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MATRIX FINITE-ZONE OPERATORS 

B. A. Dubrovin UDC 517.957+512.7 

A survey is given of the spectral properties of matrix finite-zone operators. Con- 
ditions of the type of J-self-adjointness for such operators and explicit formulas 
expressing the coefficients of such operators in terms of theta functions are ob- 
tained. The simplest examples of such J-self-adjoint, finite-zone operators turn 
out to be connected with the theory of ovals of plane, real, algebraic curves. 

INTRODUCTION 

Until relatively recently [the end of (1973)] in the spectral theory of operators with 
periodic coefficients there were practically no examples where the spectrum and the eigen- 
functions of such operators could be explicitly computed (in terms of some special functions). 
There were also no effective methods of finding the coefficients of operators on the basis 
of spectral data. For operators with almost-periodic coefficients these question were never 
even posed. 

The situation changed when in 1974 in a cycle Of works of Novikov, Dubrovin, Matveev, 
Its [34, 18, 12, 23] and Lax [48, 49] the class of "finite-zone" periodic and quasiperiodic 
potentials of the Schr~dinger (Sturm--Liouville, Hill) operator was introduced and studied. 
A program for constructing a broad class of solutions of the Korteweg--de Vries (KdV) equa- 
tion was formulated and realized on the basis of this class. (Some results of these investi- 
gations were also obtained by McKean and van Moerbeke in 1975 [52]. It was later rigorously 
proved by Marchenko and Ostrovskii [31] that the set of periodic finite-zone potentials is 
dense in the space of periodic fucntions with given period.) In these works a connection 
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was established between the spectral theory of operators with periodic coefficients and 
algebraic geometry, the theory of finite-dimensional, completely integrable systems, and the 
theory of nonlinear equations of KdV type. Generalization of this theory to spatially two- 
dimensional (2 + 1)-systems was realized by Krichever [27, 28]. Krichever's approach also 
provides a methodologically extremely convenient and transparent exposition of the algebro- 
geometric procedure of constructing the finite-zone solutions mentioned above of the KdV 
equations and its many analogues. 

The works enumerated constituted the basis for a periodic analogue of the method of the 
inverse problem in the theory of nonlinear equations [15] (also called the method of finite- 
zone integration" or "algebrogeometric integration"). The essence of this method (for the 
case of systems with one spatial variable) consists in the following: 

I) finding (by an algebrogeometric method) a broad collection of exact solutions of the 
nonlinear equation in question which are finite-zone solutions from the point of view 
of the spectral theory of the corresponding linear operators with periodic or quasi- 
periodic coefficients; 

2) study of the spectral properties of operators with general smooth, periodic coeffi- 
cients and approximability of an arbitrary periodic solution by smooth, finite-zone 
solutions. 

It should be acknowledged that until very recently this program of finite-zone integra- 
tion was realized in full scope only for the Korteweg--de Vries equation and the Schr~dinger 
operator connected with it. The fact of the matter is that almost all nonlinear equations 
integrable by the method of the inverse problem (the nonlinear SchrSdinger equation, the 
sine-Gordon equation, the equations of nonlinear interaction of wave packets, etc.) are as- 
sociated with the spectral theory of matrix linear differential operators which frequently 
are not even self-adjoint. Although it is relatively straightforward to construct complex 
algebrogeometric solutions of these equations (see [14, 21, 22, 24, 11]), attempts to separate 
out from these real, smooth solutions encountered serious difficulties. The problems of real 
algebraic geometry arising here turned out to be completely undeveloped (the first serious 
advances in the solution of these problems in application to the nonlinear Schr~dinger equa- 
tion, the two-dimensional SchrSdinger operator, and the sine-Gordon equation were made Chered- 
nik [38-41], although the results obtained in these works are far from being effective). In 
the same vein almost nothing was known regarding the spectral properties of non-self-adjoint 
operators with periodic coefficients, i.e., the properties of the Riemann surfaces which 
arise and the analytic properties of the Bloch eigenfunctions meromorphic on these surfaces.* 

The first serious applications of finite-zone solutions and finite-zone operators -- in 
problems of statistical physics, the development of a nonlinear analogue of the WKB method, 
etc. -- have made especially urgent the completion of finite-zone integration of a number of 
nonlinear equations having important physical applications and the investigation of the spec- 
trum of the corresponding linear operators. This has been done in a number of recent works: 
for the sine-Gordon equation in [16, 17] and for the nonlinear Schr~dinger equation in [17]; 
the density of finite-zone solutions of the sine-Gordon equation in the space of all periodic 
solutions was proved in [10]. The spectral properties of the non-self-adjoint matrix opera- 
tors of second order arising here were first described in these same works. In the present 
survey we shall present the main ideas of these works. We also present the results obtained 
by the author on the basis of [11]~ regarding the properties of the spectrum of matrix J-self- 
adjoint linear pencils of operators of higher order. These results have not previously been 
published. 

Several words should be said regarding nonlinear equations associated with matrix linear 
operators of higher orders. The first examples of such equations -- the equations of nonlinear 
interaction of wave packets (the "three-wave problem") -- were found by Zakharov and Manakov 
(see [35]). Subsequently Manakov noted [30] that the stationary equations of the n-wave 
problem coincide with the n-dimensional generalization [for the Lie algebra so(n)] of the 
Euler equations of motion of a solid body with a fixed point and were therefore integrable. 
Mishchenko and Fomenko in [33] gave a direct verification that the integrals of the n-dimen- 
sional Euler equations constructed by S. V. Manakov were independent and involutive. In this 
same work the method of Manakov was used to prove complete integrability in other semisimple 

*In particular, the correct formulation of the question of the position of the poles of the 
Bloch functions was found only very recently in the work of Novikov and Dubrovin [17]. 
~The main ideas of [11] are presented in Chap. 3, Sec. 2, of [15]. 
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Lie algebras. This method was subsequently generalized to some nonsemisimple Lie algebras 
[37]. Applications of these results to the construction of integrable flows on symmetric 
spaces were found in [3]. (We recall [19, 25] that a Hamiltonian system with n degrees of 
freedom is called completely integrable if it has n independent pairwise commuting first 
integrals. This concept, which arose in the last century (in the works of Liouville and 
Bur) on the basis of the method of separation of variables, was found to be applicable to 
a broader class of systems not admitting, generally speaking, separation of variables (the 
clearest example is the problem of S. V. Kovalevskaya -- see [7]). We note that, in spite 
of the complete integrability of such systems, it is a very difficult problem to obtain ex- 
plicit formulas for their solutions; it is still harder to find for them canonical action- 
angle variables (for example, in the problem of Kovalevskaya these variables had not been 
computed until very recently). All this restricts the possibilities of applying such inte- 
grable systems to solve concrete problems of mechanics and physics. In connection with this 
it should be noted that for the Hamiltonian systems arising in the theory of finite-zone 
integration it is possible not only to construct commuting integrals but also to obtain ex- 
plicit formulas for the solution of these systems in terms of theta functions of Riemann 
surfaces. The action variables in these systems relative to'a large class of Poisson brack- 
ets, as became clear after the work of Novikov and Veselov [4], also admit algebrogeometric 
computation.) 

Recently, a series of works of Adler and van Moerbeke [42-44] were published in which 
the algebraic structure of the invariant tori for the integrable Euler equations found by 
S. V. Manakov was studied. (The case of the Lie algebra so(4), where integrability was 
proved already in [33, 9], is studied in more detail in a recent preprint of Haine (Haine, 
Geodesic flow on SO(4) and Abelian surfaces).) Explicit formulas for the solutions were not 
obtained in them. The authors did not pose the question of separating out "real" solutions. 
More complex nonlinear equations connected with matrix operators of order higher than second 
were studied in [11, 5] where a Hamiltonian formalism for these equations was also con- 
structed. 

As the author discovered, the multidimensional Euler equations also turned out to be 
very interesting from the point of view of possible algebrogeometric applications. The situ- 
ation is that the corresponding Riemann surfaces of the spectrum of the associated matrix 
linear operators turn out to be plane, nonsingular real algebraic curves. For example, for 
the Euler equations on su(k) the real ovals of these curves are imbedded in one another (i.e., 
they form a "nest" of k/2 ovals). The possibility of applying the spectral theory of matrix 
operators to the problem of the classification of plane real curves is now being subject to 
a thorough analysis. 

The survey consists of six sections and an appendix. In the first two sections we pre- 
sent the simplest ideas of the method of finite-zone integration in application to matrix 
operators of second order and the nonlinear Schrodinger equation connected with them and to 
the sine-Gordon equation. The material of these sections is based on the works [21, 22, 24, 
11, 16, 17]. In the next section we treat the main examples of nonlinear equations connected 
with matrix operators of higher order. The simplest spectral properties of such operators 
with periodic coefficients are discussed (following [11]) in Sec. 4. Finite-zone (complex) 
matrix operators are constructed in Sec. 5. Here we mainly follow the works [11, 26], al- 
though the methods of these works had to be considerably improved to obtain explicit formulas 
in a good form. Finally, in Sec. 6 we treat conditions of J-self-adjointness type for the 
matrix, finite-zone, linear operators constructed and the solutions of the corresponding non- 
linear equations. "Realness" conditions for solutions of the multidimensional Eucler equa- 
tions in connection with the plane algebraic curves arising here are studied in special de- 
tail. In the appendix we have collected for the reader's convenience a list of the basic 
definitions from the theory of Riemann surfaces and theta functions; it is possible to become 
acquainted with these concepts in more detail in the survey [13], for example. 

The author expresses his gratitude to O. Ya. Viro, S. M. Natanzon, and A. N. Tyurin for 
a number of useful discussions. 

I. Dirac Operator and the Nonlinear Schr~dinger Equation 

The nonlinear SchrSdinger equation (NS+) 

irt = -- r~x • 21rl=r (1.1) 
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is obtained from the "complexified" system 

irt = --rxx+2r2q } (1.2) 
iqt = qxx-- 2q 2r 

by the r educ t i on  q = +-r. System (1.2) can be r ep re sen ted  as the commutation cond i t i ons  of 
the l - p e n c i l s  [33] 

[Ox--U, Ot--V]-~O, (1.3) 

where 

V=V(k)=2i~2(lo O--1,~-}-2ix(O--q~(O\r O)~rx--qx~+i(g ) \ _0 ~.q/ (1.5) 

We shall also find useful another normalization of this commutation representation obtained 
from (1.3) by the obvious transformation 

where 

O----- C-'UC, ~" = C-'VC, (1.6) 

(I 7, 
C---- i ' 

- - 1  +5\ r+q i(q--r)]" 
We introduce the linear matrix operator depending on the spectral parameter X which is con- 

(I .9) 

(1.9') 

(1.10) 

(I .11) 

netted with the theory of the NS equation 

L (X) = 0~--  U (X), 

or in the other representation 

Z (~) = o ~ -  0 (x). 

For q = +r the operator L possesses the symmetry 

] 
L* (~)~--J•177 J-=(lo ~ ), J+=(O _ 01). 

The equation for the "eigenfunctions" has the form 

L ( ~ ) , = O ,  ~ = ( , , ,  ~2) r, 

o r  

L(k)~--~-O, ~=(~01, ~2) r. (1.11 ') 

Suppose that the coefficients r, q of the operator L(X) are periodic with period T, 
r(x + T) = r(x), q(x + T) = q(x). Then on the space of solutions of Eq. (1.11) there acts 
the monodromy operator 

7Np(x)=~(x + T). (1.12) 

Ix, Xo, y, Ix, x0, 
I f  Y \y21(x, xo, X) y22(x, xo, k). i s  a fundamental  matr ix  of so lu t i ons  of Eq. (1.11) (x, Xo, 

with initial conditions i; 0)] the point x = x0, then the matrix T(x0, X) of the mono- at 

dromy operator (1.12) in the basis (Y11, Yil) T, (yli, Y22) T has the form 

7" (Xo, Z,)-= ( "q' x ' 2 /=Y (Xo+ T, Xo, ~). 
\x2~ x22/ 

Its matrix elements are therefore entire functions of the spectral parameter X. The matrix 
^ 

T is unimodular. 
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For q = • the following unitarity conditions holds for the monodromy matrix: 

(1.13 f) 

(the asterisk denotes the Hermit• conjugate). 

The levels of the spectrum of the periodic and ant• problems are sought from 
the condition 

I 
A(%)--=-~SpT(xo,%)= •  ( 1 . 1 4 )  

We note [21] that for the case q = ~ the eigenvalue problem (1.11') is self-adjoint [for 
appropriate boundary conditions -- periodic or zero boundary conditions ~i(0) = ~I(T) = 0]. 
The periodic problem (1.11) for q = ~ is also self-adjoint, but the problem 4z(0) = 4z(T) = 
0 is not self-adjoint. For the case q = --r (NS-) problem (1.11') ~s J-self-adjoint, J = 

(~i). Thus, for the self-adjoint case q = r all levels of the spectrum (1.14) of the peri- 

odic and.ant• problems are real and go to • with asymptotics An = ~n/T, --~ < n < =. 
For the non-self-adjoint case q = r the situation is more involved, and we shall describe it 
below. 

The Bloch eigenfunctions have the form 

T~• (x)=~• (x+ T) =e~'pr~ (x), (1.15) 

where p = p(~) is the quasimomentum (the Bloch dispersion law) which is defined up to a pe- 
riod of the reciprocal lattice, p * p + 2~n/T. For an arbitrary value of % there are, gen- 
erally speaking, two distinct Bloch functions 4+ and 4- which coalesce at points of the spec- 
trum of the periodic and ant• problems (of odd multiplicity). The permitted zenes 
of the spectrum are determined from the condition that the quasimomentum p(%) be real. In 
the self-adjoint case q = ~ these zones form, generally speaking, and infinite family of seg- 
ments of the real axis ---co < % < ~ with end points at simple points of the spectrum of the 
periodic and ant• problems (see Fig. la). As Inl § ~ the lengths of the lacunae 
decrease rapidly; the rate of de'ease is determined by the smoothness of the potential r. 
We now consider the non-self-adjoint case q = --~. Here the monodromy matrix T(x0, %) is 
unitary for real %; therefore, the entire real axis is a permitted zone (the eigenvalues 
e• T of a unitary matrix are equal to one in modulus). The entire function A(%) of (1.14) 
possesses the symmetry 

A (~) = A ~), ( i. 16) 

and hence the levels (1.14) of the spectrum of the periodic and ant• problems are 
situated symmetrically with respect to the real axis. Moreover, all real points of the 
spectrum are degenerate of even multiplicity (otherwise there would be lacunae on the real 
axis). All simple branch points are situated with respect to the real axis in syrmnetric 
pairs X~, %~ = ~n with asymptotics X~ = ~n/T for large n. The imaginary parts of X~ decrease 
rapidly as Inl -~ =; the rate of decrease is determined by the smoothness of the potential r. 
Aside from the real axis, the quasimomentum p(X) assumes real values on certain arcs joining 
the pairs ~ and Xn of branch points (on both sheets of the Riemann surface; see Fig. Ib). 

We now consider the properties of the Bloch functions. To uniquely determine them it 
is necessary to prescribe a normalization, setting, for example, 

~,[x=x, = 1. ( 1.1 7) 

We have the following simple result. 

LEMMA 1.1. For any complex periodic functions r(x), q(x) the Bloch eigenfunction ex- 
tends (in ~) to a single-valued meromorphic function on a two-sheeted Riemann surface of the 
form 

w ~ - -  2A (L) w -F 1 = O, ( 1 . 1 8 )  

which  has  b r a n c h  p o i n t s  a t  p o i n t s  of  t h e  s p e c t r u m  ( o f  odd m u l t i p l i c i t y )  of  the  p e r i o d i c  and 
a n t •  p rob l ems  ( 1 . 1 4 ) .  The p o l e s  of  t h e  f u n c t i o n  4 on the  s u r f a c e  F have  the  fo rm 
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Fig. 1 Fig. 2 

L = V l  (x0), xm (?~ (X0), X0) = 0 ,  ( 1 . 19) 

= ~ (x0) = x~2 (W (x0), x0).  ( 1 . 1 9 '  ) 

The z e r o s  o f  t h e  f i r s t  c o m p o n e n t  @ l ( x ,  x 0 ,  t )  h a v e  a f o r m  a n a l o g o u s  t o  ( 1 . 1 9 ) ,  ( 1 : 1 9 ' )  w i t h  
t h e  c h a n g e  x0 § x .  F o r  ~ + ~ t h e  f u n c t i o n  @ = @• h a s  e x p o n e n t i a l  a s y m p t o t i c s  e l i A ( x - x 0  ) .  

The  p r o o f  o f  t h e  1emma i s  a n a l o g o u s  t o  t h e  p r o o f  o f  t h e  p r o p e r t i e s  o f  t h e  B l o c h  e i g e n -  
f u n c t i o n  f o r  t h e  S t u r m - - L i o u v i l l e  o p e r a t o r  ( s e e  [15 ]  and  a l s o  [ 3 5 ] ) .  

The  R i e m a n n  s u r f a c e  F on w h i c h  t h e  B l o c h  f u n c t i o n  i s  m e r o m o r p h i c  we c a l l  t h e  s p e c t r u m  
o f  t h e  o p e r a t o r  L ,  a n d  t h e  p o l e s  o f  t h e  B l o c h  f u n c t i o n  s i t u a t e d  on i t  we c a l l  t h e  c o m p l e -  
m e n t a r y  s p e c t r u m  o f  t h i s  o p e r a t o r .  I t  i s  o b v i o u s  f r o m  ( 1 . 1 9 )  t h a t  t h e  p o i n t s  t = Y i ( x 0 )  o f  
t h e  c o m p l e m e n t a r y  s p e c t r u m  a r e  e i g e n v a l u e s  o f  t h e  o p e r a t o r  ( 1 . 1 1 )  on t h e  s e g m e n t  [ x 0 ,  x0 + 
T] w i t h  z e r o  b o u n d a r y  c o n d i t i o n s  

*1 (x0) = ~ ,  ( x 0 +  T ) = 0 .  ( 1 . 2 0 )  

From t h e  f o r e g o i n g  c o n s i d e r a t i o n s  i t  f o l l o w s  t h a t  i n  t h e  s e l f - a d j o i n t  c a s e  q = ~ a l l  b r a n c h  
p o i n t s  o f  t h e  R i e m a n n  s u r f a c e  F a r e  r e a l ,  w h i l e  i n  t h e  n o n - s e l f - a d j o i n t  c a s e  q = - - r  a l l  b r a n c h  
p o i n t s  a r e  n o n r e a l  a n d  a r e  s i t u a t e d  s y m m e t r i c a l l y  w i t h  r e s p e c t  t o  t h e  r e a l  a x i s  i n  p a i r s  ( s e e  
Fig. I). 

Analogous constructions can be carried out for the transformed equation (1.11'). The 
spectrum -- Riemann surface F -- is obviously the same as above, but the complementary spectrum 
(yj(x0), wj(x0)) changes. In particular, in the self-adjoint case q = ~ all points I y](x0) 
lie on the real axis one in each lacuna (on one of the sheets of the Riemann surface). This 
follows from the fact that they are levels of the spectrum of the self-adjoint problem 

~ (x0)=~, (x0+ T) =0. ( I. 20') 

The location of the complementary spectrum in the non-self-adjoint case is more involved. It 
is easy to find only the asymptotics of the quantities Yn(X0): 

The unitarity condition (1.13') gives an ineffective relation on the position of the comple- 
mentary spectrum yj: for entire functions of exponential type I -- A2(1) and x12(I), having 
zeros at the branch points of the Riemann surface and at points of the complementary spectrum, 
respectively, the expression 

1 -- A ~ (~)-- x~2 (~) x,~ (~) ( I. 21 ) 

must be a complete square of some entire function [namely, the function ~ = (T11 -- ~22)/2i]. 
This relation can be rewritten in the following form: points of the complementary spectrum 
must be situated on the Riemann surface F at the zeros of a "differential of second kind" of 
the form 
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E (~) �9 ~ = ( 1 - ~  V. ~ . )  dX, (1.21') 

which has no singularities on the finite part of F and at infinity has asymptotics of the 
form dX(1 + O(X-I)). This notation is more convenient, since it contains only the branch 
points of the surface F (the multiple spectrum cancels). The complex-conjugate points (Yi, 
w i) are also zeros of the differential ~. 

Until now we have spoken only of periodic potentials q, r. It is also possible to in- 
troduce almost periodic potentials; in this case the presence for them of an eigenfunction 
meromorphic on a two-sheeted Riemann surface and possessing on it analytic properties of the 
type described above is the definition of the class of potentials studied (potentials with 
"regular analytic properties"; cf. [15]). 

Generally speaking, the Riemann surface of the spectrum introduced above has infinite 
genus. We now introduce the concept of finite-zone operators [for the example of operators 
of the form (I .9)] which plays a central role below. 

Definition I.|. The operator L(X) is called a finite-zone operator if it possesses an 
eigenfunction meromorphic (in X) on a Riemann surface F of finite genus. 

Definition I. I' The operator L(X) is called a finite-zone operator if there is a matrix 

. ,  {ml~ (~, x)ram(~, x) ~ M=M(~ ,  x)  = ~tn2, (~, x)  tn22 (~, x)} 

which depends on X in polynomial fashion and commutes with the operator L(X): 

[L (;L), M (~,)] = 0 .  (1 .22)  

We have the following result. 

THEOREM I.|. Definitions 1.1 and 1.1' are equivalent. 

This assertion is important and well known in the theory of finite-zone integration; it 
first appeared and was used in the work of Novikov [34] for the case of the SchrSdinger opera- 
tor (see also [15]). We shall give here a sketch of the proof of the fact that Definition 
1.1' implies Definition 1.1. We introduce the characteristic polynomial 

R (~, ~) ~--- det (iv -- M (~, x)) = --  ~2 ~_ det M (L, x) ( 1.23) 

of  t h e  m a t r i x  M(X, x) which does n o t  depend on x by ( 1 . 2 2 ) .  The e i g e n v e c t o r s  of  the  m a t r i x  
M = M(X, x) have the  form 

- -  ~ v - m , ,  (x) , ~ =  ~ (z., x )  M~=iv~, (I 24) 
m~, (~) 

and are therefore meromorphic on a Riemann surface F of the form 

R(%, w)=--v2q-det 7W(%, x)----0. (I .25) 

It is obvious that the two-sheeted (over the X plane) surface F is algebraic, i.e., has finite 
genus. We consider the function ~ which is a common eigenfunction of the commuting operators 
L(X) and M(X) : 

L(7~)~----O, A//(~, x)~2----iv% ~b----(a~l, ~2) r (1 .26) 

with the normalization condition 

This function has the form 

~l[x=x0----l. (I .26') 

~ (  x, x 0, X ) = Y ( x ,  x0, X)[(X, x0). (1 .27)  

I t  i s  t h e r e f o r e  meromorphic  on the  Riemann s u r f a c e  F. I t s  a n a l y t i c  p r o p e r t i e s  can be i n -  
v e s t i g a t e d  without difficulty. 

It is more difficult to prove the opposite implication (the derivation of Definition 
1.1' from Definition 1.1) (see [15]). Actually, it follows from the fact that finite-zone 
potentials (in the sense of Definition 1.1) are solutions of certain completely determined 
nonlinear differential equations. 
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We shall now treat a very simple but important example. Suppose that the matrix M(X) 
commuting with L(X) has the form 

The commutation condition [L(X), M(X)] = 0 leads to the following formulas for r, q: 

r=roe  -2i=x, q=qoe mr=x, ( 1 . 2 9 )  

w h e r e  r 0 ,  q0 a r e  c o n s t a n t s .  We s h a l l  c o n s i d e r  t h e n o n - s e l f - a d j o i n t  c a s e  q0 = - - r 0 .  We s e t  
r ,~pae -~o. The R i e m a n n  s u r f a c e  F --  t h e  s p e c t r u m  o f  t h e  o p e r a t o r  L ( ~ )  w i t h  c o e f f i c i e n t s  o f  

t h e  f o r m  ( 1 . 2 9 )  -- h a s  t h e  f o r m  

de t  [ ~ - - / H  (~) I = v2 _ (X - -  a) 2 - -  p02 - -  O. ( 1 . 3 0) 

T h i s  i s  a t w o - s h e e t e d  s u r f a c e  o f  g e n u s  0 .  I t s  b r a n c h  p o i n t s  h a v e  t h e  f o r m  

%• • ip0. (1.31) 

There is one po in t  of the complementary spectrum (y,  ~) [ f o r  the normal iza t ion  ( 1 . 9 ' ) ]  of the 
form 

(x0) = ~ -~ i P0 s in (2~Xo -~ %), v (x0) = - -  iP0 cos  (2~Xo + 9o). 

As x0 v a r i e s ,  t h e  p o i n t  ( y ( x 0 ) ,  9 ( x 0 ) )  t r a v e r s e s  t h e  c y c l e  f o r m e d  b y  g l u i n g  t o g e t h e r  two 
c o p i e s  o f  t h e  s e g m e n t  [k_ ,  k+] a t  t h e i r  end  p o i n t s  ( b r a n c h  p o i n t s ) .  We o r i e n t  t h i s  c y c l e  
so  t h a t  on i n t e r s e c t i n g  w i t h  t h e  r e a l  a x i s  X on t h e  u p p e r  s h e e t  w h e r e  ~ > 0 d e c r e a s e  o f  t h e  
i m a g i n a r y  p a r t  o f  X c o r r e s p o n d  t o  t h e  p o s i t i v e  d i r e c t i o n  o f  t r a n v e r s a l .  We d e n o t e  t h e  c y c l e  
so  o r i e n t e d  by  a .  

We s h a l l  c o n s i d e r  i n  more  d e t a i l  t h e  p e r i o d i c  c a s e  w h e r e  a = nN/T ,  T i s  t h e  p e r i o d ,  and  
N i s  a n  i n t e g e r .  I t  may t h e n  b e  a s s u m e d  t h a t  t h e  R i e m a n n  s u r f a c e  ( 1 . 3 0 )  w i t h  b r a n c h  p o i n t s  
( 1 . 3 1 )  i s  o b t a i n e d  f r o m  t h e  R iemann  s u r f a c e  2 = X2 o f  t h e  z e r o  p o t e n t i a l  w i t h  P0 = 0 b y  
o p e n i n g  up t h e  N - t h  t w o f o l d  e i g e n l e v e l  XN = ~N/T o f  t h e  p e r i o d i c  ( o r  a n t i p e r i o d i c )  p r o b l e m .  
We p o i n t  o u t  t h a t  i n  p a s s i n g  t h r o u g h  a p e r i o d  [ 0 ,  T] t h e  p o i n t  ( y ( x 0 ) ,  9 ( x 0 ) )  t u r n s  on  t h e  
c y c l e  a w i t h  d e g r e e  2N. I n  o t h e r  w o r d s ,  t h e  p o l e  o f  t h e  B l o c h  f u n c t i o n  a p p e a r i n g  on p e r t u r -  
b a t i o n  o f  t h e  z e r o  p o t e n t i a l  r e m e m b e r s  " i t s  b i r t h p l a c e "  on t h e  X a x i s  i n  t e r m s  o f  t h e  d e g r e e  
o f  w i n d i n g  t h e  c o r r e s p o n d i n g  a - c y c l e .  I t  i s  c l e a r  t h a t  t h e  same h o l d s  f o r  any  p e r i o d i c  p o :  
t e n t i a l  r ( x ) ,  b e c a u s e  o f  t h e  c o n n e c t e d n e s s  o f  t h e  c o l l e c t i o n  o f  o p e r a t o r s  ( 1 . 9 )  w i t h  q = - - r .  
More p r e c i s e l y ,  i n  t r a n s v e r s i n g  a p e r i o d  [ 0 ,  T] t h e  p o l e s  ( y ; ( x 0 ) ,  ~ j ( x 0 ) )  o f  t h e  B l o c h  f u n c -  

�9 J . �9 

t l o n  t u r n  on some c y c l e s  a j  on t h e  R i e m a n n  s u r f a c e  F;  t h e  p o s x t x o n  o f  e a c h  o f  t h e s e  c y c l e s  
i s  a n a l o g o u s  t o  t h e  p o s i t i o n  o f  t h e  c y c l e  a d e s c r i b e d  a b o v e .  I n  t h e  h o m o l o g y  c l a s s e s  o f  
t h e s e  c y c l e s  i t  i s  p o s s i b l e  t o  s e l e c t  r e p r e s e n t e r s  (we a l s o  d e n o t e  them b y  a j )  w h i c h  u n d e r  
p r o j e c t i o n  o n t o  t h e  X p l a n e  go o v e r  i n t o  p a i r w i s e  n o n i n t e r s e c t i n g  a r c s  w i t h  end p o i n t s  a t  com-  
p l e x - c o n j u g a t e  p a i r s  o f  branch  p o i n t s  = We o r d e r  t h e s e  c y c l e s  a c c o r d i n g  t o  

t h e i r  i n t e r s e c t i o n  w i t h  t h e  r e a l  a x i s  X and  o r i e n t  them i n  a m a n n e r  s i m i l a r  t o  t h e  o r i e n t a -  
t i o n  o f  t h e  c y c l e  a .  Then  t h e  d e g r e e  o f  w i n d i n g  t h e  p o l e s  o f  t h e  B l o c h  f u n c t i o n  on t h e  a -  
c y c l e s  c o r r e s p o n d i n g  t o  them w i l l  i n c r e a s e  m o n o t o n i c a l l y . *  

An a n a l o g o u s  a s s e r t i o n  i s  a l s o  v a l i d  i n  t h e  a l m o s t - p e r i o d i c  c a s e  i f  t h e  w i n d i n g  number  
i s  c o r r e c t l y  d e f i n e d .  T h i s  c a n  b e  u s e d  f o r  t h e  u n i q u e  d e t e r m i n a t i o n  o f  t h e  h o m o l o g y  c l a s s e s  
o f  t h e  a - c y c l e s  a l o n g  w h i c h  t h e  p o l e s  o f  t h e  B l o c h  f u n c t i o n s  on t h e  R i e m a n n  s u r f a c e  move ( f o r  
more  d e t a i l s  s e e  [ 1 7 ] ) .  

The  m o s t  c h a r a c t e r i s t i c  p r o p e r t i e s  o f  f i n i t e - z o n e  p o t e n t i a l s ,  t r e a t e d  a b o v e  f o r  t h e  
s i m p l e s t  e x a m p l e ,  r e m a i n  i n  f o r c e  f o r  a g e n e r a l  f i n i t e - z o n e  p o t e n t i a l  a s  w e l l .  To c o n c l u d e  
t h i s  s e c t i o n  we s h a l l  p r e s e n t  e x p l i c i t  f o r m u l a s  f o r  f i n i t e - z o n e  p o t e n t i a l s  o f  an  o p e r a t o r  
L(X) o f  t h e  f o r m  ( 1 . 9 ) .  

1) NS+. I n  t h i s  c a s e  t h e  R i e m a n n  s u r f a c e  F o f  g e n u s  g h a s  t h e  f o r m  

v2 = P 2 g ~  (X) = ~ 2 - F  . . . .  ( I . 32) 

where all the zeros XI,...,X2g+2 of the polynomial P2g+2(X) are real and distinct. Let 
~i < ... < %2g+2. The lacunae in the spectrum have the form X2j-I < % < ~2j, ~ ~ J ~ g + I. 
Over each lacuna there is precisely one pole (yj, Oj) of the Bloch function of the Bloch 
function of the operator (1.9'). We denote by P+, P- th~ infinitely distant points of the 

�9 For the sine-Gordon equation an analogous observation was made in [51]. 
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surface (1.35): P+={g~---~176177 i} �9 Suppose the canonical basis of cycles al,. .,ag, 
bx, ,bg has the form shown in Fig. 2a. Under the action of the antiinvolution �9 i%, v) § 
(~,'6i this basis transforms as follows 

, ( a l ) = - - a l ,  x (b , )=b l l  i = 1  . . . . .  g. (1.33) 

The matrix of periods B = (Bjk) is real. The potential r = q has the form 

r (x )=roexp l ix? f l ]  O(txU+zo+A) [ p_ j O(lxU+zo)8(P+,P-) ' (1 .34)  

where fl ~o) n(t) ~---~p+--,op_ is the normalized Abelian differential of second kind with double poles 
at P+, P-; U is its vector of b-periods, and A = A(P+) -- A(P_) (where A is the Abel mapping); 
E(P+, P-) is a constant depending only on the Riemann surface (cf. Sec. 5 below), Ir0i = I, 
and z0 is a purely imaginary vector. 

2) NS-. In this case the Riemann surface F of genus g has the form (1.32) where all the 
zeros of the polynomial P2g+2(%) are nonreal, %j = ~, j = 1,...,g + I. We choose a basis of 

cycles al,...,ag, bl,...,bg as shown in Fig. 2b. Under the action of the antiinvolution ~: 
(~, v) + (~, ~)-these cycles transform as follows: 

�9 (at)~--al, ~(bi )=bt+Xa, .  (1.35) 

The m a t r i x  of  p e r i o d s  p o s s e s s e s  a symmetry of  the  form 

B = 2 ~ i  1 ~ . . .  1 + B .  (1 .36)  

1 . . .  10/  

The p o t e n t i a l  r =- -q  has  t h e  form (1 .34)  where the  v e c t o r  z0 can assume the  v a l u e s  

zo----iro, r0ER~. (1 .37)  

Smooth s o l u t i o n s  of the  NS+ and NS- e q u a t i o n s  a r e  o b t a i n e d  f rom t h e s e  f o r m u l a s  b y : t h e  s u b s t i -  
t u t i o n  

zo~zo+i tV ,  e x p i x  S Q ~ e x p  ix Q+i t  
P_ P_  

where f l (2 )_~__Q~2)  is the normalized differential of second kind with poles of third order 

at the points P+, P-; V is its vector of b-periods. 

2. Non-Self-Adjoint Operators Connected with the Sine-Gordon Equation 

As was discovered in [20], the sine-Gordon equation (sG) 

u.--Uxx+Sin u----O 

admits the Lax commutation relation 

with matrix operators of fourth order 

(2 .1 )  

~=[~, ~1 (2.2) 

o / _  [ -~o~ i,, �9 
(i02 O) " ,u e x p - ~ %~  

= - -  a X + ~ e x p ~ %  0 ] '  

�9 i u  "~ 

d = 0 0 ~ + 2  / .  
i (exp ~ % )  a2 0 . 

h e r e  v = u t  + Ux; Ol,  02,  03 a r e  t h e  P a u l i  m a t r i c e s ,  

�9 

(2.3) 

(2.4) 

(2.5) 
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The operator fg is J-self-adjoint, 5~*=J.~J , where d'=~O(r2]. 

The spectral problem ~ f = g f  for operator (2.3) reduces to the problem 

Z (x), = 0, Z (x) = 0 (x), 

0 (X) = iv 1 (cos tt~ 2 -  sin ttol). 
-- i~'ff2 -- -$ ~ -- 1"-6~ 

(2.6) 

(2.7) 

The Lax representation (2.2) can be rewritten in the form of a commutation condition for l- 

pencils [ ~ x - - ~  (~), Or-- V (~)] =0, (2.8) 

�9 I Iv ffaq_~(CO s U~2_slnUffl). (2.9) 

I I 
In conical variables ~=~(x+t), N-----~(x--t), where the sG equation can be rewritten in the 
form 

u~n=stn u, (2 .10)  

i t  i s  more conven ien t  to use  ano the r  n o r m a l i z a t i o n  of  the  commutation r e p r e s e n t a t i o n  

[~--U(%), 0n- -V (~)]=0, (2 .11)  

which is  connected w i th  U, 9 by a t rans format ion  of the type (1 .6 ) :  U(%) has the form (1.4) 
with r = -q = u~/2, 

( c o s u  - - i s t n u  / (2 .12)  
(~)----~t~ \ / s in  " ! "  u --cos u / "  

V 

The n o n - s e l f - a d j o i n t n e s s  of the  o p e r a t o r  ~(~) a r i s e s  he r e  due to the  n o n t r i v i a l  e n t r y  of the  
s p e c t r a l  pa ramete r  ~ ( a c t u a l l y ,  due to the  f a c t  t ha t  the  o r i g i n a l  o p e r a t o r  ~'  was n o n - s e l f -  
a d j o i n t ) .  The o p e r a t o r  L(~) p o s s e s s e s  ( f o r  r e a l  u, v) the symmetr ies  ( 2 . 1 3 ) ,  (2 .14)  

L* ~ ) = - - L ( k ) ,  (2.13) 

Z r ( - ~ = - o , l  (~o,. (2.14) 

The presence of the second symmetry (2.14) complicates the spect ra l  p roper t i es  of the opera- 
to r  L(E) as compared w i t h  the spect ra l  p roper t i es  of the operator  L(~) of Sec. 1. 

The periodicity conditions have the form 

u(x-q-T)=u(x)q-2gQ, v ( x +  T)=v(x) ,  (2 .15)  

where Q i s  an i n t e g e r  c a l l e d  the  t o p o l o g i c a l  charge ( i . e . ,  e x p i u  i s  a p e r i o d i c  f u n c t i o n ) .  
The monodromy mat r ix  T of  the  o p e r a t o r  L (%) i s  unimodular ,  and in  the  s t anda rd  b a s i s  of s o l u -  

t i o n s  with initial conditions (~ ?) at the point x0 it possesses a unitarity property of the 

form (1.13'). Considering the symmetry (2.14), we obtain the form of the monodromy matrix 

^ ^ ( a!Xo ' ks) ~b(xo, ~2) ) (2 .16)  
T = T (x0, ~) = \ __ %b (x 0, ~2) E (x0, k 2) _' 

where a (x0 ,  z) ,  b(x0,  z) are a n a l y t i c  in  z = X2 everywhere except 0 and = where they have 
essential singularities of exponential type. 

Let 

aR(z)=~(a(Xo, z)+a(xo,  z)), z ~ , .  (2.17) 

be half the trace of the monodromy matrix, and let 

al (Xo, Z ) = ~  (a(x o, z)--a(Xo, ~). (2.18) 

The spectrum of the periodic and antiperiodic problems is situated syrmnetrically with re- 
spect to the real and imaginary axes of % and has the form. 
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Xn ----- • ]/'Z-~n, 1 - -  a ~ ( z n )  = O, ( 2 . 1 9 )  

where the point z n problem are situated symmetrically with respect to the real z axis. All 
real points z n with z n > 0 are degenerate of even multiplicity. The remaining points z n 

�9 + - + + z~ are real are distributed in pairs or complex conjugates Zn, z n = z_ or both numbers Zn, 
+ .H 

and negative. For n § ~ the points z~ have the asymptotlcs [I0, 51] 

2-8[ r, d_~0j_Of I ~], z ~ =  Ln-~'--~-- \~/ 
+ 

where a0, A~ are real constants. The imaginary parts of the quantities z~ are small for 
Inl § =, and their rate of decay is determined by the smoothness of u. 

Because of these asymptotics, on the negative real semiaxis there are only a finite 
number of points of the spectrum of the periodic and antiperiodic problems. Moreover, this 
implies that for large Inl all nonreal points of the spectrum are simple. 

The Bloch eigenfunctions 4• are determined by the conditions 

[ (k)~• = 0, ~ • (x a t- T) = exp [ • ip  (L) T]~ • (x), ( 2 . 2  0 '  ) 

where p = T -zarccosa R is the quasimomentum. The permitted zones of the spectrum are ob- 
tained for real p(X). As in Sec. 1 (for the case q = --~), from the unitarity of the matrix 

we obtain: the entire real axis X is a permitted zone. On the z plane this means that the 
real z semiaxis from 0 to ~ is a permitted zone. 

The Riemann surface F of the Bloch function ~• normalized by the condition ~Ix=x0 = 
1 has the form 

It is convenient to introduce another Riemann surface [the spectrum of the operator L(%)]. 
F of the form 

(Z)-~- ~ V z(1 - a ~ ( z ) ) ,  ( 2 . 2 2 )  

which is a two-sheeted covering of the z plane (the role of the spectral parameter will hence- 
forth be played by z). 

A typical form of the Riemann surface F is shown in Fig. 3. Typical here means that 
complex-conjugate pairs of branch points (z:, Zn = z-~) and (z~, z~ = Z-~m) do not coalesce. 
We note that coalescence of such pairs in the space of Riemann surfaces of given genus oc- 
curs on a subset of codimension 2. 

The poles (u ~n(X0)) of the Bloch function on F have the form 

b(x  o, ~n (Xo))=0,  ~n(X0)= - - a :  (:CO, ~n (:CO)) ( 2 . 2 3 )  

( p o i n t s  o f  t h e  c o m p l e m e n t a r y  s p e c t r u m ) .  F o r  I n l  § o, we h a v e  

?n (X0) ~ Z~" (2.24) 
+ 

The points of the complementary spectrum are in one-to-one correspondence with the pairs Zn, 

Zn. 

Suppose that on the negative real semiaxis z there are k real zones of the spectrum 
+ 

[z +, zl] , .... [Zk, Zk]. Then the collection of operators L(%) with given spectrum F consists 
of 2 k connected components [40, 10]. These components can be numbered by collections o = 
(~i, o2,...,o k) where all o i = • Then there exist k pairwise distinct integers ql,...,q k 
such that the topological charge Q of the potential u corresponding to the component with 
index o is equal to ([I0]) 

k 

Q=Q (G)=~ fftq ,. (2.25) 
I=I 

A complete list of real finite-zone solutions of the sG equation together with explicit 
theta-function formulas can be found in [16] (similar results were obtained independently in 
[2]). 
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3. Examples of Nonlinear Equations Connected with Matrix Operators 

of Higher Orders 

We consider the matrix n • n linear operator 

LA (X) = iOx + A~-- UA. 

Here 

A = d l a g  (at . . . . .  a,) 
is a constant, real, diagonal matrix of n-th order. 
are pairwise distinct. The matrix U A has zero diagonal elements. 

We consider another such operator 

LB (~) = lot + B~-- U~, 
B = d i a g  (bl . . . . .  b.), 

where  t h e  m a t r i c e s  B, U B s a t i s f y  c o n d i t i o n s  a n a l o g o u s  to  t h o s e  f o r m u l a t e d  a b o v e .  
t i o n  o f  c o m m u t a t i o n  o f  t h e  t - p e n c i l s  

[LA (~), LB (L)] = 0  

(3.1) 

(3.2) 

We shall assume that the quantities a i 

is equivalent to the system 

(3.3) 

The condi- 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

After 

[A, U s ] = [ B ,  UA], 

U A , -  U s ,  = i  [UA, UB]. 

E q u a t i o n  ( 3 . 5 )  can  b e  s o l v e d  e x p l i c i t l y  in  t h e  f o r m  

U A = [ A ,  v] ,  UB=[B, V], 

where  t h e  d i a g o n a l  e l e m e n t s  of  t he  m a t r i x  V = V(x ,  t )  can  a l s o  be  assumed to  be  z e r o .  
t h i s  we o b t a i n  a s i n g l e  m a t r i x  n o n l i n e a r  e q u a t i o n  f o r  t h e  f u n c t i o n  V: 

[A, Vt]--[B, V,]=i[[A, V], [B, V]]. (3.8) 

For applications solutions of the system (3.8) satisfying the "realness conditions" are of 
interest: 

V*=--JVJ, (3.9) 

where the asterisk denotes the Hermitian conjugate, and J is a diagonal matrix with ones or 
minus ones on the diagonal, 

] = d l a g  ( i  1 . . . . .  • 1). ( 3 . 1 0 )  

For the operators LA(1), LB(1) in this case there is the syrmaetry 

L~ (~=JLA (k) ], LB (~=JLB (~) ]. ( 3 . 1 1 )  

We c a l l  t h e  symmet ry  ( 3 . 1 1 )  t h e  J - H e r m i t i a n  p r o p e r t y  o f  t h e  o p e r a t o r  p e n c i l s  L A ( t ) ,  L B ( t ) .  
F o r  e x a m p l e ,  f o r  n = 3 ( s u p p o s e  ax > a2 > a 3 ) ,  J = 1 o r  J = d i a g  (--1, 1, 1) o r  J = d i a g  (1 ,  
--1,  1) t h e  s y s t e m  ( 3 . 8 )  d e s c r i b e s  v a r i o u s  t y p e s  of  i n t e r a c t i o n  of  t h r e e - w a v e  p a c k e t s  i n  a 
medium w i t h  a q u a d r a t i c  n o n l i n e a r i t y  [ 3 5 ] .  The c a s e  o f  a p u r e l y  i m a g i n a r y  m a t r i x  V = iV, 
where  Eqs .  ( 3 . 8 )  r e d u c e  to  e q u a t i o n s  f o r  a p u r e l y  r e a l  s y m m e t r i c  m a t r i x  V, i s  a l s o  p h y s i c a l l y  
i n t e r e s t i n g .  Sys t em  ( 3 . 8 )  w i t h  c o n d i t i o n s  of  r e a l n e s s  o f  t h e  t y p e  ( 3 . 9 )  a d m i t s  an  a n a l o g o u s  
i n t e r p r e t a t i o n  a l s o  f o r  n > 3 [6 ,  3 5 ] .  
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Another important application of these equations found by Manakov [30] is the integra- 
tion of the Euler equations for the motion of a multidimensional solid body [I]. These equa- 
tions have the form 

/H-- [M, ~], M = I~  + ~I ,  (3.1 2) 

where I is the inertia operator of the solid body, 

I =diag (It . . . . .  I . ) .  (3.13) 

They a r e  ob ta ined  from (3.8)  i f  we se t  

A = I  2, B = I ,  [I ,  V ] = i ~ ,  (3.14) 

and there is no dependence on x. For applications general solutions of the system (3.8) with 
realness condition (3.9) which do not depend on x are of interest [35]: 

[A,  V i i = i [ [  A, VI, [B, Vl]. (3.15) 

4. Spectral Properties of Matrix Operators with Periodic Coefficients 

We consider a J-Hermitian operator L(%) ~ LA(%) of the form (3.1) with a periodic poten- 
tial U E UA, U(x + T) = U(x). Suppose that Y = Y(x, x0, %) is a fundamental matrix of solu- 
tions of the equation 

L (k)Y----O, Y I X = x o = l .  (4.1) 

We consider the monodromy matrix T = T(x0, ~) = Y(x0 + T, x0, ~). For the monodromy matrix 
the relation of unitarity is satisfied: 

T* (i) JT (%)=J. (4.2) 

Let J = diag (ol,...,On), o k = • We introduce a diagonal matrix e = diag (el,...,e n) such 
that 

~2=J.  (4.3) 

As in Secs. I, 2, it can be proved that the Bloch eigenfunction ~ = (41,...,~n) T with the 
normalization condition 

(8,~1@ . . . -~-en~")X=Xo= I (4.4) 

is meromorphic on a Riemann surface F of the form 

F (%, V)----del (~--f (X))----0. (4.5) 

This n-sheeted Riemann surface F is called the spectrum of the operator L(X) with periodic 
coefficients. We note that the branch points of this surface for n > 2 are, generally speak- 
ing, not connected with the spectrum of the period or antiperiodic problems. "Realness" of 
this Riemann surface F follows from the symmetry (3.11) of the operator L(%). 

LEMMA 4.1. A Riemann surface F of form (4.5) admits an antiholomorphic involution T of 
the form 

T(X, ~)=(X, ~-i)~ (4.6) 

Proof. By (4.3) we have 

0---- F (~, F) ---- det IF-  ?*  (x)l = det IT-  :T-' ~) : I = ( -  ])"7" det T- '  det IF  -I - -  T ~) l  ---- cons t. F (X, F-'). 

The p r o o f  o f  t he  lemma i s  c o m p l e t e .  

The p e r m i t t e d  zones (Lyapunov  s t a b i l i t y  zones)  on the  Riemann s u r f a c e  F a re  d e f i n e d  by 
t he  c o n d i t i o n  

1F (M[ = l,~=~lm p (X)=0 ( 4 . 7 )  

[p(k) = (iT) -I in~(~) is the quasimomentum]. The Bloch function will here be bounded on the 
entire line. From Lemma 4.1 there immediately follows the 

COROLLARY. Let J = I. Then the complete preimage of the real line ~ on the surface F 
is a permitted zone on which there are no branch points. 

Proof. Because of (4.2), for J = I and real ~ the matrix T(%) is unitary. Its eigen- 
values are analysis unimodular. We shall show that for real ~ there are no branch points. 
Indeed, branch points of the Riemann surface F can arise only under coalescence of pairs of 
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eigenvalues ~i, ~j of the matrix. Even if such coalescence occurs the corresponding eigen- 
vectors remain independent, i.e., branching does not occur (a singularity under imbedding in 
C 2 occurs). The proof of the corollary is complete. 

Thus, for J = I all branch points of the Riemann surface F are nonreal and situated in 
pairs symmetric relative to the antiinvolution (4.6). 

For n + ~ the Riemann surface F has n "infinitely distant points" PI,-..,Pn where as 
P § Pk (4 § =) the quasimomentum p(%) ~ iak% (we recall that all the numbers a k are distincO. 
We note that these points are fixed points relative to the antiinvolution T of (4.6). The 
next result is proved in analogy with Sec. I. 

LEMMA 4.2. The poles of the surface F of the Bloch function ~ = (~l,...,~n) T normalized 
by condition (4.4) are in one-to-one correspondence with pairs of branch points of the sur- 
face r. As P § Pk (4 + =) the function ~ has asymptotics of the form 

~ l = s ~ l ( S k / + ~ + O ( ~ - 2 ) ) f  ~%(x-x~ j - - 1  . . . . .  n. (4.8) 

Here V = (v~) is defined by the condition [A, V] = U (see Sec. 3). 

We further consider in more detail the finite-zone case where, by definition, there 
exists a matrix M = M(%, x), depending on % in polynomial fashion, such that 

[L (%), J~(%, x ) ] = O .  ( 4 . 9 )  

I t  may be assumed  t h a t  t h e  m a t r i x  M(%) has  t h e  fo rm 

1~ (~)~-~C~ N -~- lower terms , C = d l a g  (cl . . . . .  c.). ( 4 . 1 0 )  

M* (~)-----]M (X) Y. (4.11) 

We consider only the case where all the numbers Cl,...,c n are pairwise distinct. The coef- 
ficients of the characteristic polynomial of the matrix M(%, x) are "integrals," i.e., they 
do not depend on x. They determine the spectrum of the operator L(%) [see formula (4.12) 
below], i.e., the Riemann surface F. 

Definition. A smooth potential V = V(x) of the operator L(%) is called strongly bounded 
if for any real diagonal matrix B Eq. (3.8) with the initial condition V[t= 0 = V(x) has smooth 
bounded solutions V = V(x, t). 

For strong boundedness of a finite-zone potential V(x) with given spectrum F it suffices 
taht the "integrals" described above -- the coefficients of the equation of the surface F -- 
define a compact manifold in the space of matrices V. For example, for J = I any smooth po- 
tential is strongly bounded. We shall henceforth consider only strongly bounded, finite- 
zone potentials. 

We have the following result. 

LEMMA 4.3. The matrix M(%) commutes with the monodromy matrix T(%). 

For the proof see [15]. This implies 

THEOREM 4.1. a) A Riemann surface F of the form (4.5) is given by the algebraic equation 

R (~, v) ==v" + r, (~) v"-' +... + rn (~) = det [v--A4 (~, x)[ =0 (4.12) 

and, in particular, it has finite genus [equal to IV n(n-l) (n--l) in the case of general 
position]. 2 

b) The antiinvolution (4.6) is given in the coordinates (4, ~) by the equality 

(~, ~) = (~, ~). (4. I 3) 

c) The Riemann surface F with antiinvolution T belongs to separating type. 

We shall sketch the proof of this theorem. Part a) follows from Lemma 4.3, since the 
eigenvectors of the matrix M will be the Bloch functions [here we used the fact that for large 
% the eigenvectors of the matrix M(%) are pairwise independent (4.10)]. The surface (4.12) 
is invariant relative to the antiinvolution (4.13) by (4.11). This antiinvolution coincides 
with the antiinvolution (4.6), since p = p(%, ~) is real for real 4, ~ (this can be shown; 
see [11], formulas (26), (32)~ (36)). This proves part b). To prove c) we consider the 
operator L(%) commuting with L(%) of the form 
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L(k)~-iOy--}-Jk-- iJ ,  V], [A, V I = U ,  [L(k) , .L (~) I=0 .  ( 4 . 1 4 )  

I t s  B loch  f u n c t i o n s  a r e  m e r o m o r p h i c  on t h e  same s u r f a c e  F. Fo r  the  o p e r a t o r  L(~) ( i n  t h e  
p e r i o d i c  c a s e )  t h e  p r o b l e m  

( y +  T)----exp i pT~  (y) ( 4 . 1 5 )  

i s  s e l f - a d j o i n t .  T h e r e f o r e ,  f o r  r e a l  p ( i . e . ,  i n  t h e  p e r m i t t e d  zones )  t h e  e i g e n v a l u e  ~ i s  
n e c e s s a r i l y  r e a l .  Thus ,  i n  t h i s  c a s e  t h e  p e r m i t t e d  z o n e s  c o i n c i d e  w i t h  t h e  r e a l  o v a l s  { (Z ,  
~) = (~ ,  U)} o f  t he  s u r f a c e  r .  Now t h e s e  p e r m i t t e d  zones  a r e  g i v e n  by  the  e q u a t i o n  

Im p-----O, (4.16) 

where p is the quasimomentum for the operator L(%) (Imp in a single-valued function on F). 
Thus, the entire Riemann surface F, after removal of the real part, decomposes into two dis- 
connected components F + = {Im~ > 0} and F- = {Im~ < 0}. The proof of the theorem is com- 
plete. 

Remark. For J = I the operator L(%) has the form L(%) = i3y + 4, p = ~. The equation 
It% = 0 exactly distinguishes the real ovals of the surface F (see the corollary of Lemma 
4.1). 

It is not hard to show that the differential of quasimomentum dp is an Abelian differ- 
ential 6n F (cf. [15]). It preserves sign on the real part of the surface F and is even 
everywhere nonnegative for the natural orientation on this real part as the boundary F + = 
{Im~ > 0}. In neighborhoods of the points PI,--.,Pn it has the form 

dp-~-a~dL+ . . . .  P -+Pk .  (4.17) 

C o n c l u s i o n .  The s i g n  o f  t h e  d i f f e r e n t i a l  d~ in  a n e i g h b o r h o o d  of  t he  p o i n t  Pk i s  e q u a l  
t o  Ok, k = 1 , . . . , n .  

T h i s  a s s e r t i o n  d e t e r m i n e s  t h e  c o n d i t i o n  on t h e  c h o i c e  on t h e  s u r f a c e  F o f  a s p e c t r a l  
p a r a m e t e r  ~ l e a d i n g  to  t h e  c o n s t r u c t i o n  o f  J - H e r m i t i a n  o p e r a t o r  p e n c i l s ,  J = d i a g  ( o l , . . . , O n ) .  

We shall now consider in more detail the properties of the Bloch function ~. As al- 
ready mentioned, the poles of the function are in one-to-one correspondence with pairs of 
branch points. From this it is possible to conclude that the number of poles of ~ is equal 
to g + n -- I, where g is the genus. We shall show that it is possible to obtain necessary 
conditions on the distribution of these poles. 

Let (~, I),...,(~, n) be points of the surface F lying over the point 4. To them there 
correspond n Bloch eigenfunctions ~l(x, %),...,~n(X, %) normalized, for example, by condition 
(4.4). We suppose that % is not a branch point, so that these functions are linearly inde- 
pendent. We arrange their coordinates in the matrix (~i(x, ~)). Let (~iJ(x,%)) be the in- 
verse matrix. We set 

W j ( x ,  y, P)-L~,nI(x,  X)~ik(y, X), P = ( X ,  k). ( 4 . 1 8 )  

T h i s  d e f i n i t i o n  does  n o t  depend  on t h e  o r i g i n a l  o r d e r i n g  o f  t h e  p o i n t s  (4 ,  1 ) , . . . , ( ~ ,  n) n o r  
on the  n o r m a l i z a t i o n  o f  t h e  e i g e n f u n c t i o n s .  The m a t r i x - v a l u e d  f u n c t i o n  ~ ( x ,  y ,  P) = ( ~ J ( x ,  
y, P)) is thus a single-valued function on the Riemann surface F. We note that if i 

( 

O(X, y, %)-----Ibm__, v(x' Y' (~' k)), x < y  (4.19) 
[ O, x > y ,  

t h e n  t h e  f u n c t i o n  G(x ,  y ,  ~) i s  t h e  G r e e n  m a t r i x  o f  t h e  o p e r a t o r  L ( ~ ) .  We n o t e  t h a t  t he  
co lumns  o f  t h e  m a t r i x  ~ ( x ,  y ,  P) a r e  e i g e n f u n c t i o n s  of  t he  o p e r a t o r  L(X) which  d i f f e r  o n l y  
in  n o r m a l i z a t i o n .  The rows a r e  e i g e n f u n c t i o n s  f o r  t h e  f o r m a l l y  a d j o i n t  o p e r a t o r  

L + (~) = --JOy + L A  --  U r . 

The rank of the matrix ~ is equal to one. 

We set 

g(x, p)=~g (x, x, p). 

LEMMA 4 . 4 .  
p r o p e r t i e s  : 

(4.20) 

(4.21) 

function g(x, P) = (gJ(x, P)) on F possesses the following The matrix-valued 
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a) The values of the function g(x, P) for fixed % on different sheets of the surface F 
are a system of projectors for the matrix M(%), i.e., g2 = g, g(x, (~, k))g(x, (%, ~)) = 0 
for k ~ I (k, I are the numbers of the sheets), 

b) The differentials 

n 

Xg(x ,  (X, k ) ) = l ,  ~(X, k)g(x, (X, k) )=M(X) .  
/ z= l  k = l  

(4.22) 

~/(x,  P)=g/(x ,  P) dX (4.23) 

are meromorphic on F and have poles only at the infinitely distant poiots PI,...,P n of the 
Riemann surface. F:~(x,1 P) has a double pole at Pi, while for i ~ j, ~i(x, P) has simple 
poles at the poxnts Pi, Pj, whereby 

(4.24) 

(4.25) 

~/(x, P)----dk(l+O(X-2)), P~P~ 

fv/(x)(X-'+O(X-D) dX, P-,-Pj 
~,J (x, p) = [ _ v / (x)  (x-' + o (x-~)) a~, p -~  Pl. 

c) Let 

Sk(X)=rk(X)+rk_~(~.)M(X)+... +M~(X), k = l  . . . . .  n - - l ,  

where the polynomials rk(~) are defined in formula (4.12). Then the matrix g(x, P) 
form 

~n-1 + S~ 0.) vn-2 + " .Sn-, (X) 
g (x, P ) =  R~ (x, ~) 

For the proof see [11]. 

The Bloch functions ~J(x, P) 

where 

normalized by condition (4.4) have the form 

~F/(x, xo, P ) ,  
, / ( x , P ) =  gj(x0, P) " 

(4.26) 

has the 

(4.27) 

(4.28) 

n 

gj (x, P) = ~ Big/(x, P). 
1=0  

S i m i l a r l y ,  t he  Bloch  f u n c t i o n s  ~O+(y, P ) , . .  + . , * n ( y ,  P) of  the  f o r m a l l y  a d j o i n t  o p e r a t o r  ( 4 . 20 )  
n o r m a l i z e d  by t h e  c o n d i t i o n  

�9 B + ( 8 , , f +  .. + .* .  )~=x.=I 

have the form 

(4.29) 

(4.30) 

, j+ (y, p ) =  ~F~ j (x0, V, P) , 
g](xo. P) ( 4 . 31 )  

where 

U (x, P) = ~ Big/(x, P). 
1 = I  

We introduce the meromorphic differential ~ = ~(x, P) by setting 

g~ (x, P) gl (x, P) d~, ~ ~ B~stgktd~,. 
~(x ,  P ) =  g/(x, P) ~a=l 

(4.32) 

(4.33) 

Its properties are as follows: 

a) The differential ~ has double poles at the points PI,-.-,Pn of the form 

~=~kd~(l+O(~-~)), P-+Pk, k = l  . . . . .  n. (4.34) 

b) The d i v i s o r  of  z e r o s  o f  t h e  d i f f e r e n t i a l  ~ ( x 0 ,  P) has  t h e  fo rm D + D +, where  D a r e  
the poles of the functions ~J and D + are the poles of the functions ~; the degrees of the 
divisors D and D + are equal to g + n -- I. 
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We note that the differential ~ = ~(x0, P) is connected with the differentials ~ of the 
form (4.23) by the relations i 

4 ] (x, P) 4, + (x, P) fl~---n/(x, P). (4.35) 

We return to obtaining necessary conditions that the finite-zone operator pencil L(%) 
be J-Hermitian. In the J-Hermitian case the formally dual functions ~(x, P) normalized by 
condition (4.30) have the form 

4j + (x, P ) = ' 4  j (x, �9 (P))oj,  

where  t h e  b a r  d e n o t e s  t h e  complex  c o n j u g a t e ,  and T i s  t h e  a n t i i n v o l u t i o n  ( 4 . 1 3 ) .  
the differential ~(x, P) is symmetric, 

and its divisor of zeros has the form 

n (x, �9 (P)) = ~ (x, p) ,  

(4.36) 

Therefore, 

(4.37) 

Dd-T(D). (4.38) 

We have thus proved the following result. 

THEOREM 4.2. The necessary conditions on the position of the divisor D of poles of the 
Bloch function ~ normalized by condition (4.4) have the form: D + T(D) is the divisor of 
zeros of a meromorphic differential with twofold poles at the points PI,...,Pn and principal 
parts of the form (4.34). 

We note also that the differentials ~J~ = gJdX possess a symmetry of the form 
i 

~J (~ (P)) = a,Oj~/(P). (4.39) 

This obviously follows from formula (4.35). 

It will be shown below that this condition is also sufficient. 

We now consider the skew-symmetric case 

Ur-~--U, VT=V, J=l, (4.40) 

where the matrices U, V are pure imaginary. The operator L(%) possesses in this case the 
additional symmetry 

L +(x)= --L (--~) (4.4 I) 

(we recall that the cross is used to denote the formally adjoint). For the monodromy matrix 
T(E) there is the "orthogonality relation" 

(X) ~r (--X)= I. (4.42) 

On the Riemann surface of the Bloch function there acts the holomorphic involution o, 
where 

o(2%, ~)=(--%, ~-'). (4.43) 

The involution o commutes with the antiinvolution ~. The points PI,...,Pn are fixed points 
relative to the involution o:o(Pj) = Pj. For odd n there is also the fixed point P0----(O, I)~F. 

In the finite-zone case it is possible to take the matrix M(X) in the form 

M(%)=C%~k+Inu... M r (--%)= --M(%). (4.44) 

In the coordinates (X, 9) the involution o acts as follows: 

o(~, v)=(--%, --w). (4.45) 

Then the Riemann surface F of the form (4.12) and of finite genus :g-~-(2k~-|)n(n--;)--(n--I) 
2 

covers the Riemann surface F0 of genus go in two-sheeted fashion, F + F0 = F/o, where 

g0=km (2tn-- I) ~-ra2--2m-~- I, tt----2m, (4.46) 

go----ra(2km+kq-m--l), n-----2m+ I (4.47) 

(all formulas are given for the case of general position). We shall obtain necessary condi- 
tions on the position of the divisor D of poles of the Bloch functions. We have the follow- 
ing result. 
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THEOREM 4.3. The differential fi of the form (4.33) constructed above is antisymmetric 
relative to the involution o: 

(x, ~ (P))----- - -  e (X, P) .  (4.48) 

Its zeros have the form 

D+o(D). (4.49) 

The proof of this theorem is similar to the proof of Theorem 4.2, and we shall omit it. 
We note that the equivalence classes of divisors described in this theorem form the Prym 
manifold of the two-sheeted covering P § P0. 

5. Construction of (Complex) Finite-Zone Operators 

In the preceding section we studied the spectral properties of matrix operators of the 
form (3.1) with periodic coefficients. In this section we shall take up the solution of the 
"inverse problem," i.e., reconstruction of the coefficients of a finite-zone operator on the 
basis of its spectrum, the Riemann surface P and the supplementary spectrum-- the poles of 
the Bloch function. It will become evident below that, generally speaking, we hereby obtain 
quasiperiodic coefficients. This situation is characteristic for the solution of inverse 
problems in the theory of finite-zone operators [43]. 

Let F be an arbitrary Riemann surface of genus g. On it we fix n distinct points PI,..., 
Pn" Let kT1,...,k~ I be local parameters in neighborhoods of these points. We choose an arbi- 
trary nonspecial divisor D of degree g + n -- I. Let ~3 = ~J(x, P) be the Baker--Akhiezer (BA) 
function with poles at the points of this divisor and with asymptotics as P § PZ of the form 

, , (x,  . . . . .  . ( 5 . 1 )  

(we recall that such a function is uniquely determined on the basis of the divisor D). Here 
x = (xl,...,xn), and el .... ,e n are numbers of the form (4.3). We have the following result. 

LEMMA 5.1. For the functions ~J the following linear equations are satisfied: 

#~xt--i~tJ@l, l~  j. (5.2) 

The proof of this lemma is altogether standard for the theory of BA functions (cf. [26]). 

For n = 2 Eqs. (5.2) are always compatible. For n > 2 the compatibility conditions can 
be written in the form 

O~lj l i o---ff +Vkt~Jk=O' i ~ j ,  k~i ,  j .  (5.3)  

This system is the simplest function connected with the n-point BA function with n > 2 (this 
is similar to the fact that the Kadomtsev-Petviashvili equation is the simplest in the theory 
of one-point BA functions). On imposing the additional condition 

~ Ov ~ l 
kfl ~-~x k =0 (5.4) 

the restriction of the matrix V = (v�88 to a two-dimensional plane of the form 

Xk=a~+bkt, k = I  . . . . .  n ,  (5.5) 

satisfies Eq. (3.8). To obtain the additional condition (5.4) it is necessary to require 
that on the surface r there exist a meromorphic function % = %(P) with poles of first order 
at the points PI,.--,Pn (and having no other poles). Then the function % realizes F as an 
n-sheeted covering of the complex plane. (All n-sheeted coverings are obtained in this way.) 
In this case for kl,...,k n it is possible to take the function % itself. The functions ~3 
then satisfy the following equality is satisfied: 

'~O--.~-T-- _ "  OgJ --i~J, j = l ,  .... n: (5.6) 
k = l  

Conclusion. For n-sheeted surfaces F the restriction of the function ~ to the line x k = 
ak x, k = 1,...,n, is an eigenfunction of the operator 
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L(L)=iOx+kA--U,  U = [ A , V ] ,  L ( X ) ~ = O .  ( 5 . 7 )  

S u p p o s e  t h a t  on t h e  s u r f a c e  F,  a s i d e  f r o m  t h e  f u n c t i o n  ~ ,  t h e r e  e x i s t s  a n o t h e r  f u n c t i o n  
= p ( P )  w i t h  p o l e s  o f  f i r s t  o r d e r  a t  t h e  p o i n t s  P z , - . . , P n  a n d  

P=ck~+dk+O(L-l) ,  P ~ P k .  ( 5 . 8 )  

Then the vector ~ is an eigenvector for the matrix 

M(L) =XC--[C,  V I + D ,  ( 5 . 9 )  

C = d i a g ( c l  . . . . .  c , ) ,  D = d l a g ( d t  . . . . .  d , ) ,  ( 5 . 1 0 )  

a n d  t h e  R i e m a n n  s u r f a c e  F i s  a p l a n e  a l g e b r a i c  c u r v e  o f  d e g r e e  n g i v e n  b y  t h e  e q u a t i o n  

de t  (~ - -  M (X)) = O. ( 5 . 1 1  ) 

A l l  t h e s e  f a c t s  a r e  a l t o g e t h e r  s t a n d a r d  f o r  t h e  t h e o r y  o f  BA f u n c t i o n s .  We n o t e  t h a t  i f  t h e  
g e n u s  o f  t h e  s u r f a c e  F i s  e q u a l  t o  ( n  --  l ) ( n - -  2 ) / 2 ,  t h e n  t h e  p l a n e  c u r v e  ( 5 . 1 1 )  i s  n o n -  
s i n g u l a r .  The  m a t r i x  V = ( v ] )  c o n s t r u c t e d  on t h e  b a s i s  o f  a p l a n e  c u r v e  F c C P  2 o f  d e g r e e  

n s a t i s f i e s  t h e  c o m p l e x  e q u a t i o n  o f  E u l e r  t y p e  

- i i c ,  VxI+iD~+[IA, VI, tO, VI+D] =0,  (5.12) 
w h e r e  x k = a k X .  The  p o i n t s  P 1 , . . . , P n  a r e  o b t a i n e d  a s  t h e  i n t e r s e c t i o n  o f  t h e  c u r v e  r w i t h  
a n y  l i n e  i n  CP 2.  The c h o i c e  o f  " s p e c i a l  p a r a m e t e r "  ~ on t h e  c u r v e  F i s  e q u i v a l e n t  t o  a c h o i c e  
o f  a p e n c i l  o f  l i n e s  o f  CP 2 ( o n e  o f  t h e  l i n e s  o f  t h i s  p e n c i l  a l s o  i n t e r s e c t s  t h e  c u r v e  F a t  
t h e  p o i n t s  P 1 , . . . , P n ) .  To p r e s c r i b e  s u c h  a p e n c i l  i t  i s  n e c e s s a r y  t o  f i x  a p o i n t  i n  CP z n o t  
l y i n g  on r .  T h u s ,  e a c h  p l a n e  c u r v e  F o f  d e g r e e  n a n d  p o i n t  i n  CP 2 n o t  l y i n g  on r g i v e s  a 
o n e - p a r a m e t e r  f a m i l y  o f  e q u a t i o n s  o f  t h e  f o r m  ( 5 . 1 2 )  ( t h e  c o e f f i c i e n t s  C, D d e p e n d  on t h e  
c h o i c e  o f  s e c a n t  i n  t h e  p e n c i l ) .  I n  o r d e r  t h a t  t h e  m a t r i x  D v a n i s h  i t  i s  n e c e s s a r y  t h a t  t h e  
t a n g e n t s  t o  F a t  t h e  p o i n t s  P z , - - . , P n  p a s s  t h r o u g h  a s i n g l e  p o i n t .  T h i s  i m p o s e s  n , 1 a d d i -  
t i o n a l  conditions on the plane curve F. 

If, in addition, the potential V does not depend on x, then we obtain stationary solu- 
tions of Eqs. (5.12). In order to construct such solutions there must exist on F a third 
function with simple poles at PI,...,Pn which does not reduce to ~, ~. There are no such 
functions on nonsingular plane curves. 

Conclusion. Singular curves F correspond to stationary solutions of Eqs. (5.12) of 
Euler type. 

We return to the case of an arbitrary Riemann surface F. We define the formally dual 
BA function 4 + = (,~ .... ,,~) by the following conditions: 

+ 
I) the functions ,j have asymptotics of the form 

[ ~+ 
(k~2)), p.-+pt; (5.13) , j+  = , j+  (x, P)  = 87~e -~kl~t ~6/+--~7-t+ 0 

+ 
2) t h e  f u n c t i o n s  S j  h a v e  p o l e s  a t  p o i n t s  o f  a d i v i s o r  D + o f  d e g r e e  g + n --  1. 

3) T h e r e  e x i s t s  a m e r o m o r p h i c  d i f f e r e n t i a l  ~ w i t h  p o l e s  o f  s e c o n d  o r d e r  a t  t h e  p o i n t s  
P x , . . . , P  n o f  t h e  f o r m  

n -= o,dk, ( 1 - b O  (k7')), P"+Pt, ( 5 . 1 4 )  

s u c h  t h a t  i t s  z e r o s  h a v e  t h e  f o r m  D + D +.  I n  t h e  c a s e  o f  g e n e r a l  p o s i t i o n  t h e  d i v i s o r  D + i s  
u n i q u e l y  d e t e r m i n e d  b y  t h i s  c o n d i t i o n  a n d  i s  c a l l e d  t h e  d i v i s o r  d u a l  t o  D. 

We define the meromorphic differentials 

Q /  (x, P )  ---- ~j+ (x, P )  *I (x, P )  ~ ,  i ,  j = l  . . . . .  n. ( 5 . 1 5 )  

At infinity these d~fferentials have poles (they have no other singularities). For 
i x j the differential ~% has simple poles at the points Pi and Pj; for i = j the differen- 

J 
i 

tial ~i has a double pole at the point Pi. From (5.1), (5.13), and (5.14) it follows easily 
that 

f l / _ _ J ~ / ~ - + .  . . . .  k = k , ,  P"+P,,  (5.16) 
J - - I v  F ak + , k = k j ,  P--"Pr 

~J k "'" 
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~t l=dk( l+O(k- l ) ) ,  k----ki, P ~ P i .  (5.17) 

Applying the residue theorem to the differential ~, we obtain 

~;=--~/- (5.18) 

Finally, we note that the rank of the matrix ~ of the form (5.15) is equal to I. We shall 
obtain explicit formulas for the matrices ~. j 

LEMMA 5.1' The matrices of differentials (~ (P)) satisfying the conditions enumerated 
above form a family of dimension g + n -- I. Each such matrix is determined by a point of the 
Jacobian J(F) of general position and by a collection of nonzero complex constants %1,...,%n 
defined up to a factor and has the form 

~jt(p)___Xl O(A(P)--A(PD -z)O(A(P)-A(PO+z)  
X--~ O' (z) E(P,, P) E(P, Pj) V dk7 ' V d k 7  i ( 5 . 1 9 )  

The proof of the assertion of the lermaa regarding the dimension can be easily deduced 
from the Riemann--Roch theorem. It is also easily verified that the matrix (5.19) has rank I 
and poles of the required form. Here the vector z is connected with the original divisor D 
by the relation on the Jacobian J(F) 

z - - A  D - -  Pj -}-fig" (5.20) 

We note also that 

- - z ~ A  D §  pj  + ~ .  ( 5 . 2 0 ' )  

In  t h e s e  f o r m u l a s  ~ a r e  t he  Riemann c o n s t a n t s .  The q u a n t i t i e s  k l , . . . , k n  have  t h e  fo rm 

g+n--I Os g+n-I 

D =  O,. j = l  . . . . .  (5.20") 
s ~ l P ,  s = l  

where  Q0 i s  an a r b i t r a r y  p o i n t  of  t he  s u r f a c e  F, OQoPj a r e  n o r m a l i z e d  d i f f e r e n t i a l s  o f  t h i r d  

k i n d  w i t h  s i m p l e  p o l e s  a t  t he  p o i n t s  Q0, P j ,  and xj a r e  some c o n s t a n t s .  

Remark.  A mapping D + ( z ,  k l ,  . . . .  ~n) of  t h e  fo rm ( 5 . 2 0 ) ,  ( 5 . 2 0 " ) ,  where  degD = g + n -- 
1, i s  an a n a l o g u e  o f  the  Abel  mapping ( s e e  t h e  Appendix)  d e f i n e d  w i t h  t h e  h e l p  of  d i f f e r e n -  
t i a l s  of  f i r s t  and t h i r d  k i n d s  on F \ ( P 1 U  . . .  U P , )  ( c f .  [ 4 6 ] ) .  The c o l l e c t i o n  of  p a r a m e t e r s  
( z ,  k l , . . . , X n ) ,  where  zECe, i s  d e t e r m i n e d  n o n u n i q u e l y  up to  t r a n s f o r m a t i o n s  

z ~  z + 2niN + BM, ( 5 . 2 1 )  

X i ~ x j e x p ( M ,  A ( P i ) ) ,  j = l  . . . . .  n, 

where N, lYlEZg. This means that the collection of all matrices (~) of the form described 
above is fibered over the Jacobian J(P) with fiber (c*)n-1; the relations (5.21) are the tran- 
sition formulas of this fibering. The origin of this fibering can be described in another 
way as follows: by replacing the divisor D by a linearly equivalent divisor D' ~ D, we obtain 
BA.functions differing by a meromorphic factor. This leads to the replacement of the matrices 
(v~) and (~) by similar matrices (v~) § A - I ( v ~ ) A ,  (~{)~ § A- I (~ )A ,~  where A = diag ( % l , . . . ,  

kn). The linear equivalence classes of divisors form the Jacobian J(r). 

We shall now consider explicitly the dependence on x = (xl,...,xn). 

LEMMA 5.2. Let U(1),...,U (n) be the vectors of periods of normalized meromorphic dif- 
ferentials ~pl,...,~pn with double poles at the points PI,...,Pn, respectively. Then the 
dependence of the parameters (z, %1 .... ,%n) on (5.19) on xl,...,x n is given by the following 
formulas: 

Z = i  ~ x I U  (1) ~ Zo, (5.22) 
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(z0 is an arbitrary g-dimensional vector), 

~j=~j~ m, 
m§ 

(5.23) 

where 

d InE  (P, PDIP=Pm, (5.24) 

and X~, i = 1 , . . . , n ,  a r e  a r b i t r a r y  n o n z e r o  c o n s t a n t s .  

P r o o f .  The d i v i s o r  of  z e r o s  of  t h e  d i f f e r e n t i a l  ~ j i  o f  t h e  f o r m  ( 5 . 1 9 )  can  b e  r e p r e -  
s e n t e d  a s  t he  sum D i + Dj ,  where  D i ,  Dj a r e  d i v i s o r s  of  d e g r e e  g such  t h a t  

A (D~--PO=z--X, ( 5 . 2 5 )  

A (Dj--Pj)=--z--9~ (5.26) 

(~ are the Riemann constants). For a point z of general position these divisors are non- 
special. On the basis of them we construct the BA functions ~l and ~j+ , respectively, where 

@t(X, P)=etkXl(c/-{-O(k-')), k=kj, P-+Pi' (5.27) 

~j+(X, P)=e-'kx'(c;t+O(k-')), k-~k,, P--->-P,, (5.28) 

where c~ = c~ j = I. Then 
l 3 

i 
where ~ (x 
(z0, ?~o). 

fair(X, P ) = ( p I ( x ,  P)(Dj+(X, P) fa/(P), ( 5 . 2 9 )  

, P) h a s  t h e  f o r m  ( 5 . 1 5 ) ,  and g~(P)  h a s  t h e  f o r m  ( 5 . 1 9 )  w i t h  t h e  change  ( z ,  ~) + 
For the functions ~l, ~j+ we obtain 

r (x, P)  = r ~ (x) exp i 0 (A (P)--A (P~) + iZx,U (k) + Zo) 
0 (A (P) - -A (PD+zo)  ( 5 . 3 0 )  

el(x, p}==j+(x}exp - i5  
Po k=l 

0 (A (P)--A (Pi)--iExkU (k) --zo) 
0 (A (P)--A ( P j ) - - z o )  ' 

where ai(x), + aj(x) are normalizing factors having the form 

Pt 

0 (Zo) 

O(i~x'UC"+Zo) 

0 (Zo) 

(5.31) 

(5.32) 

(5.33) 

(5.34) 

(for k = i the integral is understood in the sense of principal value). In the expression 
(5.29) only the difference 

Pl 

a,k (535) 
Pj 

make a contribution. Evaluating this integral in terms of the Prym form E(P, Q), we obtain 
the formulas (5.24). The proof of the le~na follows from this and (5.29). 

Summarizing the lemmas proved, we obtain the following result. 

THEOREM 5.1. a) The collection of complex finite-zone operators of the form (5.2) with 
given spectrum F forms an (n- |)-dimensional bundle of the form (5.21) over the Jacobian 

J(r). 
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b) The functions 
( n ) 

8 A (P~)--A(Pl)+i~_~ xkU(k)+zo 
(5.36) v / ( x )  Xt (x) ,=1 

( i  ~ j ) ,  where the  q u a n t i t i e s  Xi(x)  a r e  d e f i n e d  by e q u a l i t i e s  ( 5 . 2 3 ) ,  a r e  t he  c o e f f i c i e n t s  of  
t h e s e  f i n i t e - z o n e  o p e r a t o r s  and a r e  t hus  s o l u t i o n s  of  the  sy s t em ( 5 . 3 ) .  

We r e c a l l  t h a t  f o r  n - s h e e t e d  Riemann s u r f a c e s  F t h e s e  f u n c t i o n s  f o r  xk = akx g i v e  a l l  
complex f i n i t e - z o n e  p o t e n t i a l s  of  o p e r a t o r s  o f  t he  fo rm ( 3 . 1 ) ,  ( 3 . 3 )  and thus  a I1  f i n i t e -  
zone s o l u t i o n s  of  the  s y s t e m  ( 3 . 8 ) .  

Remarks.  To t he  changes  of  i o c a l  p a r a m e t e r s  

k l ~ c i k ~ +  . . . .  i = l  . . . . .  n, (5 .37 )  

t h e r e  c o r r e s p o n d s  the  g roup  of  t r a n s f o r m a t i o n s  of  the  o r i g i n a l  sy s t em of the  form 

v/~c}~/, x j~cf lx} .  (5 .38 )  

6. A C r i t e r i o n  That  t he  F i n i t e - Z o n e  O p e r a t o r  P e n c i l s  C o n s t r u c t e d  Be 

J - H e r m i t i a n .  P l a n e  Real  Curves  C o r r e s p o n d i n g  to  S o l u t i o n s  of  the  

E u l e r  E q u a t i o n s  

THEOREM 6 . 1 .  Le t  F be an a r b i t r a r y  Riemann s u r f a c e  of  genus  g w i t h  a n t i i n v o l u t i o n  T 
of  s e p a r a t i n g  t y p e .  Suppose t h a t  t he  p o i n t s  P 1 , . . . , P  n a r e  f i x e d  r e l a t i v e  to  ~. We c h o o s e  
l o c a l  p a r a m e t e r s  k T 1 , . . . , k ~  1 i n  n e i g h b o r h o o d s  of  t h e s e  p o i n t s  which a r e  symmet r i c  r e l a t i v e  
to  T, 

�9 * k j = ~ ,  ( 6 . 1 )  

whereby the  s i g n  of  the  d i f f e r e n t i a l  dk~ 1 i n  a n e i g h b o r h o o d  of  the  p o i n t  P: i s  equa l  to  ~: = 
J 0 0 • j = 1,...,n. Suppose that the parameters (z0, Ii .... ,In) , which defin~ J �9 the finite-zone 

potential V = (v]) in accordance with formulas (5.36), (5.23), (5.24), are subject to the 

following conditions: 1) the vector z0~J(F) has the form (A.36) of the appendix [the basis of 
cycles in HI(r) is chosen in the form (A.31), (A.32)]; 2) the constants ll,...,Xn are equal 
to one in modulus. Then formulas (5.36), (5.23), (5.24) determine a smooth finite-zone po- 
tential V = (v~) of the operator (5.2) with the J-Hermitian condition 

~/= -- ~i%V/. (6.2) 

In the case where on F there exists a meromorphic function I with simple poles at the points 
PI,...,Pn, where kj = I in a neighborhood of the point Pj, j = ... n, the conditions listed 
on the Riemann surface F, the antiinvolution T, the position on1~ of'the points PI,-..,Pn, 
the signs of dl in neighborhoods of the points Pj, and the values of the parameters (zo, 
I~,...,~) are also necessary. 

Proof. We shall first prove sufficiency of the conditions of the theorem. Under the 
conditions listed we have for differentials ~�88 = fl~ dk~il ~ of the form (5.19) a symmetry 
of the form 

J 

~/@(p))=~J(P), i, ]=l ..... n. (6.3) 

This follows immediately from the explicit formulas (5.19), (5.23), (5.24) if we use the. 
symmetry (A.34) of the theta function and the Prym form (A.37). For the differentials fl~ 
because of the condition on the signs of dkT1,...,dkn I, there is the relation 

~/(T (P)) : ff~j~i j (P). (6.4) 

The expression (6.2) follows from this and from the formulas (5.16) for the residues. 

Suppose now that on F there exists a meromorphic function I with simple poles at the 
points PI,...,Pn- From Theorem 4.1 there then follow the conditions on the Riemann surface 
F, the position of the points PI,...,Pn, and signs of dl in neighborhood of these points. 
Further, from Theorem 4.2 we obtain the linear equivalence 
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D +~ (D) ~K+2 ~ Pj. (6.5) 
j=l 

Because of (5.20), this implies that the vector z must lie on one of the imaginary compo- 
nents of the Jacobian J(F). That this component has the form (A.36) follows from the smooth- 
ness of v~ (otherwise there would be singularities due to the zeros of O(z); cf. [46]). We 

shall now show that the constants %~,...,%o are unimodular. Indeed, for %~ = I, i = I .... ,n 
n 

the symmetry (6.4) is clearly satisfied~ for differentials ~ of the form (5.19). The extent 

of nonuniqueness of the matrix (~) of rank I with respect to the quantity z0 consists in 

transformations of the form ~%0~/(%j0)-I These transformations preserve the syrmnetry 
(6.4) if and only if all the constants %? are unimodular. The proof of the theorem is com- 

i 
plete. 

i 
Sufficient conditions for the symmetry of the matrices vj [the skew symmetry L+(--%) = 

--L(%), J = I] and also their necessity for Riemann surfaces r which are n-sheeted coverings 
are obtained similarly. 

THEOREM 6.2. In order to obtain symmetric matrices V = (v~), to the conditions listed 
on the Riemann surface F, the position of the points on it, the signs of the local parameters, 
and the local parameters (z0, %~,...,%~) it is necessary to add the following condition: on 
the surface F there must be given an involution o, where o~ = To, o(Pj) = Pj, j = I ..... n. 
The vector z0 must lie on the odd part of the Jacobian J(F), o(z0) ~ --z0 (the Prym manifold), 
and (%~)2 = I, i = 1,...,n. 

Sufficiency of these conditions can easily be obtained from the explicit formulas (5.36) 
and elementary properties [46] of Riemann surfaces with an involution and their theta func- 
tions. Necessity (for n-sheeted coverings) follows easily from the results of Sec. 4. 

For J = I the conditions obtained can be made still more effective by describing neces- 
sary and sufficient conditions on the Riemann surfaces F giving Hermitian pencils of operators 
L(%). As an example, we shall here treat the simplest finite-zone operators L(%) for which 
the matrix M(%), commuting with L(%), has the form 

M(X)=XC--[C, V]+D, V*=--V, (6.6) 

where C = diag (Cl,...,Cn) , D = diag (dl ..... d n) are real matrices and c i # c~ for i # j. 
�9 ' 

As already mentioned, the coefficients V =(v ) of the operator L(X) satisfy equations of the 
form 

i[C, Vx]--iDx=[[A, V], [C, V]--D]. ( 6 . 7 )  

F o r  D = 0 we o b t a i n  t h e  i n t e g r a b l e  E u l e r  e q u a t i o n s  f o u n d  by  S. V. Manakov .  

I n  t h i s  c a s e  t h e  R i e m a n n  s u r f a c e  F o f  t h e  s p e c t r u m  o f  t h e  o p e r a t o r  L(%) h a s  t h e  f o r m  

R(X, v)=det (v--M (X)) =0. (6.8) 

This is a plane algebraic curve of degree n. We have the following result. 

LEMMA 6.1. For a skew-Hermitian matrix V of general position all branch points of the 
Riemann surface F of the form (6.8) are nonreal and pairwise distinct. 

Proof. Nonrealness of the branch points has been proved above (see See. 4). Noncoin- 
cidence of the branch points follows from the fact that the coefficients of the discriminant 
A(X) of the polynomial R(~, ~) (deg&(l) = n(n -- I)) are independent as functions of V. 

COROLLARY. For a skew-Hermitian matrix V of general position a plane real curve r of 
the form (6.8) is nonsingular. The real plane nonsingular curves of degree n thus obtained 
belong to a single isotopy class. 

Proof. Because of Lemma 6.1, an n-sheeted Riemann surface F of the form (6.5) has 
n(n -- I) branch points in the case of general position. Its genus g is then g = (n -- 1)(n -- 
2)/2 according to the Riemann-Hurwitz formula. Now a plane curve of degree n of this genus 
is necessarily nonsingular (singularities would reduce the genus). Further, appearance of 
a singularity on the real axis can occur only by the coalescing of a pair of eigenvalues ~i, 
~j of a matrix M(%) of the form (6.6). But for real ~ this matrix is Hermitian. Hermitian 
matrices with coincident eigenvalues have codimension 3 in the space of all Hermitian ma- 
trices. Therefore, for a general one-parameter deformation of the matrix V coalescence of 
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the eigenvalues does not occur for a family of matrices M = M(%) of the form (6.6) (% is 
real). Coalescence of complex conjugate pairs of branch points occurs on a submanifold of 
codimension 2 in the space of curves of the form (6.5). This implies that a general one- 
parameter deformation of one curve of the form (6.8) into another such curve gives nonsingular 
curves. The proof of the corollary is complete. 

We shall now study the question of the position on RP 2 of real components of curves of 
the form (6.8) with V* = --V (according to the corollary, this position is the same for all 
curves of this form). We have the following result. 

THEOREM 6.3. For n = 2m the real components of nonsingular curves r~RP 2 of the form 
(6.8) consist of m ovals imbedded in one another (a "nest" of m ovals). For n = 2m + I, 
aside from the nest of m ovals, there is still one one-sided cycle in RP 2 (the "projective 

line"). 

Proof. The curve (6.8) intersects the infinitely distant line in RP 2 at n distinct 
points PI,...,Pn, Pj = {~ = ~, v/~ = cj}. Considering the absence of real branch points, we 
obtain the following: each line % = const on Rp2intersects the curve F in n distinct points. 
We shall assume that the numbers cj are arranged in decreasing order: cl > c2 > ... > c n. From 
what has been said it follows that the branch of the curve F having as asymptote as % + + 
the line v = ci% + d i for % § has as asymptotic the line ~ = cj% + dj, where j = n -- i + I 
(see Fig. 4). The assertion of the theorem obviously follows from this. 

From the proof it also follows that the points PI,...,Pn are situated on the real com- 
ponents of the curve r in the following manner: for n = 2m the pairs of points Pj and Pn-j+1 
lie on the j-th oval (counting from the outside). For n = 2m + I the position of the pairs 
Pj and Pn-j+l for j ~ m + I is the same as for even n, while the point Pm+l alone lies on the 
one-sided component of the curve F. (We recall that we consider the numbers cl,...,Cn to be 

ordered; this determines the order of the points PI,...,Pn-) 

Conversely, suppose that F is a plane real nonsingular curve of degree n with [(n + I)/ 
2] components arranged as described in Theorem 6.1. Then the corresponding complex Riemann 
surface F belongs to separating type [36]. We have seen in Sec. 5 that to represent a plane 
curve of degree n in the form (6.8) it is necessary to choose a "spectral parameter" % on it, 
i.e., a pencil of lines passing through some point in CP 2 We choose this point in RP~CP 2 
lying strictly within the innermost oval of the curve r. We choose coordinates %, v in RP 2 
so that this point lie on a nonsingular line. Let PI,-..,Pn be nonsingular points of the 
curve F, where for P § Pj, % § =, v = cj% + dj + O(%-I). We choose a basis of cycles a i, b i 
on the Riemann surface F as described in the Appendix for curves of separating type. From 
Theorem 6.1 we immediately obtain the following result. 

THEOREM 6.4. Under the conditions listed on the Riemann surface F, the choice of spec- 
tral parameter % on it and of points Pl,-..,Pn, and also the basis of cycles of type (A.30) 
formulas (5.36) give the coefficients of a Hermitian pencil of operators L(%) of the form 

0 
(5.7) for x k = akX where the constants in%~,...,In%n are purely imaginary, and the vector 

z0 has the form 

~(k--1) 2, n=2k, (6.9) 
zo=(~, r, 0, ~E Cp, r~R g-~, P=Lk(k--1), n ~ 2 k + l .  

We recall that if the points PI,...,P n on the curve r are such that the tangents at them 

intersect at one point, then the matrix D can be made zero by an appropriate choice of the 

coordinate ~. 

We now add to the condition that V be skew-Hermitian the condition that V be sy~mnetric. 
On the plane curve F there then arises an involution o:(%, v) (--%, --u). The diagonal matrix 
D is hereby automatically equal to zero if the points PI,...,Pn are fixed under o. Plane real 
curves with an involution o having n branch points for even n and n + I branch points for odd 
n can be classified according to the number of purely imaginary branch points. For n = 4k + 
2, 4k + 3 there is always one pair of imaginary branch points W~, W~ = T(W0). Moreover, there 
are k purely imaginary quadruplets of branch points situated symmetrically relative to ~, 
0 ~ 4k ~ n 2 -- n -- 2. For n = 4k, 4k + I there are k purely imaginary quadruplets of branch 
points 0 ~ 4k ~ n 2 -- n. In all cases the number k is a topological invariant of the triplet 
(F, T, o), where T is an antiinvolution on the surface F and o is an involution. There are 

no other topological invariants (except the degree) for plane curves F of degree n with non- 

real branch points. 
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Plane curves F of degree n with an involution of the type described above make it pos- 
sible to construct the simplest Hermitian finite-zone operators L(1) with the condition of 
skew-symmetry L+(--I) =--L(1). The coefficients of these operators, as already repeatedly 
mentioned in the present survey, are solutions of the Euler equations (3.15) for the right- 
invariant metrices on the group SO(n) found by Manakov [30]. Each invariant manifold (an 
invariant torus) of such systems determines a real Riemann surface F with an involution o 
of the form (6.5) where the coefficients of the polynomial R(I, ~) are integrals of the sys- 
tem (3.15). Each such invariant manifold is isomorphic to a collection of finite-zone oper- 
ators L(1) with spectrum F. This makes it possible to prove that the invariant tori of the 
Euler equations on the group SO(n) of the form (3.15) corresponding to Riemann surfaces 
of the form (6.8) are isomorphic to coverings over the Prym manifold of the surface F with 
involution o. The proof of this assertion and also an analysis of the explicit formulas for 
solutions of the Euler equations on SO(n) we shall present in a subsequent work. 

APPENDIX 

Some Facts from the Theory of Riemann Surfaces and Theta Functions 

Let F be a compact Riemann surface of genus g ~ I.* If F is the Riemann surface of an 
algebraic function w = w(z) given by the equation 

R (Z, ~) = ~t~ + at (Z) ~ , - t  + . . .  + a ,  (Z)=0,  (A. 1 ) 

where R(z ,  w) i s  a p o l y n o m i a l ,  t h e n  t h e  a f f i n e  p a r t  o f  F c o i n c i d e s  w i t h  the  complex a l g e b r a i c  
curve (A.I) in C 2 in the case where this curve is nonsingular (smooth). An important example 
for us are plane curves of degree n where the degree of the polynomials ai(z) are equal to i 
(i = 1,...,n). The surface (A.|) covers the z plane in n-sheeted fashion under the natural 
projection (z, w) § z, i.e., to a given value of z, generally speaking, there correspond n 
distinct values wl(z) ..... Wn(Z) of the algebraic function w(z) defined by Eq. (A.I). Branch 
points are formed on the surface F when several of these branches coalesce. They are defined 
from the following system: 

(Z, ~ ) = 0 ,  ~w (Z; ~ ) = 0 .  (A.2)  

For  a p l a n e  n o n s i n g u l a r  cu rve  o f  d e g r e e  n we o b t a i n  n (n  -- 1) b r a n c h  p o i n t s .  The genus (number 
o f  h a n d l e s )  o f  such  a Riemann s u r f a c e  i s  equa l  to  g (n -- 1 ) (n  -- 2 ) / 2 .  I n  the  o n e - d i m e n s i o n a l  
homology group Hi(F)  = Z + . . .  + Z (2g te rms)  i t  i s  p o s s i b l e  to  choose  a b a s i s  of  c y c l e s  ' c l o s e  
( c l o s e d  c o n t o u r s )  a l , . . . , a g ,  b l , . . . , b g  w i t h  the  f o l l o w i n g  i n t e r s e c t i o n  i n d i c e s :  

aioaj-~.b?bj-~O, aiobj=Su; i, j..=l . . . . .  g. (A.3)  

A b a s i s  of  t he  h o l o m o r p h i c  d i f f e r e n t i a l s  ( o f  f i r s t  k ind )  on a p l a n e  n o n s i n g u l a r  c u r v e  o f  d e -  
g r e e  n has  the  form 

zlw] dz,  i + j < n - - 3 .  (A.4) 

Chosing suitable linear combinations ~ci1~', we obtain the canonical basis of holomorphic 
differentials 

O) 1 ) . . . , ~ g ,  

normalized by the conditions 

The matrix B = (Bjk) 

(A.5) 

~mj=2#iSj#; j, k=1 (A.6) g. 

a k 

Bj~--~@~j; j, k = l  . . . . .  g, (A.7)  

b k 

i s  c a l l e d  the  p e r i o d  m a t r i x  of  t he  Riemann s u r f a c e  F. Th i s  m a t r i x  i s  symmet r i c  and has  n e g a -  
t i v e - d e f i n i t e  r e a l  p a r t .  On the  b a s i s  of  t h i s  m a t r i x  we c o n s t r u c t  a 2 g - d i m e n s i o n a l  t o r u s  
T2g = J (F )  c a l l e d  t h e  J a c o b i  m a n i f o l d  ( o r  J a c o b i a n )  of  the  Riemann s u r f a c e  F: we s e t  

J (P) = Cg/{2niN + BM I N,  MEZg}. (A. 8) 

*Only compact  Riemann s u r f a c e s  w i l l  be e n c o u n t e r e d  be low ,  and we s h a l l  n o t  m e n t i o n  t h i s  each  t ime .  
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The (Riemann) theta function of the surface F is constructed on the period matrix B = (Bjk) : 

O ( z ) =  2exp{l<BN, N ) q - ( N , z ) } ;  
IV~Z g 

Z = (Z, . . . . .  Zg), 
(A.9) 

N = (NI . . . . .  Ng), < N, z ) = 2Njzj, 

< B N ,  N ) = 2 B u N ' N i "  

Under translation of the argument z by a vector of the period lattice the theta function 
transforms according to the following law: 

O(zq-2giNq-BM)=exp{-- 1 ( BM, M) -- ( z, M) }0(z); 

N,  MEZg. 
(A. I0) 

Theta functions with the following characteristics are also frequently used: 

 l(z =0x {�89 < > + < > 
(A.I I) 

Characteristics [a, B] for which all coordinates are equal to 0 or I/2 [we write this as 
follows: 2~@((Z2)g , 2~@(Z2)~) ] are called half periods. A half period [a, B] is even if 4<a, 
3> E 0 (mod 2) and is odd otherwise. 

The Abel mapping of the Riemann surface F into its Jacobi manifold J(F), A(P) = (At • 
(P),...,Ag(P)) has the form 

P 

A k ( P ) = ~ k ,  k = l  . . . . .  g, 
P0 

where P0 is a fixed point on F. 

A divisor on F is a formal integral l inear combination of points of F: 

N 

D = ~.d n ,P~,  n~EZ. 

(A. 1 2) 

(A. 13) 
l=i 

For example, for any meromorphic function f on F we define the divisor (f) of its zeros 
PI,...,Pn and poles QI,--.,Qm of multiplicities Pl,..-,Pn and ql,..-,qm, respectively (p1+...+ 

Pn = ql + ... + qm) by 

( f )  ---- P , P ,  - } - . . .  -6  p ,  P n - -  q , Q ~ -  . . . - qmQm . (A. 14) 

( such  d i v i s o r s  a r e  c a l l e d  p r i n c i p a l  d i v i s o r s ) .  The d i v i s o r s  form an A b e l i a n  group in  the  
o b v i o u s  way. The d e g r e e  o f  the  d i v i s o r  D = EniPi  i s  t he  number 

deg D = ~ n~. (A. 15) 

The Abel mapping (A.12) extends l inear ly to the group of a l l  divisors.  

Two divisors are called l inear ly  equivalent i f  their  difference is a principal divisor.  
According to the c lass ica l  Abel theorem, the necessary and suff ic ient  conditions for l inear 
equivalence of divisors D and D' have the form 

I) degD=degD', 2) A(D)~-A(D') (A.16) 

Here and henceforth the symbol E is used for equality on the Jacobi manifold, i . e . ,  equality 
modulo the period l a t t i c e .  

Example. The divisors of the zeros and poles of two d i f fe ren t i a l s  ~, m' meromorphic 
on F are l inear ly  equivalent. This class of divisors is called the canonical class of the 
surface F and is denoted by K (degK = 2g -- 2). 

A divisor D = EniP i for which a l l  the mul t ip l i c i t i es  n i are positive is called posit ive 
(or e f fec t ive) .  Two divisors D, D' are connected by the inequality D ~ D', by defini t ion,  i f  
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their difference D -- D' is a positive divisor. We note a useful property of divisors of 
degree ~g: any such divisor is linearly equivalent to a positive divisor. For positive divi- 
sors D = EniP i the dimension ~(D) of the space of meromorphic functions f on F for which the 
following inequality is satisfied is of interest: 

(r) ~--O. (A. 17) 

This space consists of those meromorphic functions which can have poles only at points Pi 
of multiplicity no greater than n i (constants are also contained in this space). For a posi- 
tive divisor of general position the dimension l(D) has the form 

{~ d e g D  ~ g ,  (A. 18) 
/(D)----- ~ g D - - g + l ,  d e g D  > g .  

(the second formula is also valid for any divisor D if degD > 2g -- 2). Divisors D for which 
~(D) = degD -- g + I are also called nonspecial. 

Example. For an n-sheeted Riemann surface of the form (A.I) divisors Dz0 of the form 
Dz 0 = PI + ... + Pg, where Pi = (z0, wi(z0)), i = 1,...,n, are preimages of the point z0, are 
all linearly equivalent to one another for different z0. The function f(z) = (z -- z0) -I has 
poles of first order at points of the divisor Dz0. Therefore, ~(Dz0) ~ 2. For a plane curve 
of degree n we have l(Dz0) ~ 3 (actually, in the nonsingular case equality always holds). 
Indeed, we take z0 = =, then the functions z and w have poles of no more than first order at 
the "infinitely distant" points of the surface F. The inequality Z(D) ~ 3 for some divisor 
D of degree n is characteristic for plane curves of degree n. 

On the manifold F we fix a point P0 and consider the Abel mapping defined on unordered 
collections (Pz,...,Pg) of points of F, i.e., on the g-th symmetric power sgF. The Abel map- 
ping also defines the mapping 

g 

A :SgF --+ J (F); A (P~ . . . . .  Pg) =~_j A (Pj). (A. 1 9) 
j=l 

The problem of inverting this mapping is known as the Jacobi inversion problem. Its 
solution (Riemann) can be given in the language of theta functions. Namely, if for a vector 

= (~i, .,~g) the function e(A(P) -- ~I is not identically zero on the Riemann surface F, 
then on F'it has exactly n zeros PI, . Pg giving the solution of the inversion problem 

A (Pl)-}-.. .  -[- A (Pg)=~- -X ,  (A. 20) 

where  YC=(Yr 1 . . . . .  YCg) i s  t he  s o - c a l l e d  v e c t o r  of  Riemann c o n s t a n t s  [13] which  depends  o n l y  
on t h e  Riemann s u r f a c e ,  the  c h o i c e  of  a b a s i s  o f  c y c l e s  on i t ,  and t h e  i n i t i a l  p o i n t P o .  I n  
t h i s  c a s e  t he  d i v i s o r  D = Pz + . . .  + Pg i s  n o n s p e c i a l ,  and t h e  p o i n t s  P z , . . . , P g  a r e  d e t e r m i n e d  
f r o m  the  s y s t e m  (A.20)  u n i q u e l y  up t o  p e r m u t a t i o n .  

We now n o t e  some p r o p e r t i e s  of  m e r o m o r p h i c  d i f f e r e n t i a l s  on a Riemann s u r f a c e .  For  any  
m e r o m o r p h i c  d i f f e r e n t i a l  ~ t h e r e  i s  t he  i m p o r t a n t  r e l a t i o n  ( t h e  r e s i d u e  t heo rem)  

Z Res ~ = 0  (A.21) 
~(p)=~ P 

(the summation gives overall poles of ~). 

We call a meromorphic differential normalized if 

(A. 22) m-----0, i= l ..... g. 

a i 

This normalization together with the prescription of the poles and corresponding prin- 
cipal parts uniquely determine the meromorphic differential. Any meromorphic differential 
can be represented as the sum of some holomorphic differential and a linear combination of 
the following meromorphic basis differentials: 

a) Abelian differentials of second kind having one pole ~n)- of multiplicityn+ I at the 
point Q and a principal part of the form z-n-ldz (n ~ [); 

b) Abelian differentials of third kind ~pQ having a pair of simple poles at the points 
P, Q with residues +I, --I, respectively. 
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In computations with meromorphic differentials their "generating function" are useful -- 
the Prym form of the surface F [46]. If P, Q are points of F and z, w are local parameters 
in neighborhoods of these points, we set 

i i 
E (P, Q) =8 (P, Q) (dz) -Y (d~) -5- = O [v] (A (P)--A (Q)) . (A. 23) 

V E  <P>o, M V o, [,)<0) 

I 
Here vG~(Z~) 2g i s  any odd ( see  above) nondegene ra t e  ( i . e . ,  grad0[~](0)=/=0 ) h a l f  pe r i od  ( c f .  
[ 4 6 ] ) ;  the i n d i c e s  i ,  j of  the  t h e t a  f u n c t i o n s  deno te  d i f f e r e n t i a t i o n  with r e s p e c t  to the 
c o r r e s p o n d i n g  v a r i a b l e s  z i ,  z j ;  m l , . . . , m g  a r e  the b a s i s  holomorphic  d i f f e r e n t i a l s .  The quan- 
t i t y  E(P, Q) = -E(Q,  P) i s  s i n g l e - v a l u e d  ( i n  each v a r i a b l e )  on the Riemann s u r f a c e  F d i s -  
s e c t e d  a long  the c y c l e s  a i and v a n i s h e s  only  f o r  P = Q; on pass ing  about  a c y c l e  bj  i t  a c -  
q u i r e s  the f a c t o r  

.x,( i. ) 
For a differential of third kind ~pQ we obtain the expression 

QpQ ( X ) = d l n  E(x, P) (XEP). 
(X, Q) 

(A. 24) 

(A.25) 

The differentials of second kind can be obtained from the bilinear differential 

d (A. 26) 
~ ( P '  Q ) ~ ( Q '  P ) = ( ~ z  ~ lnE (P, Q ) ) d z d *  

(z and w a r e  l o c a l  pa rame te r s  in ne ighborhoods  of  the p o i n t s  P and Q). Then, f o r  example,  

~ )  ( p ) =  o(P, Q) (A.27) 
dw 

etc. We shall indicate a useful expression for an arbitrary (not normalized) differential 
of third kind mpQ with simple poles at the points P, Q: 

0 (A (X)--A (P)--~) 0 (A (X)--A ( O ) +  ~) ( A .  28) ~pQ ~--- , 
E (X, P) E (Q, X) ~-d-~ ~'d-~ 

where ~6C g is an arbitrary vector of general position [if 0(~) = 0 then the differential 
(A.28) becomes a holomorphic differential]. If the points P and Q coalesce, then (A.28) be- 
comes a differential of second kind with a double pole at the point P = Q. 

The Baker--Akhiezer (BA) functions are the basic algebrogeometric tool in the theory of 
finite-zone operators and the solutions of nonlinear equations connected with them. These 
functions were introduced by Krichever [27] on the basis of a generalization of the analytic 
properties of the Bloch eigenfunctions of operators with periodic and almost periodic coef- 
ficients. We shall give the general definition of them and list their simplest properties. 

Definition. Let Pl,...,Pn be points on a Riemann surface F, let kTl,...,kn I be local 
parameters in neighborhoods of these points [where ki(P i) = =], let ql(k) ..... qn(k) be a col- 
lection of polynomials, and let D be a divisor on F. The n-point (scalar of rank I; see 
[29]) BA function given by these data is a meromorphic function ~ = ~(P) on F\(PiO...OP,) 
such that a) the divisor ~ ~ --D; b) as P § Pi the product $(P) exp (--qi(ki(P))) is analytic 
(i = I, .... n) . 

If D is a nonspecial divisor of degree N, then the dimension of the space of n-point BA 
functions with the given form of essential singularities (ql,...,qn) is equal to N -- g + I 
[26] for almost all polynomials ql,-..,qn. In particular, if D = QI +... + ... + Qg is a non- 
special divisor of degree g, then the corresponding n-point BA function exists and is uniquely 
determined up to a factor. It has the form 

(P) = c exp ~qj o (A(P) -~ ~) 
(A. 29) 
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where ~qj is the normalized Abelian differential of second kind with principal part at the 

(i i p o i n t  Pj o f  t h e  f o r m  d q j ( k j )  and u ( q J )  i s  i t s  v e c t o r  o f  b - p e r i o d s ;  A ( P )  i s  

t h e  Abel  mapp ing  ( A . 1 2 ) ;  & = A ( D ) q - Y ~ ,  where  ~g i s  t h e  v e c t o r  of  Riemann c o n s t a n t s ;  c i s  an  
arbitrary factor. 

We shall now list the most important properties of real Riemann surfaces. A Riemann 
surface F is called real if on it there is given an antiholomorphic involution (or, more 
briefly, an antiinvolution) T:F § F, T 2 = ]. Suppose that the antiinvolution T has on F n 
fixed components (ovals), 0 ~ n ~ g + I. There are two possible cases: I) the union of real 
ovals decomposes F into two components F + and F- = ~F+; II) the union of ovals does not de- 
compose F. Surfaces of type I we call surfaces of separating type, while those of type II 
we call surfaces of nonseparating type. 

On a surface of type I (where 0 < n) it is possible to choose a basis of cycles 

al,  bl . . . . .  a o, bo; ao+l, bo+~ . . . . .  ao+n-~, bo+,_~; (A.30)  

a l ' ,  b / , . . . ,  ao ' ,  bo', 

where  g = 20 + n -  1, such  t h a t  a p + k ,  k = 1 , . . . , n -  l ,  a r e  r e a l  o v a l s ,  

ai,  btfiF +, x ( a 0 = a / ,  ~ ( b ~ ) = - - b / ,  ( i = 1  . . . . .  p), (A.31)  

"~(ao+~ ) = ao+k, "~ (bo+~)---- - - b o + k  (k = 1 . . . . .  n - -  1), (A.32)  

The antiinvolution T generates an antiinvolution on the Jacobian d(r! which we denote by the 
! 

same letter T. In natural coordinates zl,...,z0; Zo+l,...,Zo+n_1 ; Zl,...,z 0 the action of 
T on the Jacobian has the form 

"r(zl . . . . .  Zp; Z~+, . . . . .  Zo+n-,;  Z / ,  . . . .  Z o ' ) : - - ( Z '  l . . . . .  Z~; Z~+l . . . . .  Zp+,,-,; Z 1 . . . . .  Z~). (A.33)  

The theta function of the surface F possesses the symmetry 

8 (T (z ) )=  O (z). (A. 34) 

The i m a g i n a r y  c o m p o n e n t s  of  t h e  J a c o b i a n  J (Y)  a r e  d e f i n e d  by t h e  c o n d i t i o n  

(Z)-~- -- Z. (A. 35) 

These are 2 n-l nonintersecting g-dimensional real tori. On one such torus of the form 

z=(~; ~]; ~, ~EC 0' ~]~Rn'lj (A.36) 

the function O(z) is always positive [46]. The Prym form E(P, Q) possesses the synmaetry 

E (~ (P), �9 (Q) )=E (P '  Q). (A. 3 7) 

The v e c t o r  o f  Riemann c o n s t a n t s  i s  r e a l  i f  t h e  i n i t i a l  p o i n t  of  t h e  Abel  mapp ing  i s  c h o s e n  
to  b e  r e a l .  

On a s u r f a c e  of  n o n s e p a r a t i n g  t y p e  w i t h  n o v a l s  (0 ~< n ~< g) i t  i s  a l w a y s  p o s s i b l e  to  
c h o o s e  a b a s i s  o f  c y c l e s  a i ,  b j  which  t r a n s f o r m  u n d e r  t h e  a c t i o n  of  t h e  a n t i i n v o l u t i o n  a c c o r d -  
i ng  to the law 

t ~  [ - - b t ,  1..<l..<n, (A.38) 
�9 (ai)-----at, t = 1  . . . . .  g '  " ~ ' u = [ - - b ~ + a i ,  n q - l . . < t < g .  

The theta function O(z) of such Riemann surfaces posesses the symmetry [16] 

8 (Z) == 8 (Z-~), (A. 39) 

where the half period % has the form 

z = ~ - ( 0  . . . . .  0, 1 . . . . .  1) (A.40) 

(zeros at the first n places). 
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