l 0/

(the symbol f denotes transposition).
Two Riemann matrices Β and B' connected by transformations of the

form (1.3.6), (1.3.7) are said to be equivalent. They determine the same
Abelian tori T2g(B) = T2g(B') (even with the same Hodge structures

The following is the transformation law of ^-functions under
transformations of the form (1.3.6), (1.3.7):

(1.3.8) θ [ α ' , β ' ] ( ζ ' | 5 ' ) =

= Λ KdetM exp {1 2 W) * " ^ ^} θ [«, β] (ζ Ι Β),

where
(1.3.9) Μ =

[α1, β'] = [α, β ] ( _ ^ " J j + i d i a g l c d * . α&'];

fc is a constant independent of ζ and 5. Here the symbol diag means that
one has to take the diagonal elements of the matrix \_cdx, abf] (a proof of
this transformation law is in [5]).

( 1 )The set Hg of all {g χ £)-Riemann matrices is called the Siegel (left) half-plane. The
group Ag = {Sp(g, Z)/t ± 1} acting on Hg in accordance with (1.3.6) is the Siegel
modular group. The factor group HJAg parametrizes the Abelian varieties T2g with a
Kahler metric of the type (1.3.3), (1.3.3').
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Remark. Let Β = (B/k) be a (g χ g)-Riemann matrix of block form

Β = L· „„), where B' and B" are (k χ k)- and (1 χ 1)-Riemann matrices.

Then the corresponding torus T2g(B) splits into the direct product of two
Abelian tori

(1.3.10) T" (B) = T2h (Β') Χ Til (B").

The corresponding θ -function also splits into a product: if ζ = (zu . . ., zg),
z' = (z l t . . ., zh), and 2" = (zh+1, . . ., zg), then

(1.3.11) θ(ζ | Β) = θ(ζ' | 5')θ(ζ" | Β").

0-functions with characteristics are of a similar structure. We say that a
Riemann matrix Β is decomposable if it can be brought to block form by
transformations (1.3.6), (1.3.7). Correspondingly we use the term
"decomposable Abelian torus" and "decomposable 0-function" (formulae
(1.3.10), (1.3.11)). For the opposite case of indecomposable tori T2g(B) the
following property holds: on T2g(B) there are no (non-constant) Abelian
functions depending on a smaller number of variables. Equivalent is the
assertion: if /(z) is an Abelian function on an indecomposable torus and its

8

derivative with respect in some direction vanishes , 2 UI-JT~ = 0,then
/ = const. 1=1

Returning to Abelian tori, we note the following important theorem: any
Abelian torus is an algebraic variety (Lefschetz). We do not prove this
theorem in general (the proof is based on the theory of 0-functions; see
[11]), but consider only the case g = 1. In this case any torus T2 is
determined by its pair of periods 2ω, 2ω' (we assume that Im ω'/ω > 0).
We define the Weierstrass elliptic function ψ (ζ), setting

(1.3.12) P(z) = -p-+ Zl Ι (ζ-2ηιω-2ηω')ίί ~~ (2τηω + 2ηω')! _Γ
' ' φ Οτη*+η2φ0

It is not hard to verify that the series (1.3.12) converges uniformly on every
compact set in C\{2m£o -f- 2ηω'}, so that it is a meromorphic function of ζ
having double poles on each vertex of the lattice. Obviously, this function is
doubly periodic:

(1.3.13) <@(z -f- 2TOCO + 2nu}') = ψ (ζ), η, m G Ζ.

The derivative <§>'(z) is also doubly periodic. Let

(1.3.14)
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Then the Laurent expansions of <§{z) and ψ(ζ) in a neighbourhood of ζ = 0
have the form

(1.3.15) p ( z ) = ^ + ^ . + ^ . + . . . ,

( 1 . 3 . 1 6 ) P ' ( z ) = - Z3 , 1 0 ι 7 . · · •

From these expansions it follows that the function ,(g>')2 — [A<§>3 — g2 ψ — gs]
does not have a pole at the origin. Since it is doubly periodic, this function
is regular on the whole complex plane, consequently, it is a constant. It is not
difficult to see that this constant is zero. We deduce that the Weierstrass
function ψ (ζ) satisfies the differential equation

(1-3.17) (^')2 = 4f3 — g2<§ — g3.

Assertion 1.3.2. The mapping x(z) = f (z), y(z) = <§>'(z) establishes an
isomorphism of the complex torus T2 = C/{2mo> + 2ηω'} with the Riemann
surface of the algebraic function

(1.3.18) t = Ax3 - g2x - g3.

Proof We construct the inverse mapping from the complex algebraic curve
(1.3.18) into the torus T2. Let Ρ = (χ, y) be a point of the Riemann
surface (1.3.18). We set

(1.3.19) Z = Z{P)
y J yix3—g2x—g3

w CO

The path of integration in (1.3.19) lies on the Riemann surface (1.3.18).
This path is unique, up to addition of an integral linear combination of the
base cycles a and b on (1.3.18) (Figure 1; here Ax\ — g2xt — #3 = 0; the

dotted line shows the part of the cycle b, lying
on the "lower" sheet):

(1.3.20)
a

It is not difficult to verify that

Fig. 1. Riemann H ο 21> £ d* _ ο & *?--2ω'
surface of (1.3.18) (Ι.ό.ΔΙ) y y -Δω, φ y - Ζ ω .

« b

Thus, the mapping (1.3.19) carries the curve (1.3.18) into the torus T2.

Obviously, the mappings z*-> Ρ = (f(z), <§>'(z)) and P>-> f — are inverse to
each other. This proves the assertion. «
Remark. Let us indicate an explicit connection between the Weierstrass
function <§>(z) and the ^-functions of one variable considered in §2. There is
the formula

(1.3.22) Ρ ( * ) = - • ; £
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where c is a constant. This is obvious in view of the periodicity of the right-
hand side and the information obtained in §2 on the location of the zeros
of 0j(z). From (1.3.22) and (1.3.17) it follows that 0,(z) satisfies a third-
order differential equation. Later we consider the differential relations for
multidimensional 0-functions (see Chapters 3 and 4).

§4. Addition theorems for 0-functions

Theta functions are connected by a complicated system of algebraic
relations, the so-called addition theorems. All of them are relations between
formal Fourier series. We quote the two most important addition theorems/1 J

From a Riemann matrix Β we construct two sets of 0-functions:

(1.4.1) θ[α,β](ζ) E= θ[α,β](ζ | Β), θ[α,β](ζ) = θ[α,β](ζ | 25).

Addition Theorem 1.4.1. Let α, β, γ and ε be arbitrary real g-dimensional
vectors. Then

(1.4.2) θ [α, γΐ (Z l + z2) θ [β, ε] (ζ, - ζ2) =

= 2 1

It suffices to prove this for the case α = β = γ = ε = 0 (the general case

reduces to this one via (1.1.7)). Then (1.4.2) takes the form

(1.4.2') θ(ζ + ιν)β(ζ — w)= 2 θ [δ, Ο] (2ζ)θ[δ. 0](2w).
2δε(ζ2)#

First we consider the case g = 1. Then (1.4.2') can be written as

(1.4.3) θ (ζ + w) θ (ζ - w) = θ (2z) θ (2w) + θ [ i- . 0J (2z) θ [ γ , θ] (2ιτ).

where

θ ( ζ ) = 2 e x P ( γ ^

The left-hand side of (1.4.3) therefore has the form

(1.4.4) 2 exp[^-b(k^ + l2) + k(z + w) + l(
k, ι

We introduce new summation indices m, n, setting

(1.4.0) m = —^— , n = —2—.

The numbers m and η are both either integers or half-integers. In these
variables (1.4.4) takes the form

(1.4.6) Q(z + ^

(1)Relations for theta functions of an entirely different type can be found in [43].
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We split this sum into two parts, the first part containing the terms with m
and η integers, and the second half-integers. In the second part we change
m to m + \ and η to n + \. Then m and η are integers, and (1.4.6) takes the
form

2 exp [bm2 + 2mz] exp [bn2 + 2nw] +
m, η e Ζ

m,ne Ζ

Thus, the theorem is proved in this special case. In the general case g
we have to repeat this argument for each coordinate separately.

Addition Theorem 1.4.2. Let [m;] = [m[, m'l] (i = 1, 2, 3, 4) be
arbitrary real 2g-dimensional vectors. Then

(1.4.7) θ [mt] (Zl) θ [TO2] (z2) θ [m3] (z3) θ [m4] (z4) =

= -^- 2 exp(-4ni<i»;, ο"

where a = (a1, a"),

(1.4.8) (z,, . .

(1.4.8') [

(£ac/z 1 in Γ is f/ze wnii (g x g)- or (2g χ 2g)-matrix).

Again we give the proof for the simplest case g = 1 only. The matrix Τ
has two important properties: it is symmetric and orthogonal. The general
term of the sum on the left-hand side has the form

(1.4.9) exp {jbKk, -f m;)2+ . . . +(k<i + m'i)-} +

where kx, ..., k4 are integers. We introduce new summation variables
lu ..., /4, setting

(1.4.10) (lu . . ., I,) = (k,, . . ., kA)T.

We call the set ku ..., k4 even if the sum ky + ... + k4 is even, otherwise odd.
For an even set kx, ..., k4 all the numbers lu .... l4 are integers, and for an
odd one they are half-integers. Taking (1.4.8), (1.4.10), and the orthogonality
and symmetry of Τ into account, we obtain for (1.4.9) in the new variables:

(1.4.11) exp {-i b [(I, + n\f + . . . + (I, + η[)2} +

+ . .. + (Z4 -f- n\) (u\
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We divide the sum of exponentials of the form (1.4.11) into two parts: Σ ( 1 )

and Σ (2). Σ (X) includes only the integers llt ..., /4 and Σ (2) only the half-
integer ones. In Σ ( 2 ), as in the proof of the preceding theorem, we make the

change of variables lt >-*• lt -\- —, after which both Σ ̂  and Σ (2) include only

integer summation indices lu .... /4. We remark that the set lu ..., /4 is
necessarily even, since ku ..., k4 are integers and (/cl7 . . ., /c4) = (Zl5 . . .. Z4)7\
Thus, the summation in Σ ( 1 ) and Σ (2) is only over even sets lu ..., /4. We
sum over all the sets li, ..., l4 and to compensate for the inclusion of the
odd sets we also add the sums Σ [^ and Σ [2)> in which we have made the
change of variables ή[ >-+ ή[ + γ (i = 1, . . ., 4) in the general term; also, to
the whole exponent of the exponential we add the term — (n[ + . . . +
+ n'Jni = — 4jtiwij/2.. After these transformations the even terms in
Σ (ΐ)+Σ'(!) are doubled, and the odd ones cancel each other. The same holds
for the sum Σ ( 2 ) + Σ'(2). Thus, we obtain

ΘΙι»,] (ζ,) ... θ [TO4] ( 2 4 )=4 (Σ,,, + Σ ^ + Σ^, + Σ^).

This coincides precisely with (1.4.7) for g — 1. In the general case the proof
is similar, only we have to repeat these arguments for each coordinate.

Setting z1 = u + v, z2 = u — v, z3 = z4 = 0 in (1.4.7), we have
u>1 = w2 = u, w,3 = Wi — v. The second addition theorem in this special
case takes the form

(1.4.12) θ [m(] (u + v)Q [m2] (u-v)Q [m3] (0) θ [m4] (0) =

= W Σ βχρ[-4πΐ<ί»;, o '>ie[ n i + o](«)0[n a + o](u)x
2at(Z2)

2g

χθ{η3 + α](ν)Β[η4 + α] (υ),

where the connection of the characteristics «,, ..., n 4 with mu ..., m4 is given

by (1.4.8')·

CHAPTER Ι Ι

THETA FUNCTIONS OF RIEMANN SURFACES. THE JACOBI INVERSION PROBLEM

§ 1 . Periods of Abelian differentials on Riemann surfaces·
Jacobi varieties

Let Γ be a compact Riemann surface*1 * of genus g > 1. If Γ is the
Riemann surface of an algebraic function w = w(z) given by an equation

(2.1.1) R(w, z) = wn + a^w"-1 + . . . + an(z) = 0,

here on only compact Riemann surfaces occur, and we do not state this every
time.
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where R(w, z) is a polynomial, then the affine part of Γ coincides with the
complex algebraic curve (2.1.1) in C , provided that this curve is non-singular
(smooth). The important example for us is the class of hyperelliptic curves,
which are given by equations

(2.1.2) w* = P2g+1(z),

(2.1.3) u;2 = P2g+2(z),

where P2g+1(z) and P2g+2(z) are polynomials of degrees '
2g+ 1 and 2 g + 2 , respectively, without multiple roots
(and in either case the genus of the corresponding Fig. 2.
Riemann surface is g). We mention that every Riemann
surface of genus g — 1 or g = 2 has the form (2.1.2) (or (2.1.3); see [3]);
for g = 3 this is no longer so.

Topologically, a surface of genus g is a sphere with g handles attached. In
the 1-dimensional homology group Ηι(Γ) — Z+ ... + Ζ (2g factors) one can
choose a basis of cycles (closed contours) alt ..., ag, bx, ..., bg with the
following intersection indices:

(2.1.4) at ο a, = bt ο bj = 0, at ο bj = δο· (i, 7 = 1, . · ·, #)·

This basis has the property that under cutting along these cycles, Γ becomes
a 4g-gon, which we denote by Γ (see Fig. 2 for g = 2). Each cycle goes to
a pair of sides at, oj1, bt, b~x of Γ, which are identified on Γ.

Differential 1-forms ω = a dx + b dy = a dz + β dz (where ζ = x + iy is
a complex local coordinate on Γ) are simply called differentials.

Definition 2.1.1. A differential ω is said to be Abelian of the first kind or
holomorphic if in a neighbourhood of any point it can be written in the form

(2.1.5) ω = f(z)dz,

where /(z) is an analytic function and ζ a local coordinate.
For example, on the hyperelliptic surface (2.1.2) the differentials

coj, ..., ωε of the form

(2.1.6) ω
V

are all holomorphic.
A holomorphic differential is closed: du> = 0. Its complex conjugate

differential ω = f{z)dz is also closed. For any closed differential ω on Γ its
periods over the cycles alt ..., ag, bly ..., bg are defined as follows:

(2.1.7)
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We fix a point Po not lying on the cycles at, bj. Then we can define the
function

(2.1.8) /(/>)= j ω,

which is single-valued on the cut surface Γ. The following lemma is useful.

Lemma 2.1.1. Let ω and ω be two closed differentials
QL on Γ; let Ah A'h Bit B\ be the set of their a-and

ρ

α'. b-periods; let f(P) =

l·'Fig. 3.
then

(2.1.9) JJ
r er

i=i

Here 3Γ is the boundary of Ρ', oriented in the positive direction.

Proof. The equality f f ω Λ ω' = & /ω' is obvious from Stokes' formula.
Further, r e p

(2.1.10) $/ω' = 2
g

2

From Fig. 3 it is clear that f(Pt) — f(P'i)= \ ω = — Bt (the cycle PtPl on Γ is

homologous to bt) and that / (Qt) — f(Q'i) = -Aj for a similar reason. Therefore,
the sum (2.1.10) can be rewritten in the form

g e s

ω' ω

t = l ft,

• ' = 2 (AtB'i — A'il
t = l

/ω'= 2 (-5
er i = 1 "« l = l "t

This proves the Lemma.
Applying this lemma to a pair ω, ω, where ω is a holomorphic differential

and ω its complex conjugate, we obtain the following corollary.

Corollary 1. Let ω be a non-zero holomorphic differential on Γ. Then its
a- and b-periods Ak, Bk satisfy the inequality

g _

(2.1.11) Im 2 AkBh<0

(Im denotes the imaginary part).

From this we immediately obtain the next result.

Corollary 2. If all the α-periods Ax, ..., Ag of a holomorphic differential ω
vanish, then ω = 0.
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For a hyperelliptic Riemann surface we have produced above (see 2.1.6))
a set of g holomorphic differentials ωι, ..., tog. For any Riemann surface Γ
we can also construct g linearly independent holomorphic differentials
coj, ..., tOg. For a proof of their existence, see [ 1 ] . From this and Corollary 2
we obtain a further corollary.

Corollary 3. The space of holomorphic differentials on a Riemann surface
of genus g is g-dimensional.

Let T?I, ..., r\g be a set of linearly independent holomorphic differentials on
a Riemann surface Γ. Then the matrix

(2.1.12)

of their α-periods is non-singular. For otherwise some non-trivial linear
combination η = c^j -f- . . . + cgr\g would have zero α-periods, which
contradicts Corollary 2. Therefore, one can choose another basis of
holomorphic differentials coj, ..., cog,

g

( 2 . 1 . 1 3 ) ω 7 · = 2 C}h*\k (y = l , . . . , £ ) ,
A = l

normalized by the conditions

(2.1.14) <J(u,-=2jii6,ft (;, ft=l, ...,g).

Here (c/fc) is a non-singular matrix of the form (cjk) = 2ni{Ajh)~1. This basis
of holomorphic differentials is called canonically dual to the basis of
cycles au ..., ag, bx> ..., bg.

From the canonical basis ω1, ..., Gig we construct the matrix of b-periods

(2.1.15) BJh =

Theorem 2.1.1. Bjk is a Riemann matrix.

Proof. Its symmetry follows from Lemma 2.1.1 applied to the pair of basis
differentials ω = α}·, ω' = o^ (obviously, ω Λ ω ' = 0 if ω and ω' are both
holomorphic). To prove that the real part Re Bjk is negative definite we
consider a non-trivial linear combination

(2.1.16) ω =

where all the coefficients c1 ( ..., cg are real. The periods of this holomorphic
differential are
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Applying (2.1.11) to it, we obtain
g g _

2π Σ ReBjkckCj = Im 2 AhBh<0.
i, A=t A=l

This proves the theorem.
Thus, for each Riemann surface Γ of genus g and each basis of cycles

ax, ..., ag, bx, ..., bg on Γ we have constructed a Riemann matrix Bjk.
Definition 2.1.2. The Abelian torus T2g(B) constructed from the matrix
Β — (Bjk) of periods of holomorphic differentials on the Riemann surface Γ is
called the Jacobi variety (or Jacobian) of this surface, and is denoted by/(Γ).

(2.1.17) /(Γ) = T*«{B) = Cs/{2niN + BM).

The 0-functions θ[α, β](ζ\Β) constructed from the matrix are called the
θ-functions of the Riemann surface Γ.

If a[, . . ., a'g, b'v . . ., b'g is another basis of cycles with intersection
indices (2.1.4), then the transition matrix from the old to the new basis is
integral and symplectic (the intersection index is a skew-symmetric non-
degenerate form on /ζ(Γ), given in both cases the same matrix). Thus, a
change of bases in Hx (Γ) leads to an equivalent Riemann matrix B'jk
(connected with the old one by transformations of the form (1.3.6), (1.3.7)).
Therefore, the definition of the Jacobi variety /(Γ) does not depend on the
choice of a basis of cycles. The corresponding ^-function also does not
change substantially in view of the transformation law (1.3.8).

Remark. A natural question arises: what Riemann matrices Bjk are matrices
of periods of holomorphic differentials on a Riemann surface? One
restriction on such matrices Β ~ (2?/fc) is known: they cannot have block

form Β =( A, where B' and B" are again Riemann matrices of a smaller

genus (more precisely, they cannot be reduced to block form by
transformations (1.3.6), (1.3.7)). For the genera g = 1, 2, 3 there are no
other restrictions: any Riemann matrix (in general position) is a period
matrix of the holomorphic differentials on a Riemann surface. For g = 1
this was proved in Ch. I, §3; for g = 2 and 3 it will be proved in Ch. IV.
From dimension arguments it is clear that for g ~> 4 this is no longer true.
It is known that the set of all (non-isomorphic) Riemann surfaces of genus
g > 1 depends on 3 g - 3 complex parameters. This is also the dimension of
the set of period matrices on these surfaces. However, the Riemann matrices
form an open cone in the complex space of dimension g(g+ l)/2. Therefore,
even for g = 4 there must be a relation on the period matrix Bjk (found by
Schottky [26]). For large genera such relations have so far not been written
out in a good form. We shall return to this question in Chapter IV.

Now suppose that ω is a meromorphic differential on Γ (singularities of
the type of poles are admitted). We assume that its poles do not lie on
the cycles a,·, bj. By adding a suitable holomorphic differential we can
achieve that ω has zero α-periods; the location of the poles and the
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corresponding principal parts of ω do not change. Such a normalization
together with a specification of the poles and principal parts determines the
meromorphic differential ω uniquely (otherwise the difference of two such
differentials would be a holomorphic differential with zero α-periods).

The sum of the residues on Γ of any meromorphic differential is zero.
Therefore, it can be represented as a linear combination (up to addition of a
holomorphic differential) of the following basic meromorphic differentials:(1)

a) Abelian differentials of the second kind. These are differentials ω ^
with a single pole at Q of multiplicity η + 1 and with principal part of the form

(2.1.18) ω(η) = ^ . + . . .

b) Abelian differentials of the third kind ωΡΰ. These have a pair of
simple poles at Ρ and Q with residues +1 and - 1 , respectively.

We recall that these differentials are uniquely determined by the
normalization

(2.1.19)

(2.1.20) φ ω ρ ( 3 = 0 (i = l, . . . , g).
ai

We now list the relations between the δ-periods of these differentials that
will be needed later on:

Lemma 2.1.2. The following relations hold:

Ι Δ . 1 . ώ . 1 ) (V) ( O n = = — r r ^ ; — ί — ( ί = 1 , . . . , ^ , / ί = 1 . Ζ , . . . ) ,
«Τ ν η ! d z " " 1 ν ° '

ρ

(2.1.22) § ω Ρ ( 3 = (
b

ω, (i = l, ...,g),
t Q

where ω^ and ojpg a r e t n e normalized differentials of the second and third
kind introduced above, and ω 1 ; ..., ω ? are basis holomorphic differentials,
given by ω,· = j}(z)dz in a neighbourhood of Q.

The proof of the relations (2.1.21) and (2.1.22) is obtained by integrating
ρ

the expressions Λω^" and Α(ωΡΰ, where At(P) = \ at, over the boundary

of the domain obtained from the 4g-gon Γ by removing the set of edges
going from the initial point Po to the poles of the differentials. We omit the
computations, which are similar to those in the proof of Lemma 2.1.1.

do not prove here the existence of such differentials (see [1]). For a hyperelliptic
surface it is not difficult to produce them by explicit formulae. In the general case, the
existence of such differentials can be deduced, for example, from the Riemann-Roch
theorem (see below §3).
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§2. Abel's theorem

Let Γ be a Riemann surface of genus g, and /(Γ) its Jacobi variety. We
define the Abel mapping A{P) = (AX{P), . . ., Ag(P)),

Α: Γ-»/(Γ),

setting
ρ

(2.2.1) Ak(P)=^h (ft = 1, . . . , * ) .

Here Po is a fixed point; the path of integration from Po to Ρ is chosen to be
the same for all k. If we choose another path of integration from Po to Ρ in
(2.2.1), then we have to add φ coft to the integral on the right, where 7 is a

ν
closed contour (cycle). The cycle 7 can be represented as an integral linear
combination of the basis cycles:

(2.2.2) γ =
; i

Therefore, the added term on the right-hand side of (2.2.1) has the form

(2.2.3) φ o>ft = 2nink + 2 Bjhmh

y i

but this is the k-th component of some vector of the lattice {2niN + BM},
through which we factor. This proves that the Abel mapping is well-defined.

For g = 1 (an elliptic Riemann surface) we have already considered the
Abel mapping in Ch. I, §3 and have shown that it is an isomorphism of this
Riemann surface onto the two-dimensional complex torus that is its Jacobi
variety.

We apply the Abel mapping to solve the following problem. Let / be a
meromorphic function on a Riemann surface Γ. The number of its zeros on
Γ must be equal to the number of its poles (including multiplicities). The
question arises: what sets of points Pl, ..., Pn, Q1, ..., Qn can be zeros and
poles of a meromorphic function on Γ? The answer is given by the
following theorem

Abel's theorem. For points Plt .... Pn, Qu .... Qn on a Riemann surface Γ to
be the zeros and poles of some meromorphic function it is necessary and
sufficient that on the Jacobi variety /(Γ)

(2.2.4) 2 A(Ph)-Y A(Qh)^0
ft=l A = l

(the symbol = here and later denotes congruence modulo the period lattice).

Proof. Suppose that a function / on Γ has zeros at Plt ..., Pn and poles at
Qi, ···> Qn· We consider the meromorphic differential Ω = d\o%f. Now Ω
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has only simple poles with residue +1 at Pl, ..., Pn and with residue -1 at

Q\, ···» Qn- Therefore, Ω can be written in the form
g

2(2.2.5) Ω= 2 ωΡ Q + 2

where the copfcQfc are normalized differentials of the third kind, ωλ, ..., ω^
are basis holomorphic differentials, and ct, ..., cg are constants (see §1
above). Since / is single-valued on Γ, the integral of Ω over any closed cycle
must be an integer multiple of 2m. In particular,

(2.2.6)
ak bh

where nk and mk are integers. Hence, bearing the normalization (2.1.20) in
mind,we obtain

ak

Next, the formulae (2.1.22) for the 6-periods of the cope give

(2.2.8)

Hence we obtain
pj

η pj

~ Σ AWj)]k= - Σ J ω * = -2nimk+

The right-hand side of the equality is the k-th component of some vector of
the period lattice, which means that (2.2.4) is valid. Carrying the argument
out in the reverse order, we obtain a differential Ω with the required poles
and with periods that are integer multiplies of 2iri. Then the function

ρ

f(P) = exp f Ω is single-valued on Γ and has the prescribed singularities.

This proves the theorem.

§3. Some remarks on divisors on a Riemann surface

1. A divisor on a Riemann surface Γ is a set of points of Γ with
multiplicities. It is convenient to write divisors as formal linear combinations
of points of Γ:

(2.3.1) fl = 2 fijPj; nt — are integers.
t = l
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For example, for any meromorphic function / on Γ we define its divisor (/)
of zeros Pu ..., Pn with multiplicities ρλ, ..., pn and poles Qx, ..., Qm with
multiplicities qx, ..., qm:

(2.3.2) (/) = PlP1 + . . . + PnPn - ? 1 & - . . . - qmQm.

Divisors form an Abelian group:

(2.3.3) D=%n,Pt, D'= ^η\ΡΙ D + D' = Σ n,Pt + Σ niP\

(the zero is the "empty divisor").
2. The degree of a divisor D = V. nfi is the number

(2.3.4) degZ) = Y, nt.

For example, the degree of the divisor of a meromorphic function is zero
(the number of zeros is equal to the number of poles, including multiplicities).
The degree is a linear function on the group of divisors: deg(D + D') —
= deg£>+deg.D'.

3. We say that two divisors D and D' are linearly equivalent if their
difference D — D' is the divisor of a meromorphic function. The divisors of
meromorphic functions are linearly equivalent to zero (they are also called
principal divisors). The degrees of two linearly equivalent divisors are equal.

Example. For any Abelian differential ω = f{z)dz on Γ we consider its
divisor of zeros and poles (ω). If η = g(z)dz is another Abelian differential
and (17) its divisor, then (ω) and (17) are linearly equivalent, since the
quotient ω/η is a meromorphic function on Γ (dz "cancels"). The equivalence
class of divisors of all Abelian differentials is called the canonical class of Γ
and is denoted by C. The degree of the divisors of this class is 2g— 2 (see [ 1 ]).

We extend the Abel mapping (2.2.1) linearly to the group of all divisors

(2.3.5) # = Σ>ίΛ, A(D) = yjnlA(Pl).
i i

Now Abel's theorem can be reformulated in the following form: two
divisors D and D' are linearly equivalent if and only if the following two
conditions hold:

1) degZ) = degD'.
2) A(D) Ξ A(D') on the Jacobi variety /(Γ) (we recall that = means

congruence modulo the period lattice).
4. A divisor D = 2 niPi is called positive (or effective) if all the multiplicities

«,· are positive. By definition, D > D' for two divisors D and D' if their
difference D — D' is a positive divisor. We note a useful property of divisors
of degree > g: any such divisor is linearly equivalent to a positive divisor.
This can be deduced, for example, from the results of the following section.
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With each divisor D there is connected the linear space L(D) of those
meromorphic functions / on Γ for the divisors (/) of which the following
inequality holds:

(2.3.6) (/) > -D.

In particular, if D = Y>niPi is positive, then the space L(D) consists of those
meromorphic functions that can have poles only at the points Pt of multiplicity
not exceeding nt. The dimension of the linear space L(D) is denoted by
l(D). It is clear that if D and D' are two linearly equivalent divisors, then
the numbers 1{D) and l(D') are the same (the spaces L{D) and L(D') are
isomorphic).

For a positive divisor D in general position the number l(D) behaves as
follows: 1) If deg D < g, then the meromorphic functions with poles in D
are only constants, that is 1{D) - 1. In particular, if D = nP, where Ρ is a
fixed point in general position on Γ and η is a positive integer, then
l{nP) = 1 for η < g . This means that there are, in general, no meromorphic
functions (other than constants) with a single pole of multiplicity < g.
Those points of a Riemann surface for which such meromorphic functions
do exist are called Weierstrass points. For example, on a hyperelliptic

2g+2

Riemann surface of the form w2 = P2g+2(z) = [] (z — zk) each branch

point ζ = ζ,· (w = 0) is a Weierstrass point, since the meromorphic function
fi(z) = l/(z-z,·) has a pole of order 2 there. For a hyperelliptic surface of
genus g given by a polynomial of odd degree w2 = jP2g+i(z) there are also
2g+2 Weierstrass points (one is the point as infinity).

If deg D~> g for a divisor in general position, l(D) is given by the formula

(2.3.7) l(D) = degD - g + i .

Such divisors are called non-special. For all the remaining divisors D with
deg D > 2, which are called special, l(D) > deg, D-g+ 1. It turns out (see
[4]), that the special divisors D = Px+ ... +PN, Ν — deg D > g are precisely
the critical points of the Abel mapping

(2.3.8)

1 A(PU

that is, those sets of points {Pu ..., PN) at which the rank of the differential
of the mapping (2.3.8) is less than g. Here SNΓ denotes the totality of
unordered sets of points of Γ (the 'W-th symmetric power of Γ").

In the general case, information about l(D) can be extracted from the
Riemann-Roch theorem:

(2.3.9) l(D) = deg D - g + 1 + l(C - D),

where C is the canonical class defined above. We do not discuss this
theorem here (see [1] - [4]) .



34 ΒΑ. Dubrovin

§4. The Jacobi inversion problem. Examples

We saw above (see Ch. I, §3) that for g = 1 the Abel mapping Α: Γ -*•
-*• J(T) is invertible and is an isomorphism. For larger genera g > 1 the
problem of inverting the Abel mapping can be stated as follows (the Jacobi
inversion problem): for a given point ξ = (ξι, ..., ξί) €Ξ /(Γ) to find g points
Pu ..., Pg of Γ such that

Here ωχ, ..., ω^ is a canonical basis of holomorphic differentials on Γ; Po is
a fixed point of Γ. The system (2.4.1) must hold on the Jacobian /(Γ) (the
symbol =, as usual, means congruence modulo the period lattice).

The unordered sets of g points of Γ form the g-th symmetric power SPY
of Γ. In the language of the Abel mapping the problem (2.4.1) can be
rewritten as follows: to invert the mapping

(2.4.2) A: SeT-+ /(Γ),

where

(2.4.3) A(Plt . . ., Pg) = A(PJ + . . . + A(Pe).

We shall show that for almost any point ξ £/(Γ) the set of points (P,, ..., Pg) =
= Α'1 (ξ) exists and is uniquely determined by the system (2.4.1) (without
taking the order of these points into account).

To solve the Jacobi inversion problem we use the Riemann 0-function
θ(ζ) = θ(ζ \B) of Γ. Here Β = (Bjk) is the period matrix of holomorphic
differentials on Γ (see §1 above). Let e — (ely ..., eg) €= Cg be a fixed vector.
We consider the function

(2.4.4) F(P) = B(A(P) - β).

It is single-valued and analytic on the cut surface Γ. We assume that F(P) is
not identically zero. This happens, for example, when 6(e) Φ 0.

Lemma 2.4.1. If F(P) φ 0, then F(P) has g zeros on Γ (including
multiplicities).

Proof. To calculate the number of zeros we need to compute the logarithmic
residue

(2.4.5) ±

(we assume that the zeros of F(P) do not lie on df). For brevity we
introduce the following notation (which is also useful later on): by F+ we
denote the value that F takes at a point on dT lying on the segment ak or
bk, and by F~ the value of F at the corresponding point on al1 or b^1 (see
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Fig. 2). The expressions A + and A~ have an analogous meaning. In this
notation the integral (2.4.5) can be rewritten in the form

8

(2.4.6) J ^ j dlogF(P) = 1 i r 2

We note that if Ρ is a point on ak, then

(2.4.7) A](P) = A*(P) + Bjh,

and if Ρ lies in bk, then

(2.4.8) A){P) = A]{P) + 2nibjh

(see the proof of Lemma 2.1.1). From the transformation law of ^-functions
(formulae (1.1.4), (1.1.5)), we obtain on the cycle ak

(2.4.9) log F~ (P) =-\Bhh~Ah (P) + ek+ log F] (P) ;

on bk

(2.4.10) log F* = log F-.

Since dAk(P) = cjfc, then we have on ak

(2.4.11) d log F~(P) = d log F+{P) — ah;

on bk

(2.4.12) d log/1" = d \ogF+.

Thus, the sum (2.4.6) can be rewritten in the form

Λ ο .

where we have normalized by φ cofe = 2πϊ. This proves the lemma.

We now claim that the g zeros of F(P) also solve the Jacobi inversion
problem for a suitable choice of the vector e.

Lemma 2.4.2. Let F{P) ψ 0 and let Pu .... Pg be its zeros on Γ. Then on /(Γ)

(2.4.13) A(PU ..., Pg)==e — K,

where Κ = (Ku ..., Kg) is the vector of Riemann constants, and

ρ

(2.4.14) Kr--- -JL-' V ίωι(Ρ) ω, ( / = 1 , ...,g).
I ••=! al P o

Proof. We consider the following integral:

(2.4.15) ζ,· = -^7<£ Aj (Ρ) d log F (Ρ), ( / - Ι , . . . , ^ ) .
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On the one hand, it is equal to the sum of the residues of the integrand, that is

(2.4.16) ζ} = AjiPJ + . . . +

where Ρλ Pg are the zeros of F(P). On the other hand, as in Lemma
2.4.1, we have (see (2.4.7)-(2.4.12))

>- 2πί

F takes

(2.4

•2
ft=i

the

.17)

u-
ah

+

same

f 1 )(^N :
h

g
1 V Ϊ\Α

i l f
ί

values, at

log/

[|d 1

1 < I
ι I .
1 a

the

.(

log F+ — (4j"

ft

ends of ak,

d log F+ =

F~\

+ Jk

it-**,

therefore

2mnh,

F + -

b

where nk is an integer. Next, let Qj and Qj be the beginning and end of b,·.
Then

(2.4.18) [ d log F+ = log F+ (Q}) — log F+ (Qt) + 2nim} =
bi

= log θ (A (Qj) + f} -e)- log θ (A {Qj) -e) + 2nimj =

where nij is an integer and^· = (Bju ..., Bjg) is a lattice vector.
The expression for ξ,· can now be rewritten as:

(2.4.19) ^ = e,—^BJJ-AJ(Q]) + -±r2i J

The last two terms in (2.4.19) can be dropped—they are coordinates of some

lattice vector. To get rid of the term Aj{_Qj) we transform the integral

AjCuj. We have Α3<ύ] = -γά(Α)), so that

"J
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where Rj is the beginning of α;· and Qj is its end (which is also the beginning
oibj). Further, A}(Qj) = AJ(RJ) + 2ni. We obtain

\ Ajaj = -±- 2ni (2Aj (Qj) - 2ai),

hence

This proves the lemma.

Remark. The vector of Riemann constants Κ is connected in a simple way
with the canonical class C of Γ:

(2.4.20) 2tf = — 4(C).

Therefore, when the base point Po is skilfully chosen, the expression (2.4.14)
simplifies (see [4]).

Thus, if the function d(A(P)-e) is not identically zero on Γ, then its
zeros solve the Jacobi inversion problem (2.4.1) for the vector ξ = e-K. We
state without proof the following criterion for Θ{Α{Ρ)~ e) to vanish
identically (see [2], [4]).

Theorem 2.4.1. The function Θ(Α(P) — e) is identically zero on Γ if and only
if the point e can be written in the form

(2.4.21) e = A(Q1) + . . . + A(Qg) + K,

where the divisor D — Ql + ... + Qg is special.

We recall (see §3 above) that a divisor D — Qx + ... + Qg is special if there
exists a non-constant meromorphic function on Γ whose poles can lie only at
the points Qu ..., Qg. If D is in general position, there are no such functions.

Now we can prove the following important proposition.

Theorem 2.4.2. Let ? = (£,, ..., &) be a vector such that F(P) = Θ(Α(Ρ)~
— ξ—Κ) does not vanish identically on Γ. Then

a) F{P) has g zeros Pu ..., Ps on Γ, which give a solution of the Jacobi
inversion problem

(2.4.22) Aj (Λ) +...+A} (/\,) = V \ co,- = ζ,- (/ - 1, . . ., g).
A=I £n

b) The divisor D = Pr+ ... + Pg is non-special.
c) The points Ρλ, ..., Pg are uniquely determined from the system (2.4.22)

up to a permutation.

Proof, a) follows immediately from Lemmas 2.4.1 and 2.4.2. Further, if
D = / Ί , + ... + Pg were special, then it would follow from Theorem 2.4.1
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that F(P) = 0, which is a contradiction. If Pi, ..., P'g is another solution of
(2.4.22), then the relation

A(PX) + .. . + A(Pg) = A{P[) + . . . + A(P'g)

must hold on the Jacobi variety /(Γ). By Abel's theorem this means that on
Γ there exists a meromorphic function with zeros at P[, ..., P'g and poles at
P,, ..., Pg. Since D is non-special, such a function must be a constant, so
that after renumbering P, = Pi. This proves the theorem.

Later the following corollary will be useful.

Corollary. For a non-special divisor D — P1+ ... + Pg of degree g the
function F{P) = Θ(Α(Ρ)~ Αφ)-Κ) has exactly g zeros Ρ = Px, ..., Ρ = Pg

on Γ.

We also give for reference some information on the zeros of a 0-function
on /(Γ) (a so-called θ-divisor).

Theorem 2.4.3. The zeros of the θ-function d(e) = 0 admit a parametric
representation in the form

(2.4.23) e

where Px, . ., Pg^ is a set of g — 1 arbitrary points of Γ.

Proof. Let 0(e) = 0. We set F(P) = d{A{P)-e). Two cases are possible.
1) F(P) Φ 0 on Γ. Then, by Theorem 2.4.2,

(2.4.24) e e

where the set P,, ..., Pg is uniquely determined. Since 6(e) = 0, this set
contains the point Po (the lower limit in the integrals); say, Pg — Po. Then
A(P0) = 0 and (2.4.24) implies that

e^A(P1) + . . . +A(Pg.1) + K.

2) Let F(P) = 0 on Γ. Then, by Theorem 2.4.1, we can represent e in the
form

(2.4.25) e = A(Qi) + . . . + MQg) + K,

where D - Qx + ... + Qg is a special divisor. Because D is special, there
exists a meromorphic function / on Γ having poles at Qx, ..., Qg, such that
/CP0) = 0. Let D' = l\ + . . . -f Pg^ + 1\ be the divisor of the zeros of
/. Then, by Abel's theorem, Αφ') = Αφ). Substituting Αφ') for Αφ) in
(2.4.25) and again using the equality A(PQ) = 0, we complete the proof of
the theorem.

It has already been noted that the function F(P) = Θ(Α(Ρ) —e) (where
e — ξ + Κ) does not vanish identically when d(e) Φ 0. The zeros of a
θ-function (the points of a θ-divisor) form a subvariety of dimension 2 g - 2
(for g > 3 with singularities) in the 2g-dimensional torus /(Γ). If the
θ-divisor can be dropped from /(Γ), then we obtain a connected
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2g-dimensional domain. So we find that for all the points of/(Γ) the Jacobi
inversion problem is soluble, and uniquely for almost all of the points.

Thus, the set of points (Ρλ, ..., Pg) = Α'1 (ξ) of Γ (without counting the
order of those points) is a single-valued function of ζ — (ξί, ..., ξε) of/(Γ)
(having "singularities" at the points of the 0-divisor). To find an analytical
expression for these functions, we take an arbitrary meromorphic function
f(P) on Γ. Then, the assignment of the quantities f1; ..., $g uniquely
determines the set of values

(2.4.26) /(Λ), . . , f(P8), (P l t - . ., Pg) =Α-Ηζ).

Therefore, any symmetric function of these values is a single-valued
meromorphic function of ξ = (£,, ..., ξε) Ε /(Γ), that is, an Abelian function
on /(Γ) (see Ch. I, §3). All these functions can be expressed in terms of a
Riemann 0-function. In an especially simple way one can express the
following elementary symmetric functions ("Newton polynomials"):

(2.4.27) σ. (ζ) = 4 f{P}) ( s = l , 2, . . . ) .

For them we obtain from Theorem 2.4.2 and the residue formula the
following representation:

(2.4.28) ο.(ζ) = -±Γ§ fs(P)dlogQ(A(P)-t-K)~-

ΘΓ

- Σ J*™ /s ( p ) d l o g θ (A (p) - ε - K)

(the second term on the right-hand side is the sum of the residues of the
integrand at all the poles of /(/>)). As in the proof of Lemmas 2.4.1 and
2.4.2, one can transform the first term in (2.4.28) by using (2.4.11) and
(2.4.12). Then (2.4.28) can be rewritten as follows:

2πί ^J J
h ah

(2.4.29) as(l

ft °fc

— 2 R e s f*(P)d\ogQ(A(P) — ζ — Κ).

Here the first term is a constant independent of ξ. We consider the
computation of the second term (of the sum of the residues) in two
examples.

Example 1. Γ is a hyperelliptic Riemann surface of genus g, given by the
equation

(2.4.30) w2 = Ptg+1(z),

where P 2 g + 1 (z) is the polynomial of degree 2g+ 1 without multiple roots.
We consider the following function on Γ: f(w, z) = z (the projection on the
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z-plane). This function on Γ has a single two-fold pole at the branch point
(that is, the Weierstrass point) ζ = °°. We obtain the analytic expression for
the functions ax and σ2 constructed by (2.4.27). In other words, if
P\ — (wi> zi), •··» Pg ~ (wg> zg) is t n e solution of the inversion problem
A(P1)+ ... + A(Pg) = ζ, then

(2.4.31) σι(ζ) = Zl + . . . + zg,

(2.4.32) σ2(ζ) = zl + . . . + z\.

For the basis point Po (the lower limit of the integrals in the Abel mapping)
we take z = °°. By (2.4.29), the functions σ, and σ2 have the form

(2.4.33) σ ι (ζ) = c, - Res zd log Θ(Α(Ρ) - ζ - Κ),
Z—oo

(2.4.34) σ2(ζ) == c2 — Res z2d log Θ(4(Ρ) — ζ - Κ),

where cx and c2 are constants depending only on the Riemann surface and
on the choice of the basis of cycles on it. Let us compute the residue in
(2.4.33). We take τ = \\z as a local parameter in a neighbourhood of z = °°.
By the definition of the Abel mapping we immediately obtain

(2.4.35) d\ag${A{P)-l — K) = Y. [\ogQ (Α(Ρ)~ζ-Κ)]ί ωέ (P) =
i l

where [...],· denotes the partial derivative with respect to the i-th variable,
and ω; = fi(x)dx (i = 1, . . ., g) is the canonical basis of holomorphic
differentials on Γ. We expand the vector-valued function A(P) in a series in
powers of r (for Ρ -»· °°). By the choice of the basis point Po = °°, this
expansion has the form

(2.4.36) A(P) = xU + x2V + O(x3),

where U = (Ult ..., Ug) and V = (Vu ..., Vg) are the vectors of the form

(2.4.37) Uk =

(2.4.38) yfi = 4

(we recall that τ = 0 corresponds to the point °° on Γ).

Lemma 2.4.3. a) J7 is //ze vector of b-periods of a normalized differential of
the second kind with a single double pole at z = <χ> and principal part dr/i2.

b) V is the null vector.
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Proof, a) follows immediately from Lemma 2.1.2 ((2.1.21) for η = 1).
From the same lemma we see that V (up to an unessential factor) is the
period vector of a differential of the second kind with a pole of the third
order at °°. But this differential is exact—it is equal to dz = 2άτ/τ3,
therefore, it has zero periods over all the cycles. This proves the lemma.

Thus, the expansion (2.4.36) has the form

(2.4.39) A(P) = xU + 0(τ3).

Therefore, in a neighbourhood of °°

log θ (A (P) - ζ - Κ) = log θ (ζ + Κ) - τ V us [ log θ (ζ + Λ')],.
i

(we have used the fact that the 0-function is even),

/ι(τ) = Ul + Ο(τη.

Hence, for σί(ζ) we obtain the expression

(2.4.40) σ, (ζ) = I UtUj [ log θ & + K)]ti + c,.
i, 3

We introduce the operator d/dx= ^.υ^δΙόζι of the derivative along U. Then
(2.4.40) can be rewritten in the form

(2.4.41) σ, (ζ) = : | L log θ (ζ + Κ) + c,.

An analogous (but longer) calculation of the residue in (2.4.34) leads to

the following expression for σ2:

(2.4.42)

Here dldt = ^ Wid/δζι is the differentiation operator along the vector
W = (Wu ..., Wg), where

(2.4.43) W^-l-fUO).

It follows from Lemma 2.1.2 that W is the vector of Z>-periods of a
normalized differential of the second kind with a single pole of the fourth
order at °° with principal part 3dr/r4.

The formulae (2.4.41) and (2.4.42) completely solve the Jacobi inversion
problem for Riemann surfaces of genus 2 (all these surfaces are hyperelliptic).

We shall show in Chapter III that the function u = 2σ1 is a solution of the
Korteweg-de Vries equation

du 1 I r. du , d3u

( G U +
Using this equation it is easy to reduce (2.4.42) to the form

(2.4.42') σ2(ζ)= _ 2 σ ϊ ( ζ ) — i - i ^ g ?

which only includes differentiation operators in the JC-direction.
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Remark. We recall that the basis holomorphic differentials ωχ, ..., oog on the
Riemann surface (2.4.30) have the form

(2.4.44) ω, =
LOO

Here the matrix c/fe has the form (cjh) = 2ni(Ajh)~1, where

(2.4.45) AJh =

Therefore, the vector (XJX, ..., Ug) (see above) has the following coordinates:

(2.4.46) Uk = -2chl.

We do not derive the analogous expression for W.

Example 2. Now let Γ be the hyperelliptic surface of genus g given by the
equation

/O / AH\ ,,,2 η ΛΛ

We consider again the function/(w, ζ) = ζ and the function Οι(ξ) (the sum
of the projections on the z-plane) constructed from it. In this case Γ has
two points at infinity: P+ = (°°, +) and P_ = (°°, -) at each of which ζ has
a simple pole. For σ! (2.4.49) can be written in the form

(2.4.48) σ1(ζ) = ε1— [Res + Res ] zd log θ (Α (Ρ) - ζ — Κ).

We can take τ — \\z as a local parameter at both points P+ and P_. Here

the holomorphic differentials ω,, ..., ω» have the form

(2.4.49) «a = . dz.
V ^ 2 g + 2 (*)

Let ω^ = 11(τ)άτ in a neighbourhood of P + (which corresponds to the value
τ = 0) and let a)fe = fa(x)dr in a neighbourhood of J°_ (which corresponds to
the value r = 0). From (2.4.49) it follows that

(2.4.50) / ϊ ( 0 ) = - / ί ( 0 ) .

We denote/fc+(0) by Uk(k = 1, ...,g).
The calculation of the residues in (2.4.48), similar to the one considered

in Example 1, yields

(2.4.51) a l ( 0 = C i +2ff f [ log ^ 1 \ %% \.

By introducing the differentiation operator d/dz = 2 Uidld%i in the
direction of the vector U = (Uu ..., Ug), we finally obtain

(/.4.W) σ ι ( ζ ) _ — log θ
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where cx is a constant. The components of U are the periods of a normalized
differential of the second kind with a double pole at P+ —this follows from
Lemma 2.1.2.

The method explained above for solving the Jacobi inversion problem is
due to Riemann. We should also mention here the approach of Weierstrass,
who studied the system of differential equations resulting from (2.4.1) by
differentiation. We only analyse the case g = 2, where Γ is given by the
equation

(2.4.53) w* = P5(z).

As a basis (non-normalized) of holomorphic differentials we take the
differentials

dz ζ dz
(2.4.54) ftto = •

ypt(z)' ypt(z)

We consider two systems of differential equations:

dz1 γ Pb (zj) dz2 yPr~<
(2.4.55)

(2.4.56)

dx dx

dz·,

Z 2 — z l

V Pf, (
dt Zi — z 2 ' dt z% — Zi

Each of these systems determines the law of motion for a pair of points

on Γ. The following simple lemma holds.
A

Lemma 2.4A. For the Abel mapping S2T -> /(Γ),

where
Pi Pi

(2.4.57)

d z

\ ' A V * 5 \ /

; dz

tjp^)

(Po is a fixed point), both systems (2.4.55) and (2.4.56) go over to systems
with constant coefficients

(2.4.58)

(2.4.59)

dx

dt

Thus, the Abel mapping (2.4.57) is simply a change of variables, which
integrates (2.4.55) and (2.4.56).
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Proof. We have

This proves the lemma.

By (2.4.58) and (2.4.59) the variables χ and t are (complex) coordinates
on the Jacobi torus Γ 4 = /(Γ). Therefore, the integration of the systems
(2.4.55) and (2.4.56) i>, = Px{x, t), P2 = P2(x, t) solves the Jacobi inversion
problem.

We mention that these systems can easily be integrated by quadratures
(for explicit formulae see the survey [17]). The expression of their
solutions in terms of the ^-function of Γ can be obtained from the formulae
of Example 1 (see above).

CHAPTER MI

THE BAKER-AKHIEZER FUNCTION. APPLICATIONS TO NON-LINEAR EQUATIONS

§ 1 . The Baker-Akhiezer one-point function. The Kadomtsev-Petviashvili
equation and equations associated with it.

Let Γ be a Riemann surface of genus g. We fix on Γ a point Ο and a
local parameter ζ = z(P) in a neighbourhood of it (such that z(Q) = 0). It is
convenient to introduce the inverse k — 1/z, k(Q) = °°. Suppose, further,
that an arbitrary polynomial q(k) is given.

Definition 3.1.1. Let D = P t + ... +Pg be a positive divisor of degree g on Γ.
A Baker-Akhiezer function on Γ corresponding to Q, to the local parameter
ζ = \jk at Q, to the polynomial q(k), and to the divisor D is a function
ψ(Ρ) such that:

a) ψ(Ρ) is meromorphic everywhere on Γ, except at Ρ = Q, and has on
Γ\(? poles only at the points Pit ..., Pg of D (more precisely, the divisor of
the poles is ψ \T\Q> —D; see Ch. II, §3);

b) the product ψ(Ρ) exp [~q(k)] is analytic in a neighbourhood of Ρ = Q.
Instead of b) we also say that ψ(Ρ) has at Ρ — Q an essential singularity of

the form ψ(Ρ) ~ c-exp q{k) (c is a constant). For a given divisor D such
Baker-Akhiezer functions form a linear space (we fix the point Q, the local
parameter l/k, and the polynomial q(k)), which we denote by Λ(Ζ>) (by
analogy with the space L(D) considered in Ch. II, §3).
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Theorem 3.1.1. Let D = Pt+ ... +Pg be a non-special divisor of degree g.
Then the space A(Z>) for a polynomial q in general position is one-dimensional.

In other words, for a non-special divisor D and a general polynomial q(k),
the conditions of Definition 3.1.1 uniquely determine the Baker-Akhiezer
functions, up to multiplication by a constant.

Proof, a) Uniqueness. The Baker-Akhiezer function has g zeros on Γ \ ο ο g ,
and for a general polynomial q(k) the divisor of zeros D is also non-special.
Suppose now that φ(Ρ) and ψ(Ρ) are two Baker-Akhiezer functions
corresponding to the same divisor D. Then their quotient φ(Ρ)/φ(Ρ) is a
meromorphic function on Γ (the essential singularity cancels) with poles at
the points of D. Since this divisor is non-special such a function is necessarily
a constant.

b) Existence. Suppose that Ω is a differential of the second kind on Γ
with principal part at Q of the form dq(k), normalized by the conditions

(3.1.1) >̂Ω = 0 (7 = 1, . . . . # ) .

'ai

Let U = (U\, ..., Ug) be its vector of ft-periods:

(3.1.2) Uh=§Q.

We fix an arbitrary point Po Φ Q on Γ, take the corresponding Abel mapping
A(P), and construct the function

Q(A(P)-A(D)-K) «

where D is the given non-special divisor. The path of integration in the
ρ Ρ ρ

integral f Ω and in the Abel mapping A(P)= ( \ ω4, . . ., \ ω Λ is chosen to
•Po Po Po

be the same.
We claim that (3.1.3) is the required Baker-Akhiezer function. First, we

verify that it is unique on Γ. If we choose another path of integration from
ρ

Po to P, then we have to add to f Ω a term of the form & Ω, where 7 is a
J 3

P° a

closed contour (cycle). Similarly, the vector f ̂ ω ΐ 5 . . ., £ u>g) is added to

A{P). We split γ over the basis cycles:

g e

(3.1.4) 7 = Σ nhah+ V m.b},
ftl j l
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where nk and w;· are integers. Then on changing the path of integration we
have

(3.1.5) JQ-»- |Ω+Σ/η//,= [Ω + (Μ, U),
Ρα -Po ί·ο

(3.1.6) A(P) >-*A(P) + 2πίΝ + BM.

Here Μ = (mu .... mg) and iV = (n l f .... «y) are integral vectors. Under such
a transformation, by (1.1.6), the quotient of the 0-functions is multiplied by

exp f - ± . )~{M, A(P)-A(D) + U-K)]
_ ^ =_

exp [ -j-(BM, M)-{M, A (P)-A (D)-K)

and the exponentional term acquires the inverse factor exp (M, U). This
proves the uniqueness.

Next, because the divisor D - Px+ ... +Pg is non-special, the poles of
(3.1.3) (arising from the zeros of the denominator) lie exactly at the points
Pu ..., Pg—see the Corollary to Theorem 2.4.2. Moreover, the function
(3.1.3) has an essential singularity of the kind needed, by the choice of:

Ω = dq{k) + . . ., [ Ω = q(k) + . . . in a neighbourhood of Q (the dots

denote regular terms). This proves the theorem.
We analyse in more detail the Baker-Akhiezer function constructed from

the polynomial

(3.1.7) q{k) = kx + k2y + kH,

where x, y, and t are the parameters. We denote this function corresponding
to some non-special divisor D of degree g by ψ(χ, y, t; P). Then ψ(χ, y, t; P)
can be normalized so that in a neighbourhood of Q its expansion takes the
form

(3.1.8) *(χ,ν,ί;Ρ)

Here the coefficients &, | 2> ··· a r e functions of x, y, and t (which we shall
calculate below).

Let us leave Riemann surfaces for a while and regard the expansion (3.1.8)
as formal (without being interested in its convergence). We have a simple
but important lemma.

Lemma 3.1.1. For a function φ of the form (3.1.8) the formal equalities

(3.1.10) [—lr + -*-+*u-L



Theta functions and non-linear equations 47

hold, where the functions u and w can be found from the condition for the

vanishing of the coefficients of knehx+h'-v*kH for « = 3 , 2 , 1,0. These

functions have the form

(3.1.11)

The proof is by direct calculation.
We denote by L and A the ordinary differential operators in x:

(3.1.13) L = ̂  + u,

(3.1.14) A = .£- + ! . „ £ + „,.

Theorem 3.1.2. Lei ψ = ψ(χ, j , t; P) be a Baker-Akhiezer function
constructed from the polynomial q(k) = kx -f /c2;/ + /c3i a«<i corresponding
to some non-special divisor D of degree g. Then φ is a solution of the
system of equations

(3.1.15) 44-^ψ,

(3.1.16) -fr = ^ ·

where the operators L and A are given by (3.1.13) and (3.1.14).

Proof. The functions φ χ = ( — ̂ - + Ζ,) ψ and φ2 = | _ ^ - 4 - ^ \ · ψ satisfy

all the conditions of the definition of a Baker-Akhiezer function. But it
follows from Lemma 3.1.1 that the values of the products φχ exp (—kx —
— kzy — kH) and φ2 exp (—kx — k2y — k3t) at Q are zero. From uniqueness

of the Baker-Akhiezer function (Theorem 3.1.1) it then follows that
φ! = φ2 = 0 on Γ.

Corollary. The functions u and w of the form (3.1.11), (3.1.12) give a
solution to the system of non-linear equations

( 3 · 1 · 1 7 ) ' α. α . *
, — Ut -f- Uxxx -f- γ UUX — Wxx = (J.

Eliminating w from this system we arrive at the famous Kadomtsev-
Petviashvili (KP) equation

(3.1.18) 'Lu S\u 1
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Proof of the Corollary. The condition of compatibility of the equations
d\p/dy = L\p and 3ι///9ί = Αφ has the form

(3.1.19)

(By [..., ...] we denote the commutator of the operators). By computing
this commutator we obtain (3.1.17).

Thus, for each Riemann surface Γ of genus g, each point Q on it, and
each local parameter k~l we can construct in a neighbourhood of Q a family
of solutions of the KP equation, parametrized by the non-special divisors of
degree g on Γ (the points in general position of the Jacobi variety /(Γ)).

The change of the local parameter

(3.1.20) k

(where λ, a, b are arbitrary complex numbers and λ Φ 0) leads to another
family of solutions of the same KP equation. It is easy to verify that these
other solutions are obtained by means of the following transformations,
which preserve the form of the KP equation:

(3.1.21)
y ->• wy-

t ^ XH,

1 26

Of course, the fact that the KP equation admits the group of transformations
of the form (3.1.21) is trivial to verify (without resort to the theory of
0-functions).

We now express the thus constructed solutions in terms of the 0-function
of Γ. To do this we make use of the formula (3.1.3) for the Baker-Akhiezer
function, which in our case is as follows:

ρ ρ ρ

(3.1.22) ψ (ζ, y, i ;P) = e x p ( * JQW + y [ Ω<2> + t \ Ω»>) χ
Po h Po

X Q(A(P) — A(D) — K)

Here Ω^1*, Ω^2), and Ω(3^ are normalized differentials of the second kind,
with poles only at Q and with principal parts also at Q of the form

(3 123) 0<1> = d f t + . . . , Q«> = d ( f c a ) + . . · , Ω<3> = d (#>) + . . .

(the dots denote the regular terms; k'1 is the local parameter); U, V, and W
are their vectors of fe-periods:

(3.1.24) £/i = ^Q<1). 7 ; = (ξ>Ω<2\ Wt =
b.
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Theorem 3.1.3. The thus constructed solutions of the KP equation have the
form

(3.1.25) u (x, y, i) = 2 -jjL. log 0 (xU + yV + tW + z0) + c,

where θ = 0(z) is the θ-function on Γ, the vectors U, V, and W are
determined by (3.1.24), z0 = -A(D)~ Κ is an arbitrary vector, and c is a
constant.

Proof. By (3.1.11), it suffices to find the coefficient ^ of the expansion
(3.1.8). We note that the expansion of the logarithm of the Baker-Akhiezer
function (not necessarily normalized) has the form

(3.1.20) log ψ = kx + mj + kH +10 + ^+cx + ay + bt + _

(£0 is some function of x, y, t; a, b, and c are constants). Consequently,
^ + cx + ay + bt is the coefficient of l/k in the expansion of the function

,,„ . Q(A(P) — A(D) — K-{-xU-\-yV+lW)
φ (1 ) — log » . . .... TTJT\ F ;

' v ' B θ (/I (/') — A (I)) — A)

in a neighbourhood of Ρ = Q. Next, we recall that it follows from (2.1.21)
that the vector-valued function A(P) as Ρ -*• Q has the expansion:

(3.1.27) A(P) = A(Q) — yU + (

We choose Q as the initial point of the Abel mapping. Then A(Q) = 0, and
the required coefficient ^ has the form

(3.1.28) ξ, 4- ex 4- ay -\- bt = — -^ log 0 (xU + yV + tW — A (D) ~ K) 4- . . .,

where the dots denote terms independent of x, y, t. From the formula
u = -lid^/dx) we obtain the proof of the theorem.

(3.1.25) gives additional information about the properties of the solutions
of the KP equation: u{x, y, t) is a conditionally periodic (generally speaking,
meromorphic) function of the variables x, y, and t. For the second
logarithmic derivative (92/9x2) log0(z) (z is a point of the Jacobian /(Γ)) is a
meromorphic function on the torus /(Γ) (an Abelian function). To obtain
the solution u(x, y, t) we have to restrict this function to the linear
(x — y — f)-winding, spanned by the vectors U, V, and W. We do not discuss
here the problem of isolating the real and the bounded solutions among
those obtained.

If for U we have the commensurability relation

where 2nie^ . . ., 2neff, /x, . . ., }g are basis vectors of the period lattice,
the nk and nij are integers, and Τ Φ 0, then u(x, y, t) is periodic in χ with
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period T. If in addition we can find a second (complex) period T', where
lm(T'/T) Φ 0 such that

(3.1.30) Τ (U) = 2ni (n'fr +... + n'geg) + m'ijl +...+ m'efg,

where the n^ and m) are integers, then u(x, y, t), as a function of x, is a
doubly periodic meromorphic function (with the periods Τ and T') and can
be expressed in terms of elliptic functions.

Example, (see [53]). For the Riemann surface Γ of the second kind, given
by the equation

(3.1.31) u , 2 = z 5 _ ^ 2 Z 3 _ ^ 3 Z 2 + ^ 2 + ^ ^ 3 i

and for the Weierstrass point Q = °° on Γ, the dependence on y disappears,
and the KP equation reduces to the KdV equation (see below) whose
solution can be expressed in terms of elliptic functions by the formulae

(3.1.32) u(x, t) = 2 f (x - x ^ t ) ) + 2f(x— x2(t)) + 2 f (x - x3(t)).

Here f (x) is the Weierstrass function (see Ch. I, §3),

- 4 i = j

In particular, if ί = 0, const = 0, then u(x, 0) = 6 ψ (χ). An elegant method
of finding the Riemann surfaces for which the function u = 2d2/dx2 log θ can
be expressed by elliptic functions has recently been found by Krichever [22].

Suppose that the Riemann surface Γ and the point Q on it are such that
there exists a meromorphic function λ(Ρ) on Γ with a unique double pole at
Q. It is easy to see that then Γ must be hyperelliptic and Q must be a
Weierstrass point (a branch point). We choose k^iP) = [λ(-Ρ)]"1/2 as the
local parameter of Ar1 = k~l(P) in a neighbourhood of Ρ = β. Then the
Baker-Akhiezer function i//(x, y, t\ P) with as essential singularity
exp(fcr -j- ft2;/ + k3t) at Q has the form

(3.1.33) φ(«, y, i; P) = θχρ(ί/λ(Ρ)φ(χ, t; P)),

where ψ is the Baker-Akhiezer function with the same divisor of poles as \p,
and with an essential singularity φ ~ exp(kx + k3t) at Q. This follows
immediately from the uniqueness Theorem 3.1.1. Then the differential
equations (3.1.15), (3.1.16) for φ can be rewritten as follows:

(3.1.34) L<p(x, t; Ρ) = λ(Ρ)φ, t; P),

(3.1.35) ^ = Α(Ρ·
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Now (3.1.34) means that φ is the "eigenfunction" of the Schrodinger
(Sturm-Liouville) operator ( 1 ) l with eigenvalue λ(Ρ), depending on the
parameter t, by (3.1.35). The coefficients of the operators L and A are
independent of y, and the KP equation turns into the Korteweg-de Vries
(KdV) equation

(3.1.3G) u , = l ((nmx + uxxx).

The commutation condition (3.1.19) gives the "L~A pair" for the KdV
equation

(3.1.37) ^L=[A,L],

and finally, (3.1.25) gives the standard formula (of Matveev-Its) for finite-
zone solutions of the equation

(3.1.38) u(x,t) = 2-£r log

where U and W were defined above.
Similarly, if for a curve Γ and a point Q on it there exists a meromorphic

function μ(Ρ) with a single pole of the third order at Q, then the dependence
on t disappears and the KP equation turns into a version of the equation of
a non-linear string (the Boussinesq equation)

(3.1.39) 3«y y + -^ (Guux + uxxx) = 0.

which has solutions of the form

(3.1.40) u (x, y) = 2 -?L log 0 (xU -f yV + zo) + c.

We now indicate a set of conditions that are sufficient for the constructed

solutions of the following equation to be real

Ο \ 1 / n . x

ΙόΛ.'ΊΙ) rU,n, = -τ—\ Ut 7-(buux^rUVXT) \,

which is obtained from the KP equation by the substitution y >-^ iy. Let r
be an anti-involution (that is, an anti-holomorphic automorphism r: Γ ->·
-> Γ, τ2 = 1) on Γ of genus g = 2p + n~ 1, having/: fixed cycles Ao, ... An_x.
When we cut Γ along the cycles Ao, ..., An-X, we obtain two connected
components Γ + and Γ^ = τ(Γ + ), each of which is an open Riemann surface
of genus ρ with boundary consisting of the cycles Ao, ..., An^x. Then in the
homology group ΗΧ(Γ; Ζ) we can then choose the canonical basis of cycles

o-i,bi, . .., α ρ , Op, βρ-ι-ι, Op+i, · • ., «p+7l_j, o p + n _ j , a r o 1, . . . , a p , fcp

(1)Under suitable conditions on the Riemann surface Γ and the divisor D on Γ, the
potential u of the Schrodinger operator is a real almost-periodic function. In this case L
is an operator with regular analytic properties, that is, has an eigenfunction φ that is
meromorphic on Γ (see [17]).
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s u c h t h a t a p + f e = A k ( k = 1, . . . , n— 1), a n d

at, bt£T+, al b'i£T-; τ(α,·) = αί, τ (fe;) = — 6; (i = l , . . . , p ) ,

f ( a p + f t ) = a P + f t , t ( 6 p + f t ) = — bp+h (/c = l , . . . , « — 1 ) .

To obtain real solutions, the essential singularity Q of the Baker-Akhiezer
function must be chosen fixed with respect to τ (that is, T(Q) = Q), and the
local parameter ζ in a neighbourhood of Q (where z(Q) = 0) so that
τ{ζ) = —Έ. Such a point Q and local parameter ζ determine the vectors
U, V, and W (see above). Then the smooth real solutions of (3.1.41) have
the form

(3.1.42) u(x, y, t) = 23* log Q(xU + iyV + tW + zo)+ c,

where z0 has the form

(3.1.42') zo = (z'o, zl, z'o), z'o € C , z i ' G R " " 1 ,

and c is a real constant (this can be deduced from [8], for example).

Remark. The Baker-Ahkiezer function ψ(χ, y, t; P) having poles on Γ\(>,
also has g zeros there (for almost all x, y, t). These zeros depend on the
parameters x, y, and t. We denote them by Q\(x, y, t), ..., Qg(x, y, t). The
dependence of these zeros on x, y, and t can be determined from the
following proposition (Akhiezer).

Lemma 3.1.2. For the zeros Qx = Qx(x, y, t), ..., Qg = Qg(x, y, t) and poles
Pu ..., Pg of the Baker-Akhiezer function ψ(χ, y, t) the following relation
holds on the Jacobi variety J(T):

(3.1.43) A(Q1) + . . . + A(Qg) = A(PX) + . . . + A(Pg) -f Ux +
+ Vy+ Wt,

where the vectors U, V, and W are determined above.

The proof of the lemma repeats almost word for word that of Abel's
theorem. The periods of the meromorphic differential d log φ must be
integral multiples of 2m. This differential can be represented as a linear
combination of elementary ones (see Ch. II, §1):

(3.1.44) d. log^= Υ ω$ρ +ζΩ#> + ί/Ω£) + ίΩί?>+ j] ^ω(·.

Integrating this expression over all the cycles a/ and bk, we obtain (3.1.43).
From this lemma one can derive another proof of Theorem 3.1.1.
Differentiating (3.1.43) with respect to x, y, t we obtain differential

equations describing the dynamics of the zeros (Qu ..., Qg). For example,
for the hyperelliptic surface Γ of genus 2 {ur = Ps(z)} and for the Weierstrass
point Q = °° on Γ the dependence on χ of the zeros (Qlt Q2) is defined by
(2.4.55) (up to a factor of 2). The dependence on y disappears and the
dependence on / is given by a linear combination of (2.4.55) and (2.4.56).
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We complete this section by the following general observation. The
polynomial q{k) = kx -f- k2y + k3t from which the Baker-Akhiezer function
was constructed was the simplest possible. It is easy to generalize the
calculations and to prove the following proposition.

Theorem 3.1.4. Let Τ be a Riemann surface of genus g, Q a point on Γ, and
k'1 a local parameter in a neighbourhood of Q. We fix a non-special divisor
D of degree g.

a) Each polynomial q(k) of degree η determines an ordinary differential
operator Lq (in x) of the n-th order, according to the following rule.
Suppose that \pq = \pq(x, y; P) is the Baker-Akhiezer function with divisor D
of the poles and with the essential singularity &xp(kx + q(k)y) at Q. Then Lq

is uniquely determined by

(3.1.45) - ^ - = L94V

The coefficients of Lq can be expressed recurrently in terms of the coefficients
of the series ψ? exp(—kx — q(k)y) in reciprocal powers of k.

b) Every pair of polynomials q{k) and r(k) generates a solution of a non-
linear equation in coefficients of Lq and Lr of the form

(3.1.46) [~£ + L " -1Γ +

This solution can be expressed in terms of the θ-function of Γ.
c) In particular, every meromorphic function X(P) with a single pole at

Ρ— Q gives an operator of the form L = Lx and a set of eigenfunctions ψ,

(3.1.47) Ζ,ψ = λψ,

if we take q(k) to be principal part of the Laurent series of this function at
Q and L = Lq. In this case any other polynomial r(k) determines a solution
of a non-linear equation in the coefficients of L of the form

(3.1.48) ^-=[A,L], A = Lr,

which can also be expressed by θ-functions.
d) A pair of meromorphic functions λ(Ρ), μ(Ρ) with a single pole at Ρ — Q

gives rise to a pair of commuting ordinary differential operators

(3.1.49) IA, L] = 0.

The equations with the coefficients of these operators are called the Novikov
equations and can also be integrated by means of θ-functions.

One can also reformulate c) and d) of this theorem as follows: every non-
special divisor D of degree g gives rise to a homomorphism of the ring of the
meromorphic functions with a single pole at Q into a commutative algebra of
ordinary differential operators

(3.1.50) λ(Ρ) H ^ Lx.
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All the operators of the form Σλ have a common eigenfunction φ,

(3.1.51) Ζλι|- = λψ,

which is the Baker-Akhiezer function with divisor D and essential singularity
expkx at Q.

For a proof of this theorem as well as other applications of it and a

generalization to matrix and difference operators, see [15] and [ 1 6 ] .

§2. The Baker-Akhiezer two-point function. The Schrodinger equation in a
magnetic field

The simplest generalization of the Baker-Akhiezer function we have
studied in the preceding section consists in adding superfluous essential
singularities. The general definition of the Baker-Akhiezer 1-point functions
("of rank 1") is as follows.

Definition 3.2.1. Let Γ be a Riemann surface of genus g, Qx, ..., Ql points
on Γ; k'\L, . . . . Λ71 local parameters in a neighbourhood of these points
(where &,·(£?,·) = °°)> <7i(£)> ···> ? i W a set of polynomials, D a divison on
Γ\((?ι U · · · U Qi), and φ = φ(Ρ) a Baker-Akhiezer /-point function
specified by these data: it is meromorphic on Γ \ ((?i U . . . U Qi) a n d such
that a) the divisor of φ >~D; b) as/»-»· Qu the product i|i(P)oxp(—q-XkiiP)))
is analytic (i = 1, ..., /).

The Baker-Akhiezer functions given by the conditions of this definition
form a linear space, which we denote by A7(Z)). By analogy with Theorem
3.1.1 one can prove the following theorem.

Theorem 3.2 A. Let Γ be a Riemann surface of genus g and D a non-special
divisor on Γ \ (Qx \j . . . \J Qi). Then the dimension of the space A/(Z>) is
degD-g+ 1. In particular, if D — Pl+ ... + Pg is a non-special divisor of
degree g, then the corresponding Baker-Akhiezer l-point function exists and
is uniquely determined up to a factor.

The use of the Baker-Akhiezer multipoint functions allows us to integrate
a very large number of important non-linear equations. We analyse a simple
example of the use of the Baker-Akhiezer two-point funtion, without giving
here a general theory of applying multipoint functions to the integration of
equations (see [15] and [16]).

Let Γ be an arbitrary Riemann surface of genus g, Q+, Q_ a pair of points
on Γ, and k+ and k~ local parameters in neighbourhoods of Q+ and <2_. We
consider the Baker-Akhiezer function φ(ζ, ζ"; Ρ) with the divisor D of poles,
where D = Px+ ... + Pg is a non-special divisor of degree g o n F \ (Q+ (J Q_)
and with essential singularities of the form exp£ + z and exp&_z at Q+ and
Q-, respectively. Here ζ = x + iy and Έ = χ — iy are independent variables.
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Such a function exists and is uniquely determined up to normalization. Its
explicit expression in terms of the β-function of Γ is as follows:

ρ ρ

(3.2.1) ψ (ζ, ζ; P) = e x p ( z \Ω+ + Ζ j Ω_)
θ (Α (Ρ)-A (D)-Κ)

Po Pa

Here Ω+ and Ω_ are normalized differentials of the second kind with a
double pole at Q+ and (?_, respectively, and principal parts at these points
of the form

(3.2.2) Ω ± = d(k±) + ...;

U+ and U- are the vectors of the δ-periods of these differentials,

(3.2.3)

In neighbourhoods of Q± the function φ(ζ, F; P) has an expansion of the
form: as Ρ -» Q+ ,

(3.2.4) Tp = c+eh

and as Ρ -> Q_,

(3.2.5) Ψ = ε-β

The coefficients c± and %f are functions of ζ and F. We normalize φ so that
the coefficient c+ in (3.2.4) is 1. Then we denote the coefficient c_by
c(c = cjc+). By analogy with Theorem 3.1.2 we can prove the next theorem.

Theorem 3.2.2. The Baker-Akhiezer function φ(ζ, F; P), normalized by the
condition c+ — 1, is a solution of the equation

(3.2.6) Τϊψ = 0,

where

(3.2.7) H ^ ^ ~L
dz

and the coefficients a, b of the operator Η have the form (c — e_/c+)

/ο ο Q\ „ f, dlogc u / δξ,ΐ

(ο.Ζ.ο) a =-ί , 0 = 4—~-
dz dz

Proof. The form of H, by analogy with Lemma 3.1.1, is selected from the
following two conditions: for the expansion (3.2.4) (with c+ = 1):

(3.2.9) #ψ = 0 (

for the expansion (3.2.5):

(3.2.10) Hx\- = e'^Cc (z, z) + O ( 1 ) )
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(the explicit form of c"(z, F) is not important for us). From (3.2.9) and
(3.2.10) it follows that Ηφ is again a Baker-Akhiezer function, but at
Ρ - Q+ the product (H\Jj)exp(-k+z) vanishes. By the uniqueness, Ηφ = 0.
This proves the theorem.

The operator Η constructed from Γ, the pair of points Q± on Γ, and the
divisor D can be interpreted as the Schrodinger operator for a two-
dimensional electron in the magnetic field B(x, y) = dxAy — dyAx, where
(Ax, Ay) is a vector-potential, in the presence of a potential u{x, y) (of the
electric field):

(3.2.11) H =

_£___£, J_ J_—(J. L\·
dx ~ dz + fz ' dy ~ l { dz fz)'

e is the electron charge; h = 2m = c = 1 (the magnetic field B{x, y) is
directed along the third axis). For the operator (3.2.7) we have

(3.2.12) | x i y ^ a ^

(3.2.13) w = = f e + ^ = 4 - ^ + 2
& dz dz dz dz

We now deduce formulae expressing the coefficients a, b (and thus, the
magnetic field Β = dxAv — dyAx and the electric field u{x, y)) in terms of
0-functions.

Theorem 3.2.3. The function
ρ

(3.2.14) ψ (ζ, ζ; Ρ) = βχρΓζ( [ Ω+ — ct+)-fz ( f Ω_ —α_)1

Χ

ρ
\ ι

Χ
/ J

^ ο

Q(A(P)-\-zl

β(Α(Ρ) + ζο)θ(Α(Ρ+) + ζυ++~ζϋ- + ζο) '
ρ

where the constants α+ are such that \ Ω+ — a+ = /c+ + O (y-J. ̂  Ρ ->- Q+r

a_= \ Ω_, /or any £0 « a solution of the equation Ηφ — 0, where Η is the

Schrodinger operator of a two-dimensional electron in a magnetic field,

(3.2.15) H= (i JL + eAx)
2+ (i -L +eAy)

2 + u(x, y).

The coefficients of this operator have the form
(3.2.16) u(x,y) =

= 2 - ^ log [Θ (A (P+) + zU+ + zU_ + ζ0) θ (A (P.) + zU+ + ~zU_ + ζ0)] + const,
dz dz

(3.2.17) ^ , = -M,—i-f log
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The magnetic field Β (χ, y) = dxAy — dyAx is directed along the third axis and
has the form

(3.2,18) B(x,y)B(,y) ^
e dzdz

Proof. (3.2.14) is obtained from (3.2.1) by normalization (we divide by c+),
where £0 = —A(D)~ Κ is an arbitrary point of the Jacobi variety /(Γ). Then
for the functions c{z, I) and £f we have

(3.2.19) togC(z.i)=log

Η · · · '

where the dots denote linear combinations of the variables z and F, arising
from the expansion of the exponent of the exponential curve in (3.2.14).
This and (3.2.12) and (3.2.13) immediately prove the theorem.

Remark. The group of periods of the magnetic field B(x, y) is the same as
that of the vector-potential (Ax, Ay)—this follows from the explicit formulae
obtained. Therefore, in a doubly periodic field (a two-dimensional crystal
lattice with periods Tx and Ty) the constructed solutions have a zero flux

through the nucleus of the lattice \ \ Β (x, y) dx dy = 0. The case of non-
o Ό

zero flux has been integrated in [37].
There is a simple sufficient condition for the constructed operators Η to

be real (see [49]).

Lemma 3.2.1. Suppose that there is an anti-involution τ on V, permuting

Q+ and Q_

(3.2.21) τ: Γ - > Γ, τ 2 = 1, τ(<?+) = <?_.

We choose local parameters k+, k_ in neighbourhoods of these points so that
/c_ = — j(k+). If the divisor D (non-special of degree g) is such that
D+T(D) is a zero divisor of a differential ω of the third kind with simple
poles at Q+ and Q_, then the coefficients of Η are real.

Proof. By the condition of the lemma, the product ω =ψ(ζ, ζ; Ρ) χ
χ ψ(ζ, Τ, τ(Ρ))(ύ is again a differential of the third kind with simple poles at
Q+ and Q— Since the sum of its residues in zero, we have c — Έ, from
which it follows that Β is real. That u is real is verified analogously.

By (2.4.20), the condition on D in this lemma can be rewritten in the
form of a relation on the Jacobian variety /(Γ):

(3.2.22) A(D) + A(T(D)) = A(Q+) + A(Q.) - 2K

(K are the Riemann constants).
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CHAPTER I V

EFFECTIVIZATION OF THE FORMULAE FOR THE SOLUTION OF KdV AND KP
EQUATIONS. RECOVERY OF A RIEMANN SURFACE FROM ITS JACOBI

VARIETY. THE PROBLEM OF RIEMANN AND THE CONJECTURE OF NOVIKOV

§ 1 . The KdV equation. Genus g = 1 or 2

In the preceding chapter we have obtained "explicit formulae" (3.1.25)
and (3.1.38) expressing the solutions of a number of important non-linear
equations in terms of 0-functions. These formulae are of little use for
calculations within the framework of the theory of ^-functions for the
following two reasons:

1) The Riemann matrix Bjk is not arbitrary;
2) The connection between the vectors U, V, W and the Riemann matrix

Bjk is transcendental (this connection has never been discussed explicitly).
We recall (see Ch. II, § 1) that the set of period matrices (Bjk) of Riemann

surfaces of genus g > 1 depends on 3g— 3 complex parameters (for g = 1 on
one parameter). However, the general (g χ g)-Riemann matrices form a
family of dimension g(g+ l)/2. Riemann raised the question: what
conditions have to be imposed on a Riemann matrix Bjk so that it is a
period matrix of holomorphic differentials on a Riemann surface Γ? For the
genera g = 1, 2, 3 the Riemann matrix can be any indecomposable matrix.
Riemann's problem is non-trivial for g > 4 and an effective solution of it for
all g > 4 has not yet been obtained (see [26], [38], [39]).

Novikov suggested obtaining a full set of necessary relations on the matrix
Bjk and the vectors U, V, W via a simple substitution of (3.1.38) and
(3.1.25) in the KdV and the KP equations, where the 0-function is determined
by its Fourier series (1.1.1). Then one obtains a system of algebraic
equations from which the vectors U, V, W can be determined; the
compatibility conditions of this system give a full set of relations on the
Riemann matrix Bjk.

The present chapter is devoted to a realization of this problem. In
particular, for g = 1, 2, 3 (where the Riemann matrix B/k is arbitrary) a
complete effectivization of (3.1.25), (3.1.28) is given to solve the KP
equation and the equations connected with it.

We start with the case of small genera g = 1 or 2 for the KdV equation.
Here the Riemann matrix Bjk is arbitrary (in general position). We look for
a solution of the KdV equation

(4.1.1) Ut = -£-(Suux + uxxx)

in the form

(4.1.2) u(x,t) = 2-^
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where the 0-function is constructed from some Riemann (g x g)-matrix Blk,
the vectors are unknown, and z0 is an arbitrary g-dimensional vector. This
formula differs from (3.1.38) by the fact that c = 0, which can always be

achieved by the change W >-*• W — ^ U. Substituting (4.1.2) in (4.1.1) we
obtain

where θ = 0(z), ζ = Ux+Wt + z0 is an arbitrary vector, - — = V. Ut-j—, and

— = 2 Ŵ i -gjr · This expression can be written in the form

1^\~l dxat + d I a** J + "2

Suppose that 5/fc is indecomposable (see Ch. I, §3). In this case it
follows from (4.1.3) that the expression in curly brackets is a constant,
which we denote by Ad. An elementary calculation leads us to the relation

(4.1.4) θ , χ χ χ θ - 4Θ,«ΘΙ + 3Θ^ - 4ΘΧ( θ + 49,6, + 8 dW = Ο

(the subscripts χ and t denote derivatives), where Θ — θ(ζ), which must hold
for any z. To obtain a finite system of equations in U, W, and the constant
d, we use the addition Theorem 1.4.1. In our special case it has the form

(4.1.5) Θ(ζ 1 )θ(ζ 2 )= 2 θ [/ι] {wl)$[n\ (w2),

η ε -i (z2)*

(4.1.5') z' + z '^w 1 , z1 —z2 = w2.

Here we use the abbrevation
(4.1.5") Un](w) = 9[ra, 0](u; | 25).

The notation η G ̂ {7L2Y means that the summation in (4.1.5) is over all
of the half-periods η — {nlt ..., ng), nt — 0, \.

The values of the functions θ[η] (w) and their derivatives

Qu. . . [η] (w) Ξ — ^ — — — . . . θ [η] (w)
J OW ι OW j

at w = 0 are called θ-constants. We agree to omit a zero argument of the

0-constants: Qu . . . [n] = θ ί;·[η](0).

Lemma 4.1.1. (4.1.4) is equivalent to the following system of 2g equations
in the vectors U — (Uly ..., Ug), W = (U^, ..., Wg), and the constant g:

(4.1.6) dfjQ [n] — dvdw§ [n] + dQ [n] = 0,

where the equations are numbered by η G 2{"Z-2)
g. Here we introduce the

notation
dbQ [n] =

(4.1.7)
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Proof. We introduce operators

(4.1.8)

and, by analogy, operators Xwi, Xw^, Tw,, Twz, where all ζ are substituted for
w, connected by the relations (see (4.1.5'))

- XW2, 1 zl = -ι wl -|- 1 K)2,

X*

Tzi

= Σ

= y W,

d v

dz) '

d
r z 2 =2

υ d

1 az? '

(4·1·9) . v v v T T x
J- z2 = L lyl -* Ul2·

Now (4.1.4) can be rewritten in the form

(4.1.10)

- 4ΧζιΓ,ι + 8d) θ (Zi) θ (ζ2)]2ι= ϊ. = 0.

We express the operator in square brackets in terms of the Xwt and Tvi in
(4.1.9) and apply it to the right-hand side of the addition Theorem (4.1.5)
for w1 = 2z, w2 = 0. Since 6[n](w) is even, it suffices to leave the even
powers of Xw-. and Tw% in the resulting expression. If we take this into
consideration, the calculation becomes very simple and leads to the relation

- Xw2Twi + d) Σ 0 In] (u:1) 6 [n] (w*)]w^2z = 0.

4
It is easy to see that the 2g functions 0 [ M ] ( 2 Z ) , η Ε %(Z2)

g, are linearly
independent (they form a basis in the space of the θ -functions of the second
order—see Ch. I, §1). Equating the coefficients of these functions equal to
zero we obtain the system (4.1.6). This proves the lemma.

The system (4.1.6) is invariant under the following scale transformations:

(4.1.11) υ Η-> λ(7, W >—>• λ2υ, α ι—J- λ4α.

It is easy to compare these transformations with the obvious scale group of
the KdV equation.

Let us now solve the system (4.1.6) for g = 1 and 2.
a ) ( 1 ) g = 1. Then (4.1.6) takes the form:

J ί/ 4θ ΐ ν [0] — UWQ" [0] + dQ [0] = 0,

1 ί/4θΐν[1/2] — UWQ"[l/2] + dQ [1/2] = 0 .

Owing to the invariance of (4.1.11) we may assume that { 7 = 1 ; then

(4.1.13) W θ ΐ ν[°]θ[ΐ/2]-θ ΐ νΜ/2]θ[0]

should be mentioned that in [23] the case g = 1 is analysed incorrectly (the
equality 6Ιν[0]/θ[0] = θΙν[1]/θ[1] does not hold).
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The expression for W can be obtained in all even simpler way by substituting
in (4.1.4) for θ the odd function θ^ζ) — 0[£, i ](z) (the second logarithmic
derivative of θ and θχ differ only by a shift of the argument). Substituting
ζ = 0 in (4.1.4) (where θ >-* θ^ we find in view of the oddness (U = 1),

(4.1.13') W = -θ-(0)/θ;(0).

Before solving (4.1.6) for genera g > 2 we impose the following non-
singularity condition on the matrix Bjk

(4.1.14) rank (θΗ[η], § ia[ra], . . . ,9 g g [ ra] , θ [η]) = g ( g

2

+ 1 ) + 1 .

Here the rows of the matrix in parentheses are numbered by the vector
η € \{2.g)

2. Of course, non-singularity implies indecomposability (for a

decomposable matrix Β = ( βη) (4.1.14) has zero columns). Below (see

Lemma 4.3.1) we shall show that the non-singularity condition is satisfied
for the Riemann matrices of Riemann surfaces,

b) g = 2. We rewrite (4.1.6) in the form

(4.1.15) ί/,^Λι [η] + (UiW2 + U2W1) §„[

(we recall that the subscripts denote derivatives). The non-singularity
condition here is the condition for invertibility of the (4 χ 4)-matrix

(4.1.16) (§!,[«], Θ12[ιι], θ ϊ 2 [η], θ [re])

(the rows are indexed by the characteristic η G | ( Z 2 ) 2 . Let (a£, a)?, a™, an)
be the inverse matrix. Then from (4.1.15) we obtain

W2 = -
(4.1.17) {

i = T7r 2

Substituting ^ and W2 in the last relation, we obtain a homogeneous
equation of degree 6 in {/ = (£/ΐΛ C/2):

(4.1.18) P(f/15 f/2) = f.^(?22(f/) - U.U.Q^U) 4- UlQu(U) = 0,

where the polynomials Q,y(f/) are defined in (4.1.17). From the given
Riemann matrix Bjk we obtain 6 vectors (up to a scalar factor). After this
we can find W = (Wu W2) by (4.1.17). Thus, we have proved the following
result.
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Theorem 4.1.1. Let Bjk be a Riemann (2 χ 2)-matrix in general position.
Then the formula (4.1.2), where θ(ζ) = θ(ζ\Β) and the vectors Uand W are
determined from (4.1.18) and (4.1.17), gives a solution of the KdV equation
(4.1.1) for any z0.

Formulae of another type for W can be obtained by using odd characteristics
directly from the relation (4.1.4) (as forg = 1). For example, by substituting
in (4.1.4) successively θ ^ θ[(1/2, 0),<l/2, 0)] and θ-»- θ[(0, 1/2), (0, 1/2)]
we obtain a system of linear equations from which

(4.1.19)

(/ = 1 or 2; /+is taken mod 2).

§2. The KP equation. Genus 2 and genus 3

For the KP equation

(4.2.1) \uyv = ~L· {Ut~ T^UUx + Uxxx))

we look for a solution in the form

(4.2.2) u (x, y,t) = 2-^r log θ (Ux + Vy + Wt + z0)

(the constant c in (3.1.25) vanishes under the substitution W *-*· W — γ cU).

By analogy with the previous section, after substituting (4.2.2) in (4.2.1) we
obtain a relation of the form

(4.2.3) QXXXXQ - 4 9 ^ 9 , + 39L + 49*6,-49^6 + 3QevQ - 39§ + 8 ̂ θ^ = 0

(as above we denote the integration constant by Ad), where θ = θ(ζ), which
is valid for any z. The use of the addition theorem, as above, leads to the
following assertion.

Lemma 4.2.1. A function of the form (4.2.2) is a solution of (4.2.1) if and
only if

(4.2.4) ^ 9 M - 5 i / ^ 9 [ t t ] + 4

{the notation is the same as in Lemma 4.1.1).
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The system (4.2.4) is invariant under transformations of the form

f U ^* W, V ι— ± (l2V+2aXU),
(4.2.5) | w ^ i*w + 3XZaV + 3Xa2U d >-

Here λ and α are arbitrary complex parameters, λ Φ 0. The invariance of
(4.2.5) is easy to compare with that of (3.1.21).

For g = 1 the vectors U, V, and W are collinear (simply numbers), and the
KP equation reduces to a KdV equation. Now we analyse the case g = 2. If
U and V are linearly dependent, then after a suitable transformation of the
form (4.2.5) we find that V = 0. In this way we again arrive at a KdV
equation, where U and W for g = 2 have been found above.

Now we assume that U and V are linearly independent. Then W has the
form

(4.2.6) W = aU + bV,

and (4.2.1) turns into a version of the Boussinesq equation^1 *

(4.2.1') 3vyy - Aavxx + Abvxy + (3v- + vxx)xx = 0,

where
v(x + at, y + bt) = u(x, y, t),

(4.2.2') y (x, y) = 2 - ^ log θ (£/* + Fy + z0).

Using the invariance (4.2.5) we set

(4.2.7) t/2 = l, F 2 = 0.

Solving (4.2.4) for g = 2, by analogy with the preceding section, we obtain

where the polynomials Q/f are determined by (4.1.17) and Ρ has the form
(4.1.18). Taking the "calibration" (4.2.7) into account, we obtain for U, V,
and W, expressions in the parameter ζ = Ux

(4.2.8) |

I ^ , 1), Q22(z, 1)).
The coefficients a and 6 of the expansion (4.2.6) have the form

(4.2.9) a = Q22(z, 1), h= /3(Q 1 2(Z l)-2 (?2 2(z, 1))
2i V Ρ (ζ, 1)

Thus, we have proved the following theorem.

full agreement with the results of Ch. Ill, §1: on a Riemann surface Γ of genus 2
and a point in general position on Γ there exists a function with a unique third-order pole
at this point, therefore, we obtain the equation of a non-linear string. For the
Weierstrass points (there are six of them) there exists a function with a second-order pole,
and we arrive at a KdV equation.
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Theorem 4.2.1. Let Β = (BJk) be any Riemann (2 χ 2)-matrix in general
position. Then (4.2.2') solves the equation (4.2. Γ)/or any z0 (the coefficients
a and b have the form (4.2.9)), where θ(ζ) = θ(ζ\Β), the vectors Uand V
are defined by (4.2.8), and ζ is an arbitrary parameter (P(z, 1) ̂  0).

Now we pass to genus g = 3. Here the vectors U, V, and W are already,
generally speaking, linearly independent and the KP equation does not
reduce to a KdV equation or to the equation of a non-linear string. To
obtain the relations on U we regard (4.2.4) as a linear system in 7 unknowns

UiWl~\v\, W + W - I F . F , . . . , ^ - ! ^ , -d.

The matrix of this system

(4.2.10) φιΑη], Θ12[η], . . . , § 3 3 [ n ] , θ [η]), ηζ±(Ζ2)
3,

of dimension 8 x 7 has rank 7 by the non-singularity condition (4.1.14).
The compatibility condition of this linear system has the form

(4.2.11) #(£/„ U2, £/3) = det(01 1[n], Θ12[η], . . . ,0 3 3 [rc], Θ [Λ], dfQ[n))=0

(the characteristics η G %(Z2)
3 index the rows of this (8 χ 8)-matrix). It is

easy to show that (4.2.11) is not identically zero for matrices Bjk in general
position (it suffices to calculate the determinant (4.2.11) in a small
neighbourhood of the diagonal matrix B). Below (in §3) it will be shown
that there must be no other relations on U. Let us find the vectors V and
W. Let nx, ..., nn be characteristics in \(2.2)

3 such that the (7 χ 7)-minor

(4.2.12) (%{n],Q[n}) (« = «, n7)

of (4.2.10) does not vanish. Let

(4.2.13) (oj?, an) (n = nu . . . , n 7 )

be the inverse matrix. Then from (4.2.4) for g = 3 we obtain

(4.2.14) UlWl — | - V\ = QH (U) (i = 1, 2, 3),

(4.2.15) UtWj + UjWt—rVtV^QuiU) (i, y = l, 2, 3; (

where the polynomials QijiU) have the form

(4.2.16) Σ<

We obtain

(4.2.17) w^j

Substituting in (4.2.15) we obtain

(4.2.18) —^(UtVj-UjVtF
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We denote by Ptj - Pi/(U) the polynomial on the right-hand side of this
formula. By taking the square root we obtain

(4.2.19) UtV}—UjVt = -2L.VTr, (i, 7 = 1, 2, 3; i

The compatibility condition for this system has the form

(4.2.20) u

which gives the rule for the agreement of the signs before the roots V Pa-
(4.2.20) is an identity and follows from (4.2.11). From (4.2.19) we
determine the vector V up to transformations (4.2.5):

Pis(U) + u2y pl2(U)),

(4.2.21) V2 = X(UiV Pi2(U) — U,V P23

i + tfi

+ 1

Then IV is determined from (4.2.17). This proves the next result.

Theorem 4.2.2. Let Bjk be a Riemann (3 χ 3)-matrix in general position and
θ be the corresponding θ-function. Then the function u(x, y, t) =
= 2d\ log Q(Ux + Vy + Wt + z0) is a solution of the KP equation (4.2.1)
for any z0, where the vectors U, V, and W are found from (4.2.11), (4.2.21),
and (4.2.17). For those vectors for which U, V, and W are linearly dependent,
the KP equation reduces to the equation of a non-linear string (3.1.39) or to
the KdV equation (4.1.1), which is satisfied if and only if (4.2.11) is
compatible with the system P12(U) = 0, P13(U) = 0, P23(U) = 0. This
compatibility condition holds for the matrices B,k corresponding to
hyperelliptic curves of genus 3, and only for them.

In this theorem only the criterion for the B,k to be hyperelliptic remains
unproved. The necessity of this criterion is obvious, since the KdV equation
holds for the hyperelliptic case and W = 0, and the vector U can be found
just from the system P12(U) = 0, P13(U) = 0, P23(U) = 0. This follows
from (4.1.6). The sufficiency easily follows from the results of the next
section.

§3. The KP equation. Genusg > 2. Canonical equations of Riemann surfaces

In Chapter III U, V, and W were determined as the vectors of periods of
certain meromorphic differentials on a Riemann surface Γ. Now we shall
prove that the system (4.2.4) constructed from the period matrix of
holomorphic differentials on Γ has no other solutions. This will allow us to
draw non-trivial consequences.
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We state without proof a number of facts that we need in what follows.
A. Let Γ be a Riemann surface (smooth algebraic curve) of genus g > 2,

ω1, ..., ω^ a basis of holomorphic differentials on Γ. We define the
canonical mapping

(4.3.1) r ^ C F 1 ; P^(<o1(P):m..:<ag(P)).

Here C P ^ 1 is the complex projective space of dimension g— 1; (4.1.31)
gives the mapping in homogenous coordinates. We call its image Γ" = ω(Γ)
the canonical curve and its equations the canonical equations of Γ. For a
hyperelliptic curve Γ this image is a smooth rational curve Γ" = ω(Γ) in
CP*" 1 of degree g- 1 and ω is a two-sheeted covering ω: Γ -»· Γ'. For a
non-hyperelliptic curve Γ the mapping ω is a smooth imbedding (that is,
ω: Γ -*• Γ' = ω(Γ) is an isomorphism). The degree of Γ' = ω(Γ) G OP*"1

(that is, the number of points in the intersection of Γ with any hyperplane)
is 2g-2 (see [4]).

B. Let (Θ) C /(Γ) be a theta divisor, that is, the set of zeros of a
0-function (about theta divisors, see Ch. II, §4). We consider the Gauss
mapping

given for the non-singular points of the 0-divisor by the formula

(4.3.2) ζ ̂ * grad θ(ζ) = (Θ1(ζ):θ2(ζ): . . . :θβ(ζ)).

This is of rank g— 1 almost everywhere, that is, a covering with a branch

(see [4])/ 1)
C. Let Γ be a general Riemann surface of genus g > 5. By (6) s i n g 6 /(Γ)

we denote the set of singular points of the 0-divisor (of those points ζ where
θ{ζ) = 0 and grad 0(z) = 0). The intersection of the tangent cones of the
singular points

g

(4.3.3) Σ xtxflij(z) = 0, zeWsmg,
! , 3 = 1

in CPg~l with homogeneous coordinates (Xj: ... : xg) is the canonical curve
Γ'. The following exceptions are known:

a) If there is a meromorphic function f(P) on Γ with a single third-order
pole at a point Q (such curves are sometimes called trigonal), then the
system (4.3.3) gives a ruled surface. In this case the canonical curve Γ" can
be obtained by adding to (4.3.3) the system

( 4 . 3 . 3 ' ) Σ X i X } x k Q t ] h ( z ) = O ; Q ( z ) = Qi(z) = Q t J ( z ) ^ O (i, j = 1 , . . . , g).
i, 3, A

turns out that the image of the branch points of the Gauss mapping (4.3.2) is a
surface in CP*" 1, protectively dual to the canonical curve Γ'. This observation can serve
as a basis for a proof of the classical Torelli theorem, which asserts that a Riemann
surface can be recovered uniquely from its Riemann matrix. To reach effective formulae
from this proof one must know how to solve the transcendental equation θ(ζ) = 0.
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b) If Γ is the smooth plane curve of degree 5 (its genus is 6), then (4.3.3)
gives in CP5 a Veronese variety of the form (x2:xy:xz:y2:yz: z2) (x, y, and ζ
are parameters) (see [25]).

We make a number of deductions from these assertions.

Lemma 4.3.1. Let Β = (Blk) be the Riemann matrix of a Riemann surface Γ
of genus g, and let §l}\n\, Q[n] be the corresponding θ-constants (see above,
§1). Then the following non-singularity condition holds:

(4.3.4) mnk (§„[«], θ[η])= g ( g

2

+ 1 ) + 1 .

Proof. We assume the contrary. Then there is a symmetric (g χ g)-matrix
λί;· and a number λ such that

(4.3.5) 2 hfiu W + λθ [η] = 0

for any characteristic η G \(Z2)
g. We multiply this by θ[η](ζ) and sum

over all η G \(Z2)
g. By the addition theorem (4.1.5) we obtain

(4.3.6) 5 λ1} (Qtj (ζ) θ (ζ) — θ ; (ζ) θ, (ζ)) + λθ 2 (ζ) = 0.

In this equality we substitute for ζ any zero of the θ-function. Then

2 ^ijXiXj = 0, where x( = 0;-(z) and 0(z) = 0. By Β above, by changing the
i, 3

point ζ G (0) we can obtain any direction (xlt ..., xg), therefore, (λί;·) is the
null matrix. Hence, λ = 0, that is,the linear combination (4.3.5) is trivial.
This proves the lemma.

It has been already pointed out above that from the non-singularity
condition (4.3.4) it follows that the Jacobi varieties /(Γ) of Riemann
surfaces are non-degenerate.

We return to the study of the properties of (4.2.4).

Lemma 4.3.2. For matrices Bq with the non-singularity condition (4.3.4)
the vectors V and W and the constant d are uniquely determined from
(4.2.4) by U, up to transformations of the form

(4.3.7) F - * ± ( F + 2aU), W>-*• W 4- 3aV + Serf/.

Proof. Suppose that two sets V, W, d and V, W, d correspond to a vector
U. By subtracting the corresponding equalities (4.2.4) one from the other
we obtain

(4.3.8) ]
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It follows from (4.3.4) that all the coefficients of §lf[n](i </") and θ[η]
are zero:

d = d.

By eliminating Wt- Wf from the first line and substituting Wt-fflt and Wj-
in the second we obtain

or
Ui(VJ±V))-Uj(Vi±Vi) = 0,

hence F = ± (V+ 2aU). This proves the lemma.
Let us now study what kind of vectors U are possible. We recall from

Chapter III the construction of the exact solutions of a KP equation.
According to this construction the vector U - {Ult ..., Ug) in the solution
formula (4.2.2) depends on the point β of Γ as on a parameter, U = U(Q),
and was constructed as the vector of ^-periods of the normalized differential
Ω β of the second kind with a double pole at Q. Lemma 2.1.2 (see (2.1.21))
implies that

(U^Q): . . . : Ue(Q)) = K(<?): . . . : cog(<?)).

In other words, Q *-*• U(Q) is the canonical mapping (4.3.1). Thus, the set
of vectors U that are solutions of (4.2.4) contains the canonical curve
Γ' = ω(Γ). We claim that the system (4.2.4) has no other solutions U. We
first consider the case g = 2 or 3.

Theorem 4.3.1. For g = 2 or 3 any Riemann matrix Bjk satisfying the non-
singularity condition (4.3.4) is a period matrix of holomorphic differentials
on some Riemann surface Γ. For g = 2 this Riemann surface is given by the
equation

(4.3.10) w2 = P(z, 1),

where the polynomial P{Ult U2) is determined by (4.1.18). For g = 3 a
non-hyperelliptic surface Γ is given in CP2 by a homogeneous equation of
degree 4

(4.3.11) i?(f/) = det(9 i ;[«], §[n], dfr6[re]) = 0.

The hyperelliptic case of genus 3 is distinguished by (4.3.11) together with
the system

(4.3.12) Plt(U) = 0, P13(U) = 0, P23(U) = 0,

where the polynomials ///(i/) are of the form (4.2.18). In this case the
curve (4.3.11) is rational (R(U) is a complete square) and the required
Riemann surface Γ is a two-sheeted covering of it and the branch points are
the solution of the systems (4.3.11), (4.3.12).
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Proof. Suppose first that Bjk is a period matrix of holomorphic differentials
on a Riemann surface Γ. Then the set of vectors U solving the systems
(4.2.4) contains the canonical curve Γ'. For g = 2, Γ' = CP1, and to the six
Weierstrass points on Γ there correspond the points (t/j: U2) £ Γ" for which
V = 0 (and the KP equation reduces to a KdV equation, by the results of
Chapter III). These six points are precisely the solutions of the equation
P(UU U2) = 0, which implies (4.3.10).

For g = 3 the canonical curve Γ' = ω(Γ) is a curve of degree 4, which
must therefore be given in CP2 by (4.3.11). For a hyperelliptic curve Γ its
eight Weierstrass points go over into the points U e Γ' for which V = 0. By
the calculations of the preceding section, these points U on Γ' can be found
from (4.3.12). Conversely, if the system (4.3.11), (4.3.12) is compatible,
then V = 0. By Lemma 4.3.2 and the construction in Chapter III, V is the
vector of δ-periods of a normalized differential Ω of the second kind with

only one third-order pole. If V = 0, then ζ = ι Ω is a single-valued

function on Γ with only one second-order pole. Such a function gives a
two-sheeted covering Γ -> CP1, which means that Γ is hyperelliptic.

Thus, we have proved that the mapping

(4.3.13) (Riemann surfaces of genus g)

I
(Riemann (g χ g)-matrices)

is an imbedding for g = 2 and 3. But the dimensions of these spaces are
identical: 3>g— 3 = g{g+ l)/2 for g = 2 and 3; moreover, both are
irreducible. Thus, (4.3.13) is an isomorphism (almost everywhere). This
proves the theorem.

As a consequence we obtain the assertion used in § 1 and §2: for g — 2
and a KP equation the vector U = (Uu U2) is arbitrary; for g = 3 and a KP
equation all the relations on U are given by (4.3.11).

By Lemma 4.3.2, a projection is defined of the set of non-zero solutions
of (4.2.4) into the space CP^1 with homogeneous coordinates (6Ί: ... : Ug),

(4.3.14) (U, V, W, d) -» U.

This projection is one-to-one up to transformations of the form (4.3.7).

Theorem 4.3.2. Let Bjk be a period matrix of holomorphic differentials on a
Riemann surface Γ of genus g > 2. Then for Γ in general position the image
of the projection (4.3.14) of the solutions of the corresponding system
(4.2.4) in the space CP§~~1 is the canonical curve Γ' — ω(Γ).

In other words, by eliminating the variables V, W, and d from (4.2.4) we
obtain the equations of the canonical curve Γ'. It is useful to mention that to
a change of Bjk into an equivalent matrix (in the sense of Ch. I, §3) there
corresponds a projective transformation of Γ' in CP£ l
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Proof of the theorem. For g = 2 and 3 everything is proved in Theorem
4.3.2. For g > 4 w e substitute any point ζ 6 (9)sing in (4.2.3), which is
equivalent to the system (4.2.4). Of (4.2.3) only one term remains:

(4.3.15) ^1UiUjQij(z) = 0; θ (ζ) = 0, Θ, (ζ) = 0 (i = 1, . . ., g).
i, 3

We consider four cases.
a) Γ is a general curve of genus g > 5. In this case the system (4.3.15)

cuts out precisely the canonical curve, according to C.
b) Γ is a hyperelliptic curve. Then the system (4.3.15) gives a rational

curve Γ' = ω(Γ). The images of the Weierstrass points on Γ" can be found
from (4.2.4) together with the system Vx = ... = Vg = 0.

c) Γ is a trigonal curve. We differentiate (4.2.3) with respect to
Zj (i = 1, ..., g) and substitute in the resulting expression a singular point of
the theta divisor (0(z) = 0, grad 0(z) = 0). After cancelling θχί(ζ) we obtain

Σ UiU]UhQlJk(z) = 0,
U i, ft

which together with (4.3.15) gives the canonical curve Γ".
d) The case when Γ is a plane curve of degree 5 is analysed similarly.
The theorem is now proved.
Another proof (suitable for all special cases, including genus g = 4) can be

obtained by the methods of the following section.
Theorem 4.3.2 gives a new proof of Torelli's theorem (see the footnote at

the beginning of this section), which is more effective, since only algebraic
operations (there is no need to solve the transcendental equation 0(z) = 0)
are required to recover the canonical equation of an algebraic curve from its
Riemann matrix Β β.

§4. The problem of Riemann on relations between the periods of
holomorphic differentials on a Riemann surface and the conjecture of Novikov

According to the conjecture of Novikov, the compatibility of the system
(4.2.4) gives a set of relations on the matrix B/k that is necessary and
sufficient for Bjk to be the period matrix of some Riemann surface. Here
we sketch a proof of this conjecture for one of the components of the
variety of such matrices Bjk, for which the system (2.4.2) is compatible. The
question of whether or not there are other components remains open.

To give a precise statement of the principal result we introduce the
following objects. Let Mg be a variety parametrizing the Riemann surfaces
of genus g (the "variety of modules" of Riemann surfaces). This is
irreducible and its complex dimension is 3 g - 3 for g > 2. The period
mapping

(4.4.1) M
g
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where Hg is the set of all Riemann (g χ g)-matrices (the Siegel half-plane)
and Λ^ = Sp(g, Z)/{±1} (see Ch. I, §3), associates with every Riemann
surface its period matrix of holomorphic differentials.

By Mg we denote the natural fibering over Mg, where the fibre over a given
point is the corresponding curve. The dimension of Mg is 3 g - 2 . The
period mapping (4.4.1) extends trivially to a mapping

(4.4.2) Mg -> HM\.

Let Ng be its graph. Now we introduce another variety Xg, whose points are
the sets (U, V, W, d, B), where U, V, W G Cg, d € C, and Β G Hg, factored
by the action of the following groups:

d^)M, B^*B

(λ, a e C, λ =£ 0), and

f 5 ' = 2m (α£ + 2πίβ) (yB + 2πίδ)" 1,

t/' = 2mAf-'t/, where 71/ = γ 5 + 2π/δ,

V = 2 m M " 1 F ,
(4.4.4) ] Ο π .

4 / ' = 2 J U M 1W'"4-—Τ—-^ lU{U, U}, where {X, Υ} = ΧίΛ/~1γΥ.

ί' = ί/ + -|-{Γ, Τ} — 4-{^'7- ΙΓ} —-|-{ί/, ί/}2.

H e r e ( « g) G Sp(g, Z).

Theorem 4.4.1. 77ie system (4.2.4) specifies on Xg an algebraic variety one
of whose irreducible components coincides with the graph Ng of the period
mapping (4.4.2).

By projecting this component on Hg/Ag, that is, eliminating the variables
U, V, W, d from (4.2.4), we obtain a full set of relations between the
periods of the holomorphic differentials on the Riemann surfaces.

Idea of the Proof. It is easy to verify that the set of zeros Yg of (4.2.4) is
invariant under the transformations (4.4.3), (4.4.4), therefore Yg is an
algebraic subvariety of Xg. It is clear that Yg contains Λ .̂ Consequently, it
is sufficient to calculate the dimension of the component Νe a Y g,that
contains A .̂
To do this it is sufficient to show that at a general point of Νg the
variables d and Β in (4.2.4) can be expressed uniquely by the variables
U, V, W with the equivalence relation (4.4.3). For the group (4.4.3) is two-
dimensional and among the parameters exactly 3g— 2 are independent. It
suffices to prove this for matrices Β whose diagonal elements BH tend to — °°.
Such matrices correspond to rational curves with g double points. In this
case the system (4.2.4) can be solved explicitly by "perturbation theory" as
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a power series in e,· - exp Bti, and any term of the series can be written out
in effective formulae. From this the assertion on the dimension of Νg

follows easily, and this completes the proof.
Theorem 4.3.2 can also be proved by "perturbation theory", including the

special cases listed in §3. For the detailed calculations and the proof of
Theorem 4.4.1 see [45].

In conclusion of this chapter we mention that the methods developed here
are also applicable to other non-linear equations that can be integrated in
terms of θ-functions.

CHAPTER V

EXAMPLES OF HAMILTONIAN SYSTEMS THAT ARE INTEGRABLE IN TERMS OF
TWO-DIMENSIONAL THETA FUNCTIONS

§ 1 . Two-zone potentials

According to the scheme of Chapter III, a hyperelliptic curve Γ of genus 2
of the form

(5.1.1) w* = P5(z), Ps(z) = ( z - Z l ) . . . (z - z5)

and a Weierstrass point ζ = °° on it give rise to a pair of commuting
operators L, A

(5.1.2) [L, A] = 0,

where
(5.1.3)

(5.1.4) A = 16^r + 2

The commutativity equation (5.1.2) on u = u{x) (one of the important
examples of the Novikov equations) can be written in the Lagrange form

(5.1.5) δ( [ Ad

with the Lagrangian

(5.1.6) A = A(u, u\ u")^~

C2U
2 + C3U

(q, c2, c3 are constants, δ/διι(χ) is the variational derivative). According to
the theory of variational problems with higher derivatives (see [13]), (5.1.5)
is equivalent to a Hamiltonian system with two degrees of freedom and the
Hamiltonian

(5.1.7) Η = Plp2+V(qi, q2).
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pz=u'

Here

(5.1.8)

(5.1.9)

and under the change u >-*• u -\- const the constant c1 vanishes. The system
(5.1.7) is completely integrable; its integrals in involution have the form
-Λ = H,

(5.1.10)

(5.1.11)

The explicit coordinates j x and y2

 o n t h e level surfaces Jx — const and
J2 = const have the form

= p\ + 2qlPlp2 + (2 ? 2 - c2)p\
D = q\ + c2ql — kqxq\ + 2c2g1g2 + 2c3q2.

(5.1.12) γ , + γ2 = ^-,

Here zx, ..., zs are the zeros of P s(z) of the form

(5.1.13) />5(2) = z s + 4

In these variables the system (5.1.5) can be rewritten in the form

, _ 2i V P 5 (γ,)
(5.1.14) . _ 21 y P

1 Vi — 72 7 2 - V i

The system (5.1.14) coincides, up to the factor 1i, with (2.4.55), which
arose in the Jacobi inversion theory. This system can be integrated by an
Abel transformation, and the explicit solution of (5.1.15), according to
Chapter III, has the form

(5.1.15) u (x) = 2 -χ-γ log θ (Ux -f- z0) -|- c.

Here the Riemann θ-function is constructed from the Riemann surface
(5.1.1) (where P5(z) has the form (5.1.13) and U is the vector of 6-periods
of a normalized differential Ω of
the second kind with a pole at
ζ = oo and principal part of the
form d (V z):

(5.1.15') Ω = -

$ Ω = $ Ω = 0; tf, = <6 Ω (i = 1, 2). F i g · 4" fc

Spfctrum ° f ? t w °- z °? e p o t ef i a L

J J J v ' «i, a2. »i, o 2 are the basis cycles on the
a' bi Riemann surface.

The solutions are "enumerated" by an arbitrary two-dimensional vector z0:

(5.1.16) z0 = -AiP» P a) - Κ

(see Ch. Ill, § 1); P1 and P2 are points on Γ (non-special divisor of degree 2).
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Suppose that the roots z1 > ... > z5 of P5(z) are real (and distinct).
Suppose further, that the points Pj and P2, which specify the solution u,
have the form

(5.1.17) Λ = (Τι, VKK)), ^2 = (γ2, VTJ^)),

where γι and y2

 a r e r e a l numbers, and

(5.1-17') z 3 < 7 i < z 2 , 2 5 < γ 2 < Ζ 4 ·

Then u(x) is almost periodic with two unknown periods. The spectrum of
the operator L = d2/dx2 + u(x) in X^{— oo, oo) is a ray (-°°, zl] with two
gaps (z5, z4) and (z3, z2) (Fig. 4). This means that u{x) is a "two-zone
potential". The condition (5.1.17) means that the points P1 and P2 on Γ lie
on the cycles over the gaps. The eigenfunction ψ of L,

(5.1.18) Lip = ζψ,

is meromorphic on Γ \ oo, has poles at Ργ and P2,and exponential asymptotic
behaviour as Ρ -* °°, that is, it is a Baker-Akhiezer function of the form

(5.1.19) ψίχ, / » ) _ e x p ^ ) j U j Q (A (P) + z<>) Q (xU + ZQ) .

Let us explain this notation: V is the principal value of the integral; A(P) is

the Abel mapping, and

ρ ;ρ

(5.1.20) A(P) = (Al(P), AZ(P))=( j co4, j ω2) ,
oo oo

where

(5.1.21) ω ^

is a normalized basis of holomorphic differentials on Γ. The eigenfunction
(5.1.19) of L is the Block function: the group of periods of the logarithmic
derivative φ'/φ is the same as that of the potential M(X). Thus, in this case
u(x) has the right analytic properties. In this case Γ is called the spectrum
of L.

Of course, hyperelliptic surfaces of genus g > 2 lead to finite-zone
operators with g gaps in the spectrum. The case g = 2 stands out for its
effectiveness. By Ch. IV, §1, a two-zone potential can be constructed by
means of the following elementary operations:

1) We take any (indecomposable) Riemann matrix

2i B

and construct from it the 0-function 0(zx, z2) by (1.1.1).
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2) We take any solution U = (Uu U2) of (4.1.18). Then

(5.1.22) u(x) = 2d2/dx2 log Q(xU + z0)

is a two-zone potential (z0 is an arbitrary vector). Its spectrum (the
Riemann surface Γ) is given by (4.3.10). All two-zone potentials are
obtained in this way.

§2. The problem of Sophie Kovalevskaya

In the case treated by Sophie Kovalevskaya the equations of motion of a
heavy solid with a fixed point have the form

(5.2.1)

2p = qr, yi = ry2 — qy3,

2q= — pr— μγ3, yz = py3 — ryn

(μ = const). These equations have the following integrals:

f Η = 2 (/>2 + q*) + r2 - 2μν, (energy)

(5.2.2) I L =2(pyl + qy2) + ry3 (impulse moment)

[ Κ = (ρ2 — q2+ μγΟ2 + (2pq -\- μγ2)
2 (Kovalevskaya integral) .

Moreover, there is the constraint

(5.2.3) y\ + v * 4- γ,; = 1.

We consider a joint level surface of these integrals

(5.2.4) Η = 6h, L = 21, Κ = k\

where H, I, and k2 are constants. Under the constraint (5.2.3) these
equations specify a two-dimensional surface (the invariant variety of the
dynamic system (5.2.1)). We introduce coordinates sx and s2 on this surface
(the Kovalevskaya variables), by setting

(5.2.5) g l [ 2 = 3ft
\Xl X2I

where xh 2 = ρ ± ig, i?(z) = —z4 + 6/*z2 + 4μΖζ -f μ2 — k'1,

(5.2.6) /?(x!, ig) = —x\x\ + 6/1̂ 2:2 + 2μΙ(χ1 + a;2) + μ2 - A;2.

An easy calculation shows that (5.2.1) can be written as follows in the
variables st and s2-

2(si-s

where P5(z) is a polynomial of degree 5 of the form

(5.2.8) Ps{z) = {z[(z - 3/ι)2 + μ2 - /c2] - 2μ2Ζ2}((ζ - 3/ι)2 -
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The equations (5.2.7) coincide (up to a factor) with the commutativity
equation (5.1.2), in §1 on the level surface of two integrals. These
equations can be integrated by the Abel transformation Γ -* /(Γ), where the
Riemann surface Γ of genus 2 is given by an equation

(5.2.9) υ? = Pa(z).

An expression of the Kovalevskaya variables in terms of the 0-functions on
the torus 714 = /(Γ) can be deduced from Ch. II, §4. An expression of the
original variables p, q, r, y1, γ2, y3 in terms of the Kovalevskaya variables can
be found in the book [10].

§3. The problems of Neumann and Jacobi. The general system of Gamier

In the Neumann problem on the motion of particles on a two-dimensional
sphere

3

(5.3.1) x2 = Σ * ί = 1

under the action of the quadratic potential
3

(5.3.2) U{x)=-^-'21aixl α4 = const,

the equations of motion have the form

(5.3.3) 'xt^—aixi + 'k(t)xi (i = l, 2, 3),
3

(5.3.3') z2 = 2 4 = 1,

where \{t) is the Lagrange multiplier arising from imposing the constraint
(5.3.1). The system (5.3.3), (5.3.3') can be obtained from the Hamiltonian
flow on Re with the Hamiltonian

3

(5.3.4) ί = γ 2 «i*f + 4" W - to)2)
i=l

by restriction to the surface x2 = 1 (here xy = 2 Χ0>ΐ)· The functions

(5.3.5) Fh(x, y) = 4 + 2 (Xhy^7k

h)* (A=l, 2, 3)

are a system of independent integrals in involution for the system with the
Hamiltonian (5.3.4). Η itself has the form

3

(5.3.6) /T=-|-2
i=

The transformation

(5.3.7) x'==y,y*=-xt
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takes the thus constructed Hamiltonian flow into a geodesic flow on a three-
axis ellipsoid (for positive at)

3

(5-3.8) Σ ^ - = 1 ·

The problem of geodesies on a three-axis ellipsoid is called the Jacobi problem.
We shall show that the Neumann problem (hence, also the Jacobi

problem) can be integrated in terms of ^-functions of genus 2. Following
[28] and [29], we reduce the Neumann problem to the problem on two-
zone potentials considered in § 1.

Let φγ, φ2, and φ3 be the eigenfunctions of the operator L = d2/dx2 + u(x)
with the eigenvalues ~αγ, -α2, and ~a3, respectively, that is, solutions of the
equations

(5.3.9) Zrtfi = —α(τρ4 (i = 1, 2, 3).

These equations can be rewritten in the form

(5.3.10) ψΐ = —α/ψ, — u(x)tyi,

which are the same as the equations (5.3.3) of the Neumann problem, after
the change x-+- t, ψ ; -ν χ(, —u(x) -*- λ(ί) (λ is the Lagrange multiplier). It
remains to satisfy the constraint equation 2^1 = 1· F ° r this purpose we
choose the potential u(x) to be two-zoned and so that the numbers — ax, —a2,
and — a3 are at the ends of the zones of the spectrum (see Fig. 4), one for
each zone. For example, we take the ends of the zones:

(5.3.11) z5 = —a3 <C zk <C z3 — —a2 •< z2 < Zi = —%>

where the Riemann surface Γ (the spectrum of L) has the form

5

(5.3.12) w2--P5(z), P5(z)=\\ (z — Zi).

We choose the solutions φχ, φ2, and φ3 of (5.3.9) as follows: let φ{χ, Ρ) be
the Bloch eigenfunction of L, which is meromorphic on (5.3.12) (the Baker-
Akhiezer function). We set

where
/c ο A /\ r Π / \Λ~*^

(5.ο.14) α ϊ — I 11 \ai — aj)\
} ri

Then we have a simple proposition.

Proposition. The functions φχ, φ2, and φ3 of the form (5.3.14), (5.3.13)
satisfy the equation

(5.3.15) ι|3̂  +ψϋ-|-Ψ3 Ξ 1.

A proof is in [29].
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From the formula (5.1.19) for the Bloch function \p(x, P) and from
(5.3.13) we immediately obtain the form of the general solution of the
Neumann problem. For example, for the ends of the zones (5.3.11) and the
basis of cycles illustrated in Fig. 4 we obtain the solutions:

r li\-n θ[(0, 1/2), (0, Ο
1/2), (Ο, Ο)](ζο)θ(ίί/ + Ζο)'

θ [(1/2, 0), (0, 1/2)1 (tff+«o) θ (*„)
ζ 2 ^ ; - α 2 θ [ ( 1 / 2 , 0 ) , (0, 1/2)] (ζ0) θ (ίί7+ζ0) '

m _ θ[(0, 0), (1/2, 1/2)1 (t/7 + za)0(z0)

Here the constants a t , a 2 , and α 3 have the form (5.3.14); the ^-functions
are constructed from the Riemann surface (5.3.12); z0 is an arbitrary two-
dimensional vector (a point of the Jacobi variety /(Γ)); the vector U is the
same as in §1. To obtain real solutions z0 must have the form (5.1.16)-
(5.1.17). The Jacobi problem can now be integrated after using (5.3.7).

The systems of Neumann and Jacobi with two degrees of freedom, which
we have discussed in detail, can be rewritten almost automatically for higher
dimensions. The integration of these systems can always be reduced to
finite-zone potentials (see [28], [29]).

The Neumann system can also be obtained from a more general integrable
system, discovered by Gamier [40],

(5.3.16)

The Neumann system on a sphere can be obtained straight away on the
invariant plane xt = α,-y,·. Another interesting case is the system of anharmonic
oscillators, which is obtained from (5.3.16) by restriction to the plane
Xt = yt- The system of Gamier is equivalent (under a suitable choice of the
parameter τ) to the commutation conditions

(5.3.17) άΑ(λ)/άτ = U(a), Α (λ)]/(λ - α),

where the matrix A = (A^) has the form

(5.3.18)
[ (i, 7 = 2, . . . , n+1).

This system can be integrated in terms of the 0-functions of a Riemann
surface of the form

(5.3.19) Λ(λ, μ) = det(A{l) — μ·1) = 0 .
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§4. Movement of a solid in an ideal f luid. Integration of the Clebsch case.
A multi-dimensional solid

The equations of motion of a solid in an ideal fluid have the form (see

[30])

(5.4.1)

dH dH
Pi

: dH
h = Pi -az

dH

dH_

dH_

dH_

dH

dH

dH

dH . , dH , dH
- Ps-Q-^+h-Q-, h-gT,

SJ dH_ , dH
dVs 3 dli i dl3 '

— — + Z — — I —

where Η is the Hamiltonian. These equations have the obvious integrals

(5.4.2) Ix = H, 7a = p\ +p\ +pl, I3 = Pllt + p2l2 + p3la.

Η is a quadratic form

(5.4.3) •CjkPlPh),
i,

then (5.4.1) is the equation of the geodesies of the right-invariant metric on
the group E(3) of motions of three-dimensional Euclidean space. The system
(5.4.1) is the Hamiltonian on the orbits given by I2 = const, I3 = const of
the coadjoint representation of E(3). To integrate this system is suffices to
have one more integral. It can be found trivially in the symmetric case,
where (5.4.1) can be integrated in elliptic functions (see [30]). For the
motion of a solid of general (asymmetric) form the following cases of
integrability are known:

1) The case of Clebsch

(5.4.4) 211 -- a2l\ ciP\

with

(5.4.5)
C2 — CS L — C 2

«3
= 0.

A fourth integral has the form

(5.4.6) 2/4 = λ (l\ + a2p\ + a3p
2

3),

where the constant λ is determined by the conditions

C5 / 7\ l — α 2 )

2 C3 C3 C l C l C 2

(the equations (5.4.5) and (5.4.7) are equivalent).
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2) The case of Lyapunov-Steklov-Kolosov

(5.4.8) 2H = ail* + a2r2+a3

2blplll -+- 2b2p2l2 + 2b3p3l3,

with

(5.4.9) bj = μ(αια2α3)α]1 + y (j = 1, 2, 3),

(5.4.9') C l = μ 2 ^ - α3)
2 + ν', . . .

A fourth integral has the form

(5.4.10) 2/4 = l\ + l\ +l2

3 — μ(α1ρ111 + a2p2l2 + a3p3l3)

where

(5.4.10') = μ2(α2 - α3)
2,

These cases exhaust all the possibilities when the system (5.4.1) with a
Hamiltonian of the type (5.4.3) has a fourth integral that is quadratic in /
and p. The equations (5.4.1) for the Clebsch case are integrated in terms of
^-functions in [32] -[34] ; the author has recently become aware that a
complete integration of the Lyapunov-Steklov case was given as early as
1900 by Kotter in [52].

We introduce coordinates of the level surface of the integrals /1 ( ..., /4 for
the Clebsch case. Taking a linear combination of the integrals Ix and I2 and
changing at >—*• λα; (i = 1, 2, 3), we rewrite the equations of this surface in
the form

(5.4.11)
1\

a3l\= k2,

Pili + Pzh-

where k0, ..., k3 are constants. Let slr ..., s4 be the roots of the equation

(5.4.12) k\ [«a- s (a, + a2 + a3)] + fe,s- A2 +

+ 2A3 V (s - a,) (s - a2) ( s - a3) = 0.

We set

( 5 . 4 . 1 3 ) ψ (s) = (s - s x ) . . . (s - s 4 )

and pass from pf and /fc to the variables ξ/" and (·/; setting

(5.4.14) lf = f
V«i-eft νψ'(«ι)

; V (s2 — a t ) (s2 — q2) (s2 — a3)
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Let zx and z2 be the roots of the equation

(5.4.15) J i > ^ + _ | £ > ! _ + .
U-. Δ Urn " *>

("elliptic coordinate"), where

(5.4.16)

• = 0

V («a)

It is not hard to express the coordinates ££ (hence also p;- and lk) in terms of
zx and z2. This means that z, and z2 are the required coordinates on
(5.4.11). A direct calculation shows that the equations (5.4.1) in the
Clebsch case can be rewritten on (5.4.11) in the form

(5.4.17)
dz,

dt
l — z 2

where i?(z) is a polynomial of degree 5, and

(5.4.18) B(z)^z(z

we do not give the explicit form of the constants a and b. The system
(5.4.17) is a linear combination of (2.4.55) and (2.4.17) and can be

integrated by means of the Abel transformation Γ
Riemann surface Γ of genus 2 has the form

/(Γ) where the

(5.4.19) l = R(z).

Consequently, the equations (5.4.1) in the Clebsch case are integrated in
^-functions of genus 2.

We now give one more example of completely integrable systems: the
Euler equations of motion of a multidimensional solid, which have the form
(see [44])

(5.4.20) Μ = [Ω, Μ],

where

(5.4.21) Μ = /Ω -μ Ω/,

and / is the inertia operator of the solid, and

(5.4.22) / =

The complete integrability of (5.4.20) for all η was proved by Manakov in
[41 ] . The proof is based on a representation of this system in the
equivalent form

(5.4.23) U , V] = [[A, V], [B, V]],
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where
(5.4.23') [B,V] = Q, A = Ρ, Β = I.

The systems (5.4.23) have been explicitly integrated by the present author in
[42]. They all have a commutative representation of the form

= 0(5.4.24) [w-lB> V^ + zB> zA-[A, V]]

on matrices depending on a superfluous parameter z; consequently, their
solutions can be expressed in terms of ^-functions of Riemann surfaces Γ of
the form

(5.4.25) det(zA —[A, V] — wl) = 0.

The set of these surfaces Γ is the same as that of all plane non-singular
algebraic curves (in CP2) of degree η (their genus is ( « - 1) ( n - 2)/2) and
their degeneracies. Explicit formulae for a general solution of (5.4.23) can
be obtained from [42] and have the form V = (Vif), where

(0.4.26) ^ = ± l

(5.4.27) [e(P,Q

(5.4.28) ?
h ψ i

(5.4.28') ^ = - - ^ - l o g 8 ( P , Pi)\P=Ph.

Here λ?, ..., λ° are arbitrary non-zero constants; the 0-function is constructed
from a curve of the form (5.4.25); Pu ..., Pn are the points at infinity on
this curve, where w/z ->• a,· as Ρ -*• /*,·; the vector U has the form

(5.4.29) U= j]bjU(Pj),

where U(P) is a period vector of differentials SlP with a double pole at Ρ; ζ
is an arbitrary vector; and finally, υ is any non-degenerate odd half-period
(that is, grad θ[ν](Ο) Φ 0).

APPENDIX

THE PERIODIC NON-ABELIAN TODA CHAIN AND ITS TWO-DIMENSIONAL
GENERALIZATION

I.M. Krichever

The equations of a non-Abelian Toda chain were suggested by Polyakov,
who found polynomial integrals for them. These equations, which have the
form

(1) dtidtgn-gn^^gn-ig'n—gng'nlv dt^4t'
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where the gn are matrices of order /, admit a commutative representation of
Lax type dtL = [P, L]. Here

(2) Lyn = gng-\t\!i>n + i — gngn^n + ^n-i, gn = dtgn,

(3) Ptyn = γ {gngn\i$n+l + gngn^n — tyn-l)-

Using this representation, explicit expressions in terms of Riemann
0-functions have been obtained in the present survey for periodic solutions,
gn+N = gn, of the equations (1).

In contrast to the continuous case when the algebraic-geometric
constructions give only the so-called finite-zone solutions, in a difference
version all the periodic solutions of the Lax equations turn out to be
algebraic-geometric. This is connected with the fact that shift by a period,
which commutes with /, is a difference operator.

In [46] the present author obtained a classification of commuting
difference operators (see also [47]). In the same paper a construction of
quasiperiodic solutions of difference operators of Zakharov-Shabat type and
Lax type was proposed. Apart from general solutions of similar type, the
non-abelian Toda chain has separatrix families of solutions or, in the
terminology of [14], finite-zone solutions of rank / > 1. Their dimension is
more than half the dimension of the phase space.

First we recall the scheme of integration ([ 15], [46]) of the "ordinary"
Toda chain

I cn=cn(vn — vn_i).

Let R be a hyperelliptic Riemann surface of genus g of the form

2g+2

(5) w*= Π (*-*ι);
i=l

P+ and P~ the points of R of the form P± = (<», ±). χ ο integrate the
system (4) we introduce the Baker-Akhiezer function \p(n, t, P) which is,
meromorphic on R everywhere except for at P+ and P~, where it hasg poles
and as Ρ -*• P±, an asymptotic expansion of the form

(6) ψ;(η, ί, Ρ) \ρ^ρ± = ίηλ^ζ±η (1 + If (η, *) ζ-» + .. .) exp (=F - £

For this function there are difference operators L - (L"m) and A - (Anm)
such that

(7) 4 r = ̂ ' £ψ = ζΨ·
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These operators have the form

(8) Lnm=-i

(9) Anm-

Here wn — ic,,., = γ (vn — vn^) — γ (log cn) , and

(9')

(9") va =

The compatibility condition for (7) coincides with the equations of the Toda
chain. Expressing the Baker-Akhiezer function (6) in terms of ^-functions of
R and calculating the coefficients λπ and ξί~(η, t), we obtain an explicit
form of the solutions of the Toda chain:

(10) ν d loc
[ ' Vn~ dt l°8

Here z0 is an arbitrary vector; the vectors U = (Uj) and V = (V/) are
determined as follows:

p+

(12) U}= \ω;

p~

(ωι, ..., ojg is a canonical basis of holomorphic differentials on R),

(13) 27;·

where ΩΡ+ and ΩΡ- are normalized differentials of the second kind with a
double pole at P+ and P~, respectively.

Periodic solutions of the Toda chain with period Ν are distinguished in
our system as follows: R must have the form

(14) w* = (PN{z) +i)(PN(z)-l),

where P^iz) is a polynomial. We emphasize that all periodic solutions of the
Toda chain are obtained in this way.

1. Thus, we consider periodic solutions of (1). The restriction of L to
the space of eigenfunctions of the shift operator by a period, that is,
Ψη+jv = u^n, where ψη is an /-dimensional vector, is a finite-dimensional
linear operator. Its matrix has the form

(
bN-t 1 0 . . . 0 waj
ajv_2 &iv-2 1 · · · 0 0

0 0 . . . ατ ftj 1
w-1 0 . . . 0 a0 b0

where the block (/ χ /)-elements are bn = —gng?, an =
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It follows from the Lax representation that the coefficients of the
polynomial Q(w, λ) = det(ZT- λ· 1) are the integrals of (1). However, in
contrast to the Abel case they are not independent.

Lemma 1. The polynomial Q(w, λ) has the form

(16) (W-kN)l + (w'i-kN)l+ Σ (ΓίΙλχυ-λΥ + ̂ ^ Κ ' - ή * ) -
h=i

The last summation is over the pairs i, j such that, i ^ 0, i -\- TV \ j Κ (TV — 1)1.
The polynomials r£ have only k non-zero coefficients:

t=(jV-l)t?-ft)-ft+l

The coefficients a^ and bti are a complete system of integrals in involution
with the single relation

(17) R0(k) + (-λΝ)1 = Σ r% (k)(~kN)h = Σ r~h (k)(-lN)".
A h

The number of independent integrals is Nl2 — l+ 1.
The restrictions on the form Q(w, λ) are equivalent to the following

condition: all the roots w of Q(w, λ) = 0 for large λ must be expandable in
Laurent series in λ"1, one half of them must be of the form λΝ + ^(λ^"1),
and the other half of the form λ~Ν + O(k-N~1).

We consider the algebraic curve (R, given in C2 by the equation Q(w, λ) = 0.
In general position we may assume that it is non-singular and that Q(w, λ) = 0
for almost all λ has 2/ distinct roots vv;·. Then to each point Ρ of <R, that is,
Ρ = (wj, λ) there corresponds the unique eigenvector cpn(f) = (φ^, . . ., φ^)',
normalized by the condition ψ0 = 1. All remaining coordinates φη(ί) are
meromorphic functions on <R. Their poles lie at the points 7,(0, where the
left upper principal minor L — λ · 1 vanishes and [rank (L~ λ · 1) = Μ — 1 ] .

Lemma 2. The number of poles 7,(0 is Ν I2 — Ρ = g -)- Ζ — 1, where g is

the genus of <R.

Thus, to every set of initial conditions gn(0) and gngn1^) there
corresponds a curve <R, that is, a polynomial Q and a set of Nl2 -12 points
7,(0) on it. The solutions differing by a transformation gn -> Ggn, where G is
a constant matrix, are the kernel of this mapping.

We consider the problem of recovering L from the indicated data.
Let Q be as in Lemma 1. Then <R is compactified at infinity in λ by the

points Pf at which w has poles of order TV and zeros of multiplicity N,
respectively.
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Lemma 3. For any set of Nl2 — I points yt in general position there exists
one and only one vector-function \}jn(t, P) with the following properties:

1° it is meromorphic on <R except at Pf with poles at γ,·;
2° if we form from \pn(t, Xf) as columns, the matrices t//jf(f, λ) then they

have the form

(18) ψ±(ί, λ ) = λ ± " ( Σ ξ η Τ , 8 ω λ - Ο

Here the Xj are inverse images of X in a neighbourhood of P*.

Lemma 4. The function 4>n(t) satisfies the equations

L^n = λφη, (dt - Ρ)ψη = 0,

where gn = £ + 0 .

The functions φη{ί) and φη(ί) differ in the normalization pn(t) = •ψη(Ψο)"

Corollary. The matrices gn satisfy the equation (1). By the restrictions to
Q, the thus constructed solutions are periodic, gn+N — Sn-

For \pn we can construct formulae of Baker-Its type, by analogy with
[15]. Calculating ^ > 0 from them we obtain the following result.

Theorem 1. For any polynomial of the form (16) and any set of Nl2 -I2

points yt in general position the functions

(19) gn(t) = {gn)-1gHcn

are periodic solutions (1), where the matrix elements of g^ are

The constant vectors U and V are given by the periods of differentials of
the third and second kinds with poles at Pf; ω;* are the images of the
points Pj1 under the Abel transformation, and the % are the images of the
divisors ylt . . ., γ^_ΐ7 yg+i, 1 ^ i <; I. also under the Abel transformation.
The constant c is determined from the periodicity condition gN = gQ.

The general solution has the form GxgnG2, where the G,- are fixed matrices.

Remark. The calculation of all of the parameters in the formulae of the
theorem from the initial data gn(0) and gngnl(0) only uses quadratures and a
solution of algebraic equations, and the latter is necessary only to find the

Z,·. All the remaining parameters <af, U, V, etc. can be expressed by
quadratures in terms of the integrals.

2. Considering special cases of multiple eigenvalues of L and a shift by a
period, we restrict ourselves to the case of maximal degeneracy of
multiplicity /. Then the polynomial Q has the form Q(w, λ) = QUw, λ),

Ν

Qi = w + w1 + Σ «A1· To each point of the hyperelliptic curve <R given
i=0
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by Qi(w, λ) = 0 there corresponds an /-dimensional subspace of joint
eigenfunctions. Let \pn(t, P) be the matrix whose columns form a basis in
this subspace, normalized by the condition φο(0,Ρ) = 1. Then φη is a
meromorphic matrix, having IN poles ys, and

φ " — οΛφ" ; φ4·* = res,, ,ι·'3',
Ύη, s s * n , s' T n , s ^aH-n'

where the c4 are constants independent of η and t. In a neighbourhood P±

of the inverse images of λ = °°, ψη has the form

(21) ψ± (ί, λ) = λ±η ( Σ In, . (t) λ " ) * Τ λ ί / 2 .

Lemma 5. For a«y sei of data (%, a's) (which are called, as in [14], the
Tyurin parameters) in general position there exists one and only one matrix
function \pn satisfying (20) and (21) and normalized by the requirement

tn,0= I·

Just as above, ξη0 can be proved to be a periodic solution of (1).
3. In conclusion we give a construction of the periodic solutions of the

equations

(22) ( 5 | _ a | ) 9 r l = e<pn-(Pn-i_e'i
!n+l-'Pn!

to which, as was found in [48], the two-dimensional version by Zakharov-
Shabat of the Lax pair for the Abelian Toda chain reduces. These equations
generalize, besides the equations of the chain itself, the sine-Gordon equation
corresponding to the periodic solutions φπ+2 = Ψη-

We consider a non-singular algebraic curve (R of genus g with two
distinguished points P±.

Lemma 6. For any set of points ylt ..., yg in general position there exist
unique functions ψη(ζ+, ζ_, Ρ) such that:

1° they are meromorphic except at P± with poles at γ,, ..., yg;
2° in a neighbourhood of P± they are representable in the form

ψη (Z+, z_, P±) = ehz± ( 2 1% , (z+, z.) k's) k±n;

where ξ * 0 = 1 and k~l = k^iP1) are local parameters in neighbourhoods of P±.

Lemma 7. The following equalities hold:

The compatibility conditions of these equalities are equivalent to the
equations

dz+dz_ Vn-e β

which coincide with (22) written in conical variables.
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Theorem 2. For each non-singular complex curve <R with two distinguished
points the formula

(23) φ χ Qi^ + Uit + Uzx + Usn + W) Θ(ω-
{ a> Φη-»°8 θ( + 1 O g

gives α solution of the equations (22).

Here ω* = (ω*,.. ., ω^) are the images of Ρ* under the Abel transformation;
the vectors Uj depend on the points P± and are the period vectors of Abelian
differentials of the second and third kinds with appropriately chosen
singularities at P* (see, by analogy, [15]).

Let us distinguish the periodic solutions ψη+Ν — φη among the solutions
thus constructed. For this purpose there must be a function E(P) on <R
having a pole of order Ν and a zero of order TV at P±.

Suppose <R is given in C2 by the equation

(24) wN-Em + E(^aijE
iwj) = 0>,

N(i + 1) + mj < Nm - 2; Ν is prime to m. This is an JV-sheeted cover of the
is-plane, and over Ε = 0 and Ε = °° all the sheets are glued, that is, the
function E(P) given by the projection of <R has the required properties.

Corollary. Suppose that <R is of the form (24); then the formulae (23) give
periodic solutions of (22).

Remark (Dubrovin). The methods developed in Chapter 4 of the present
survey allow us, in particular, to make the formula (23) for the solutions of
(22) effective. By substituting (23) in (22) we obtain after simple
transformations the following relation:

(25) a e ^ + ̂ y - ^ = b + du^du.p-, log θ (W).

Here W is an arbitrary g-dimensional vector; U(P) for each Ρ £ <R is a period
vector of a differential with a double pole at P<2C/1, 2 = U(P+) ± U(P~));
the constants a and b have the form

(25') α = ε-Μ^+, Ρ~), b = ̂ -^±- loge(i>, (?) \P=P+ Q = P -

(ε (Ρ, Q) is defined by (5.4.27)). This is a standard identity in the theory of
Abelian functions (see [8], (39)). Applying the addition theorem to (25),
we obtain the following system (in the notation of Chapter IV):

(26) αθ [η] (2Ua) = δθ [n] (0) + θϋ(Ρ*)δαιΡ-)§ [η] (0),

where
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Here U3 = A(P+)-A(P~), therefore, the system (26), together with (4.2.4),
allows us to recover from the period matrix not only the canonical equations
of the curve (R, but also the image of the Abel transformation A: (R -*• J(R)
(although, for this we have to solve the transcendental equation (26) for U3)).
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