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Introduction

The recent progress in the study of matrix models! of QFT revealed a
remarkable connection with hierarchies of integrable equations of the KdV-
type. It was shown also2-4 that so-called topological conformal field theories
(TCFT) are very important in the study of the low-dimensional string
theories and of the matrix models (the general notion of topological field
theory was introduced by E. Witten5),

The Landau-Ginsburg potentials machinary6.7 (see below sect.4) in
TCFT was analyzed from different points of view. The relation of it with the
singularity theory was investigated in refs.6.7.8 (see also ref.9). Very recently
Kricheverl0 has observed the relation of this machinery with the so-called
averaged KdV-type hierarchyll-15 (or Whitham-type hierarchy). He showed
that the target space for this Whitham-type hierarchy coincides with the
coupling space of zero genus TCFT and the dependence of the Landau-
Ginsburg potential on the coupling constants is determined via solving the
equation of this hierarchy (in fact, a very particular solution proved to be
involved).

Our main observation is that the flat metric on the target space of
Whitham-type hierarchy being involved in the Hamiltonian description of it
(see refs,11,12,13,15) coincides with the two-point correlation of the
corresponding TCFT. Starting from this point we have found a very general
construction of flat Riemann metrics on moduli spaces M of algebraic curves
of given genus with marked meromorphic function. This function in TCFT
plays the role of Landau-Ginsburg potential (we consider only the Ap.1-
theories) and the relevant moduli space M being the coupling space. It turns
out that the equations of flatness of these Riemann metrics coincide with
well-known in the soliton theory N-wave interaction system. We obtain
therefore a new class of exact solutions of the N-wave system in terms of
some special functions on moduli spaces M (the simplest solution of this class
‘has been found in ref.16). Some global properties of moduli spaces of the
type being described above also follow from our condiderations. We
construct also the general class of Whitham-type hierarchies of dynamical
systems in the loop spaces LM. We describe the bi-Hamiltonian structure
and recurrence operator for this hierarchy and construct explicity the
complete family of comservation laws. As a result of these considerations the
explicit formula for the non-zero genus TCFT partition function is obtained.
In the appendix we discuss the relation of TCFT to the theory of Frobenius
algebras,

l. Orthogonal systems of curvilinear co-ordinates, integrable equations and
Hamiltonian formalism. '

We start with some information on the geometry of curvilinear
orthogonal co-ordinate systems. -
Let
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ds?=)" gii(u) (du')? BNRY

i=1

be a diagonal metric on some manifold M=MN (we give all the formulae for
positive definite metrics; indefinite metrics can be considered in a similar

way). The variables ul, ey uN determine a curvilinear co-ordinate system in
Euclidean space iff the curvature of (1.1) vanishes:

Rjjj(ds?)=0 (1.2)
This is a very complicated system of nonlinear PDE. But there is a special
subclass16 of metrics for which the system (1.2) is an integrable one.

‘Definition 1. The diagonal metric ds is called Egoroff metric (it was
proposed by Darboux.18) iff the rotation coefficients

) =§1_3/__g_1.1_ (1.3)

Yij '\/—E;

ajza/aui, ‘satisfy the symmetry

Y=Yy (1.4)
Equivalently, there exist a potential V(u) for the metric g;:
g;;(0)=0,V(u), i=l, ... , N (1.5)

Proposition 1 (see ref.16). The equation of zero curvature for Egoroff
metric have the form '

i = YiYj» 1 I K are distinct, (1.6)
N

o,y = 0, inj, 3= )_; (1.6")
i=1

The corresponding linear problem has the form

(1.7)

%) ¥; =y ¥ i,
(1.7%

oy; = oW,
o is the spectral parameter.

Remark 1. The linear system (1.7), (1.7') essentially is equivalent to a
system of ODE of N-th order. It has N-dimensional space of solutions for




given ¢. For example, if w( ), =1, ... , N, form the basis of solutions of the

system (1.7), (1.7") for o=0 then the flat co-ordinates vl ...,

vN for the metric
ds? can be found from the system '

3, vo= g; vV, o=l . N, (1.8)

= v® 3, vP=const, o, B=1, ..., N.  (1.9)

Remark 2. It was shown in ref.16 that the system (1.6) (1.6") with the
symmetry (1.4) is equivalent to the pure imaginary reduction of the N-wave
interaction problem (see e.g., ref.19). The system (1.6), (1.6") is invariant
under the scaling transformations

i i -1
u'—cu Sl (1.10)

The corresponding similarity reduction of the system is equivalent to some
non-linear ODE. In the first nontrivial case N=3 this reduction has the form

I'y3=T T30 (20q3) =T 1053, [(2- DT 131=T 155 (1.11)
Here
1,3
u'-u ]_ !
2= 23 W=z 3 @ (1.11")

The system (1.13) can be reduice'?fdzo" to a system of the second order being
equivalent to the Painlevé-VI equation using the first integral

F§3 + (,'51‘13)2 + [(z-l)I‘l..s,].z:const. (1.11')

Remark 3. If ©'=T(u), T -»(v vN) is the realization of the curvilinear
orthogonal co-ordinate system in Euchdcan space then the Iaw of transport

along the w-axis of the corresponding orthonormal frame
=3, P 8y | (1.12)
has the form

= _ IR
0 M=% M jp I
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% Ti=-2 Vi )
ji
This explains the name "rotation coefficients" for Yij- It follows from (1.13)

that this transport of the frame is invariant for Egoroff metric inder the
diagonal translations of the co-ordinates :

uisui+ay, i=1, ..., N. | | (1.14)

In general the Egoroff metric is not invariant under these translations. If it is
invariant, i.e. dg;;=0, then we shall call it d-invariant.

Using the flat metric (1.4) we introduce the following Poisson structure
{,}={,}442 on the loop space

g!
LM=M

of functions of xe S! having their values in M (Poisson brackets of
hydrodynamic typell-13.15) via the formula

511 ij 81_2 k 1.15
{II’IZ}GSZ_J«Sui(x)g (U)Vk 5uj(x) u™(x). (1.15)

Here
gl = 8. [g,(u)]"!

and V, is the Levi-Civitd connection for the metric ds2. The corresponding
Hamiltonian systems for Hamiltonians of the form

H = [h(u)dx (1.16)

have the form of the first order evolutionary systems of PDE linear in
derivatives

ug= {ui(x), H)y2 = VIV, heu) ul. (1.17)

In the flat co-ordinates v®=v®(u) (see (1.9)) the P.B. (1.15) has a constant
form

{(vo(x), VP(y)}42 = n®B &'(x-y) (1.18)




The P.B. {,}4,2 is degenerate: the functionals

[vldx, ..., [vNax (1.19)

are the Casimirs of it.

Definition 2 (cfr. ref.21). The family H of functionals H on the lbop spare
LM is called a Lagrangian family if all of them commute pairwise and if it is
complete. This means that the skew-gradients of these functionals span the
tangent space to their common level surface.

All the Casimirs (1.19) are to belong to H.

It follows from the results of Tsarev2l that for the P.B. (1.18)
Lagrangian families M of functionals of the form (1.16) are in one-to-one
correspondence to systems of curvilinear orthogonal co-ordinates in the flat
space with the metric n“B, The explicit construction of H is as follows. For P.B.
of the form (1.15) for any flat diagonal metric (1.1) the Lagrangian family of
functionals of the form (1.16) can be constructed as the family of solutions of
the system

' i T
9,9, h =T} 9; h + T3, h, ixj. ‘ (1.20)
The corrispom_iing commuting flows (1.17) have a diagonal form
u) = wi(uuy, i=1, .., N. (1.21)

All of them are completely integrable2l. The system (1.20) for finding the
commuting Hamiltonians of the Lagrangian family M can be rewritten in the
form (1.7) via the substitution

oh =4 g v, i=l, .. ,N. (1.22)

The coefficients wi(u) of the commuting flows (1.21) also can be found from
the same system (1.7) (for Egoroff metric) via the substitution

v,=+ gz W, i=l, .., N. O (1.23)
Therefore we obtain a hf—lapp'ing. |

(commuting Hamiltonians)— (communting flows) - (1.24)

of the form

(B=fheuydx) - (uy = gif 3h(w) uy i=l, ., N). (1.25)
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Warning: this is not the skew-gradient mapping (but in some cases -see
below sect.3- it is related to the second Hamiltonian structure of the system

(1.21)). For 9-invariant metric (i.e. ag“=0) the skew-gradient mapping has
the form

(h(w)- (u; = g3} 3.9h(u) u! i=1, ... . N). (1.26)

For d-invariant metric the operator d plays the role of "recursion operator”: if
h(u) is one of the Hamiltonian in the Lagrangian family X then oh also

belongs to H; also the operator 3~! can be defined on with the same property.
It is possible to construct a dense subset2! in the Lagrangian family X using

the operator 9°! starting from the Kasimirs (1.19). The densities of the
functionals of this subset have the form

h(a,m)(U) = a-m VOC, Gzl, see ’Ns m=0’1"" (1-27)

2. Flat metrics on moduli spaces.

Let us consider for given integers (g, m, n), g20, m>0, n>2m, a moduli
space M=MN, N=2g+n+m-2 of sets €, Qs ve s Qn» A), where C is a smooth
algebraic curve of genus g with m marked points Ql* s Qm and with a

meromorphic function A of degree n such that ?L'l(oo) =Qu ... vQ,,- To specify
@ component of M one has to fix also the local degrees ng, ..., n, of Ain the

points Qs ey Qp,- These are arbitrary positive integers such that n;+ .. +n_=n.

We need that the A-projections ul, ..., uN of the branch points P, ..., Py
dMPJ:O, uJ=A(Pj), =1, .., N | (2.1)

(i.e. the critical points of L) are good local co-ordinates in an open domain in
M. Another assumption is that the one-dimensional affine group acts on M as

(C: le vee g Qma 2')"')(C’ le LEL ] Qm! al'{'b)- (2-2)
In the co-ordinates ul, s uN it acts as

u'saulth, i=1, ... N (2.3)

The tautological fiber bundle is defined

PLMF—__ DR



i C
M . (2.4)

such that the liber over ue M is ihc curve C(u). The canonical connection is
defined on (2.4): the operators d; are lifted on (2.4) in such a way that

2.4=0 | . (2.5)

1

Example 1. Here g=0, m=1. The space M is the set of all polynomials of
the form _

l(p)zpn+qn_2pn'2+,..+q0, dg» Gp» - Ap.g € C. (2.6)
The branch points py, ..., p,.; can be determined from the equation

A(p) =0 (2.7)

The affine transformations A—aA+b has the form
=1
p—a'/ p, g>q;a" , >0, gy—aqy+b (2.8)

Example 2. Here g=0, m=n (let us redenote m=n—n+1). The space M
consists of all rational functions of the form

(2.9)

Here Qi‘_—{p:“qi}’ i:l, ey T, n+1={p:m}‘ |
Example 3. g>0, m=1, n=2. Here M is the set of all hyperelliptic curves

2g+1

2= 11 0eud, et (2.10)
j=1

the pairwise distinct parameters ul, .., u8*l are the local co-ordinates on M.
Example 4. g>0, m=1, n>g. Here M is the set of all curves of genus g with
marked point Q; and with marked meromorphic function A(P) having a pole

of n-th order in Q, only.

Let M be the covering of M being obtained by fixing a canonical basis
31, - Ags By, oy By i Hy(C, Z) (for g=0 M =M). We add small cycles ¥, - Y.
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around the points Qi Qp.; (for m>1) to obtain a basis in H (C\(Qu ... VQ

(2.4
‘ Z). Let us define multivalued Abelian differential on C as_ Abelian
0 is differentials on the universal covering of the punctured curve aAQqu ... vQ,)
such that
E) Q(P+y)=Q(P)+ch(v)?ukd3L (2.11)
5 of g

for any cicle ye Hl(C\(Qlu e UQp, Z). Such a multivalued differential is said to

 6) be holomorphic in the point Pe C iff some branch of it is holomorphic in P. It
is called normalized iff

¢ Q=0, o=1, .., g (2.12)
a
7) =
Definition 3. A family Q=Q(P, u) of multivalued Abelian differentials on
the curve C=C(u) smoothly depending on the parameter ue M is called
- horizontal if:
8)

1) It is holomorphic for any u on O\Q,u ... uQ,)-

Vi | 2) Its covariant derivatives an are Abelian differentials of the second kind
on C (i.e. with zero residues) with double poles only in the branch points Py,
- Py and with zero a-periods.

Let D(M) be the quotient of the space of all horizontal differentials over
the subspace of differentials of the form

2. chkdn, dc,=0. (2.13)

Proposition 2, The basis of the space D( M) can be constructed as
follows:

1). Normalized Abelian differentials Qék) of the second kind with- a single

pole in the point Q, and with the principal part

(k)

a

Za
2, °(P) = k+1
Zy

+ regular terms, P->Qa (2.14)

:k-llma

a k]

| z (2.15)



a=1, ... m, k=1,2, ... . The following linear constraints in D(IQI)_ hold for these
differentials:

m .
kn
Enaﬂi a>'0, k=1,2, ... . (2.16)

a=l

2). Normalized Abelian dlfferentlals ¥ _‘P (for m>1, a#zm) of the third kmd

with simple poles in Q,, Q,, and with residues +1 resp.

0
3). Holomorphic differentials maaw& ), a=1, ..., g normalized as follows:

$ ma=2ni8a5, (2.17)
ag »
4). Multivalued normalized holomorphic on C differentials sik), k:—-l,Z,..., g

with the increments of the form

o{(P+by)-

other increments vanish.

10

o (P)=-kAk1d, (2.18) ' F.

5). Muiltivalued normalized holomorphic on C differentials 03( ), o=1, .., g
k=1,2, ... with increments of the form
oPPra -aP)=-kkldr, | (2.19)

6). Multivalued normahzed differentials _Fi’gk), a=1, ..,m-l,_‘k=1,2,...,

holomorphic on C\(Q, U Q) w1th smgulantles of the form

k) 1

¥ =_E dy (M) + regular terms, P—Q,

(2.20)

=.;}n: dy, (1) + regular terms, P-Q

The

gl
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(2.16)

| kind

.17)

0)

AK 1 1
v (A =31 logk-(l-i— TR , k>0,

The proof is straightforward.
Lemma 1. Let , i=1,2, be any two horizontal differentials such that

L) 2 o 2K a7 + dz fWakioga, PoQ, , (222)

Then

where

k k>0

$ oW=2z; Aé:)

2l

QW P+ay) - @O(P)= dp( . él)wzp :

s>0

N0 (P+b,) - Q(P)= dq(;) - 2(1

>0

- ohg®)
o

:aj VQ(I)Q(Z) (ll)

g o
-k-2,4a
2 A0
Vol =2 [ 2 Ga+ Cia

k=20

Q
+ 2xi v.p. jrilg 2k 14

Qo

1 1 (1 | (
2{ “2ni ? o (e +§;i§ P WP + A,

(1:1 o

I

(2.21)

(2.23)

Das, (229

Dos, (2.25)
(2.26)
Qa
Ig(2)+
Qo
(2.27)

Dy o
3 Q 2>]..

o



The regularized integrals ére defined with respect to the local
parameters (2.15). The sum over a in (2.27) does not depend on Que C. We

(iy (@ () (i)

recall that all the numebers A(i), Pea’ Y50’ Tsar and ¢ for negative k are

o
constants.

Proof. Let € be the polygone with 4g edges being obtained by cutting C
along the cycles a1, e ag,,b}, i bg passing through a point Qﬂe C. Let us
choose also some curves in C from Qg to Q. .., Q,, and cut € along these

curves to obtain a domain C o- We assume that the A-images of all of these
cuttings do not depend on u -at least in some neighbourhood of the point

ue M , and that A(Qy)=0. Than we have an identity
{ P
- o (P) fagﬂ) =Tes
2mi $ J P,

ajco Qo : J

a(hg®

a (2.28)

After calculation of all the residues and of all the contour integrals we obtain
(2.26).
Let Qeiﬁ)(ﬁ) be any non-zero horizontal differential. It defines a metric

2 ~
dsg on (M) being diagonal in the co-ordinates ul, ..., uN:

) g (W) (dul)? (2.29)

via the formula |

Q Q-
g = rgs o i=1, ..., N. (2.30)
j e

(we recall that Py,...,Py are the critical points of ?\.).' (In fact we consider the

complex analogue of metric. So the co-ordinates are complex. We need only
non-degeneracy of the metric (2.29)).

Theorem 1. The metric (2.29), (2.30) is a flat Egoroff metric on M . Its
rotation coefficients Yijr-ﬂ{ij(u) (1.3) do not depend on Q. They are invariant

under scaling transformations (1.10).

12

coefl
simil

metr

Hen

sym

difi

for

cor
the

Th

_:Le

fc
it




local

k are

ng C
et us

these

these
Doint

28)

tain

tric

9)

ts
1t

12 |

Corollary. For any given g, m, ny,.., o, (ng+...+n o) the rotation

coefficients yij(u), ue(ﬁ)N, N=2g+-n+m—2, of the metric (2.29), give a self-

similar solution of the system (1.6), (1.6").
Proof of the theorem. From the Lemma 1 the potential (see (1.5)) of the

metric (2.29) has the form

Q
8i; = aj \gg) 1<i<N. (2.31)

Hence the rotation coefficients 'y%(u) of the metric (2.29), (2.30) are

symmetric in i, j. To prove the identity (1.6) for y?j let us consider the

differential
%90 [3,0

for distinct i, j, k. It has poles only in the b branch points P, Pj, P,. The

contour integral of the differential along BCNO equals zero. Hence the sum of
the residues vanishes, This reads as

NEE Eo AoV

This can be written in the form (1.6) due to the symmetry (1.4).

Let us prove now that the rotation coefficients y?} do not depend on Q.

Let. us consider the differential

2,00 3,00, iwj,

for any two horizontal differentials Q(1, Q(2), From vanishing of the sum of
its residues we obtain RS

\,i a® ,\/ a® _ Q(l) \/ o®

Using the symmetry (1.4) we immediately obtain

13
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A{Q(I) : N"9(2) )
ij ij _ holot
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Now we are to prove the last identity (1.6"). It is sufficiently to prove it for a
holomorphic normalized differential ©. Let us define an operator D on
functions f=f(P, u) by the formula
of
Df=al+af, (2.32)
N
3= 23
=1
The operator D is extended to differentials Q in such a way that Dd=dD. For
any normalized holomorphic differential we have
DQ=0 He
Le
(cfr. Lemma 2. below). Hence
Q_, o _
8gjj-0 = ayij-O.
The flatness of the metric (2.29) is proved. The scaling invariance can be
verified easily again for hoiom?orphic'Q'(i'n this case g?i(éu)zc’l gﬁ(u)). The vi
theorem is proved. o - :
A - horizontal differential - such that DQ=0 we shall call primary
differential. f
Lemma 2. The subspace in D(fJI) of all primary differentials is N- T
dimensional. It is spanned by the differentials (see (2.14)-(2.21) for the
notations) R 3
(
o k=1, ..., ng, 8=1, oy , E n, 00
3 ‘ a=l
w0, =1, L, mel, , 1 (2.33)
(1) '




 for a

D on

2.32)

). For
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33)
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15

Proof. It is clear that for any differential Q of the form (2.33) DQ is a
holomorphic singlevalued differential on C. It is easy to see that it has zero
a-periods. Hence DQ=0. Conversely, we have |

n -k
Dx);k)-——“g( o )? k>n,

a

D P=kal <Y, k>1 | = (2.34)

Dok, o

e V=p Y o1,

Hence any primary  is a linear combination of the differentials (2.33).
Lemma is proved. :
Let us denote by DO(K@CD(M) the subspace of all primary differentials.
Let us fix any primary differential Q. It defines the mapping

ﬁ(f&) —> Functions (IUD (2.35)

via the formula

QY (2.36)

for any horizontal differential Q'. We call the function Voo conjugate to Q.
The image of the mapping (2.36) will be denoted as A Q(ﬁ), Vicel versa, for

any function fe AQ(I*?/E) the unique conjugate differential Qfeﬁ(ﬁ) is
determined such that

Voot | | (2.37)

The basis in the space AQ(IQD is given as follows:

Lk
res z, Q,k=12,..,
Qa %

with linear constraints




res z " Q=0 k=1,2,..
Qa & e
a=1

$ 2k Q, k21,6 2KQ,k20,a=1, .., g (2.38)
ey be, ‘ o

Q,
v.p. jlk Q, k=1, am

QUm

Note that these functions are well-defined globally on M.

Lemma 3. For any two functions f(u), h(u)eAQ(M) the following
identities hold:

<df, dh>q = (2.39)

Here < ,>( is the scalar product of gradients of the functions f, h with

2
respect to the metric dsq.

Proof. This immediatly follows from the definition of the conjugate
differentials (2.37) and from the Lemma 1.
This Lemma gives us a bridge between Riemann geometry of the
moduh spaces and TCFT (see Sect.4 below).
. 'We want the explicit formulae for acting of the translation generator 0
on the basis (2 38)

Lemma 4. For any primary differential Qe :DO(M) the following identities
hold: ok &

-k+n
d res ( Q):“—res [z a0 }

3é xkn_kgs klg aé aka=k¢ akla (2.40)
3 g by, by
Q Q
Q
3 v.p. j =0 QO,_av_.p._ jxk Q=0, k>0.
% _

The proof is straightforward.

16
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Theorem 2. For any primary differential Q the flat co-ordinates for the

2 )
metric dsg have the form

(2.38) ; | ty o = -1% reéa za,'kfz, a=1, .., m
k=1, ..., n,,
Q
o=V [ Qs (2.41)
| Qo
| »
llowing 1{ e 2“ 3505 ks t i fa et

: with two constraints

m m )
(2.39) Dy, = Ztna,a:—-{). (2.42)
' a=}] a=1
2
3 The matrix n of the metric dsg in the co-ordinates (2.41) can be obtained
h with
from the matrix
jugate
n(a,k),(b,l) N §ab 5k+l,na (2.43)
f the n®B" o 5.8
Ator 9 other components vanish, via restriction on the subspace (2.42). The
conjugate differentials have the form g
ntities W
Qt(k,a) e Qﬁ . ESkSHa
) .
Q1(9,0)-t(0,m)] = ¥a » 2#m W (2.44)
2.40) .Qfa‘ .= ma’ 'Qt"a = Ga

The proof :mmedlately follows from the formula (2.27) and from the
Lemmas 3, 4. %
2
Corollary l. For any primary differential Q the metric dsg is well-

defined and non-degenerate globally on M= *{C < M lQ]f‘%O)Z:L .-.)N}

%> A covrection added




18
s et i) | . ~
Corollary 2. For any primary differential Q the mapping M —CN being _
given by the flat co-ordinates (2.41) is regular evcrywhcre and therefore, it s
is a covermg .—_I
It is interesting to find the degree of this covering. ‘For g=0 it equals
one.

Remark. For any horizontal differential Q it is possible to construct
another flat metric

N .
52 = Z £ (duh)? (2.45) fox
i=1 (loc
where
. Q Q* a/
g, = res A.d?\, = gnA | (2.46) =i
It is a Egoroff metric in the co-ordinates the
=log !, i=1, .., N (2.47) b
with the rotation coefficients tlﬁe
the
5 Zi+2) 10 i P
¥ij !, ..., z2N) = cxp[ 2 )Yij(ez yerns & ) (2.48) _
of
. . br:
Hence the functions § ij(z) also enjoy the system (1.6), (1.6") (but they are not
scaling invariant!). The flat co-ordinates for (2.45) also can be calculated
explicitly for scaling invariant Q.
3. Poisson structures on the loop space LM. T
5 .  de
We recall that the flat metric dsg on M determine a Poisson structure cc
of the form (1.15) on the loop space CM. Let us denote it by { }g- Let Q be a ; t_h
primary differential.
Theorem 3. 1). For any horizontal differential Q' the t-flow on the loop
space LM of the form
C

20=0Q 3.1)

%) A Cc:\rwc_f;:HO\/\ D‘Lo{ﬁlecl




o being
efore, it

L equals

onstruct

(2.45)

(2.46)

(2.47)

2.48)

e not
ilated

cture

loop

3.1)
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is a Hamiltonian flow with respect to P.B. { , Jo with the Hamiltonian

H=[h(u)dx such that

3h = Vg (3.2)

2). The functionals H=jh{u)dx, h(u)eAQ(ﬁ), form a lagrangian family
for the P.B. {, }q.

~ 3). For any horizontal Q' the flow (3.1) is completely integrable. The
(locally) general solution of (3.1) can be written in the form

{x@ + Q'+ 0y} =0 (3.3)

j=1, .., N, for any horizontal differential Q.

Proof. The equation (3.2) can be obtained from thedefinition (1.26) of

2
the P.B. { , }]o (note that the metric dsg is o-invariant). The completeness of

the functionals with densities in AQ(IGD follows from the Lemma 4. Indeed,

these functionals can be constructed starting from the Casimirs (2.41) using
the recursion procedure (1.27). The formula (3.3) for general solution can be
proved as in ref.14 |

Remark 1. The flow (3.1) can be considered also as x-flow on the space

- of functions on t (cf. ref.22), Its Hamiltonian structure is defined by the

bracket { , }Q..

Remark 2. Let the primary differential Q be scaling invariant:

A—sch, niocul, Q—ciQ. (3.4)

g

Then all the flows (3.1) are Hamiltonian flows also for the { , }Q being
determined by the flat metric (2.45). The ‘corresponding recursion _opera_tor
coincides with o {up to some constant). If fea&g(l{:i)- is a homogeneous function

then the corresponding flow
uj= {uie), Jf dx Jg (3.5)

can be written in the form

19



90 =2,0; . (3.6)

Here the differential Q. is defined by the formula (2.37). The definition of
the conjugate differential Q; can be written therefore in the form

Q=9 {a@ue),[f dx Ja (3.7)

The system of equations of the form (3.1) where Q' be any of the basis
differentials (2.14)-(2.20) we shall call as Whitham-type hierarchy (or W-
hierarchy) for given primary differential Q. It is put in order by action of the

recursion operator D! on the differentials Q'.

4. Main examples. Application to TCFT.

Example 1. For the family of polynomials M={ A:p“+qn_2p““1+..,+q0}
the equations of the W-hierarchy for Q=dp have the form

8, dp(h) =9, dr') ), ixkn (4.1)

where

1= [a¥np)] /i (4.2)

(the polynomial part in p). Note that t;=x. They can be rewritten in the
form10

o A =3, Wy, a-9,1Ma 1. (4.3)

Here A=A(p), rm=r(i)(p) are polynomials,
Equation (4.3) can be obtained by averaging of the KdV-type hierarchy (or
the Gel'fand-Dikii hierarchy)

3 L= [L[LI/"],], iwkn, (4.4)

L=an+qn_28n”2+...+q0 (4.4

2

8y




(3.7)

basis
r W-
f the

4.1)

4.2)

the

4.3)

(or

.4)

)

over the family of the constant solutions q;=const, j=0, ..., n-2. The metric

2
dsQ has the form

(4.5)

Here py,..., Py.q are the critical points of A(p),
n(py) = 0

and :

_ u' = A(p;).

For n=4 the rotation coefficients of the metric (4.5) give a nontrivial

algebraic solution of the system (1.6), (1.6") (and, therefore, of the system

(1.11)). The flat co-ordinates ty,..., t;_; have the form

aifn
thoi =£‘ism dp, i=1,...,, n-1, ' (4.6)
<dt, dd>; =8, /n. (4.6")

Remark., We also can take any other differential der(l), i=2,..., n-1 to
determine a flat metric on M. All these flat geometries are inequivalent one

to another.
To explain the relationl® of (4.2), (4.3) to TCFT we recall here the of the

21

Landau Ginsburg potentials approach$.7. In TCFT all the correlation functions

do not depend on co-ordinates (but do depend on coupling parameters by
ty) and can be expressed via correlation functions of the primary fields 431?...,,
¢y ). And these can be expressed in terms of the two-point and the three-

_point correlation functions

nu5:<¢a ¢ﬁ>¥const., det maﬁ)*‘ﬁ (4.7)

CafyD=<0¢, 0p 0, (4.8)

by the factorization formulae

£
<0g dg By ¢5>:’°aﬁcﬁv§ (4.9)




_ . 0

<t 05 0y [05> =35 copy 35 = tg

etc. (the raising of indexes using the metric n ap’ For the partition function
F=F(t,,..., ty) of the model the following identities hold:

9 9,3 F=14p, (4.10)
9 96 Oy F = copye (4.11)

The function F(t) is quasihomogeneous in Eyseees by

To find these correlation functions for genus zero let us consider the set of
polynomials A{p) of the form given above (Landau-Ginsburg potentials, A, -

model) depending on the coupling parameters t{ses tyy (N=n-1) in such a way
that '

9, A=-0> @=1,....N. (4.12)

Here ¢ ool is the basis of polynomials of degrees 0,1,...,N-1 orthogonal with
respect to the scalar product

<¢’(p>‘§fid1/dp’ (4.13)
R S (4.14)

Proposition 10. The family A=A(p, ty,, t, 1) is a particular solution of -
the system (4.1) where i=1,...,n-1 with the initial data '

Al

1i=...=

1

00 =7 (415

The crucial point in the proof is in the observation4 that the orthogonal
polynomials (4.13), (4.14) has the form

0o =dr®/dp, a=1,...,n-1. (4.16)

The dependence of the coefficients Qgs 9q»---+q,.o Of the polynomial A(p)
on ty,...,t; ; can be found from the equations (4.6). It can be represented in
the form10

f(p,) =0, k=l,..n-l,




function

(4.10)
(4.11)

set of

n-1
a way

(4.12)

1 with

(4.13)

4.14)

on of

4.15)

gonal

1.16)

A(p)
d in
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“n-1

@) = 35| @ D(p)+ Y t;rD(p) (4.16)

i=1
The triple correlators has the form5.7

caﬁy(t) = resp=°°__—_d?~/'dp

where the polynomials ¢,=6¢,(p; t) are determined by (4.16). The coefficients
c;ﬁ(t)=caﬁ£(t)n” for any t:tl’;"’tn—l are the structure constants of an

associative commutative algebra A with a unit ¢, and with a constant {in t)
invariant scalar product n of (chiral algebra of primary fields). We recall that

those algebras are called as Frobenius algebras?3, In this example it is
isomorphic to the truncated polynomials

A= Clpl/(A'(p)).

The partition function F=F(1) was found by Krichever. It has the form

FO = 5 1050 {[[£CP)dP], £CPI )

The function f(p) is determined by (4.16"); for any function g(p) the symbol

[g(p)], means the polynomial part of g(p) with respect to the parameter

z=A1M | Krichever also argued that the function F(t) should be considered as

23

a logarythm of t-function of the hierarchy (4.1) for the particular solution

(4.16"). , 3
Example 2. For the family of rational functions (2.9) the W-hierarchy

" has the form

9, dp =3, d [Al],, a=l,.un, i=0,1.. (4.17)

5§

9, ,a dp = d, d [9;(M)],, a=1,...n, 1i=0,1... (4.18)
Here the operation [ ], means that one -s‘hcluld kill Sing'u-larifics in all the
points Qq,...,Q, but Q,; the functions ¢;(%) are defined in (2.21). The flat co-
ordinates for the primary differential Q=dp are n,, ¢;. The hierarchy (4.17),

(4.18) is the hierarchy of the "highest Benney equations" - it can be deduced
from the Zakharov's paper?3. ‘
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Example 3. For the moduli space of hyperelliptic curves (2.10) the
differential Q=0(!1 is a primary one. The part of the corresponding W-
hierarchy of the form

3 Q=007 i=01,. - 4.19)
b : (the
coincides with the averaged over the family of g-gap solutions KdV diff
hierarchy. This was proved by Flaschka, Forest and McLaughlin24. One Sl
should add the equations |
TEC:
3, =3 a2 k=0, b
Vo 7 < Oy > k=0.1,...
(4.20)
(k)
atna’k Q= ax Ga B k=1,2,.u
to obtain the complete hierarchy (o=I,...,g). The functionals H=Ih(u) dx with
the densities of the form A A i
. 2i+l .
res A 2 Q i=0,1,.., § AXQ, k>0, § Ak Q, k0, (4.21)
l=°° ak bk
give the complete family of conservation law's for the hierarchy (4.19), 10

(4.20) (the Lagrangian family Ag(lﬁ)). The P.B. { , g coincideslﬁ‘ with the
averaged11-13,15 Gardner-Zakharov-Faddeev (GZF) P.B. of the KdV-hierarchy.
_ %

Thé flat co-ordinates (2.41) for the metric dsg are: : e th
tlf-'annihilator of the GZF P.B,, '

T

tl,...,tg action variables for the GZF P.B.

1A} 1" v

tl"”’tg components of the wave-number vector

o

(see ref.13 for details). It can be proved also that the second P.B. { , }Q

coincides with the averaged Magri bracket!3. |
Example 4. For the moduli space M of all curves of genus g with a 1

marked point Q, and a meromorphic function A with pole in Q; of order n the I

primary differentials are

dz

Zi-l-l

Qi = + regular terms, z=A"1/%, i=1,...,n-1 (4.22)




(4.20)

X with

(4.21)

(4.19),
ith the
rarchy.

H

vith a
n the

4.22)

§ Q0=0, a=1,...,g,

4o

W Opps &=1,.0008,

1
(the definitions of mu,oa,s&c; ), see in (2.17), (2.18)). Let us use these
differentials for calculations of genus g correlation functions of minimal

model of TCFT. Here the space M plays the role of the coupling space (we
recall that dim M=N=2g+n-1). Let us redenote the primary differentials

(4.22) as @,...,®y in such a way that

" o) e
(Da =-n Qf ), a=1,...,n-1,
Lo}

n-1+a~ Qo 2695
Pgtn-1+0"Ca s (4.23)

Let A =(A ap(®) be the symmetric NxN-matrix of the form

Aaﬂ(u)zvd)aq’ﬁ' (4.24)
Under scaling transformations

A—cA - (4.25)
the matrix transforms as follows:

A-SAS ' | (4.26)

where S=diag (c'l,....,c®*1 1,..1, c",...,c"). For any fixed B the variables

tlz/\BB,tz:/\ BB+1> provide the flat co-ordinates for the metric d52<p|3,

2
Let us choose the differential QzQ(l) for defining the flat metric dsg
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(this choice seems to be natural since it does not depend on n and g). Let us |

ol

denote it as Q=dp. The flat co-ordinates on M are

dp, a=1,..., n-1,




n-14+0" 21;1

t "‘""“55 Adp
40

o=1,...,8 (4.27)

g+n 1+a™ é ép
a

The point of M with co:ordinates t15- by 18 determined by the following
system (cf. 3.3)

{m(nﬂhé) |p=i=1,..N (4.28)
where
N
G=) 10, _' (4.29)

Indeed, if ue M  is the point with the co-ordinates t,, ..., t,; then the following
identity holds on the corresponding curve C=C(u):

pdi = nQ® D+ G (4.30)
The Lh.s. of (4.30) vanishes in all the branch points P,, ..,Py. This proves

(4.28).
The correlation functions have the form

(4.31)

(4.‘32)

etc. The correlation functions (4.31) do not depend on t. This fol]ows from
Lemma 3 and from Theorem 2. They have the form

<@a¢ﬁ> =nd 1<, Bsn-1

o+, mw
(4.33)

<®n—1+a®g+n-l+[3> = 60&[5’ Isa, p<g
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(4.27)
llowing

(4.28)

(4.29)
lowing

(4.30)

proves

4.31)

4.32)

from

$.33)

otherwise zero.

The corresponding Landau-Ginsburg potential is A=A(p), p-:Jdp.

In other words

3y, (4P} pmgong: = O 6=1rnsN.

This follows from identities

%, (pdh) =g, a=1,...N

and

ata (pd?\‘)l=const = 'ata(ldp)pr—'const'
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(4.34)

(4.35)

(4.36)

Theorem 4. The partition function F=F(t,, ..., ty) satisfying (4.10), (4.11)

for (4.31), (4.32) has the form

N N
_2F=Vpdl’pdlﬂnzvﬂ(n+1),Q(n+l)+2nztiVQ(n+1}!®i+ Ztitjvq,iﬁ,
i=1 i,j=1

Proof. From (4.28), (4.29) we obtain

N

Ztiatavq,i@jmafavg(m1-_),¢j=0, j=1,...N,

iml
N .
Ztiatavn(nH ),‘Djmatav Qa+1) o(n+1)=0.

i=1
Hence

% Ot = Vo 0,

Let us prove now that

d V(Datpﬁ:-c(}.ﬁ?

LY

. (4.37)

]

(4.38)

(4.39)
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| Indeed,
| TC
|
|
| Sy¢
inc
as!
SC:
an
fu
=
Here we use (2.26) and (3.34). This completes the proof.
| The corresponding Frobenius algebra of primary fields (see above) has
| the form -
|
. g
| @, = ¢;®, dp (mod D (M) -d}) (4.40) de
: _ ST
where o (p
k _ qkl 4.40'
Cj =M &1 (4.40")
Remark 1. It follows from (4.38) that the Hessian ;
%
T,r=- \d ] F , i<o,p< 4.41
ap ( bh-1+00 'n-1+B ) P<g ( ) Y
coincides with the period matrix of the curve C. We shall consider the linear
Virasoro-type constraints for F in the next publication.
" Remark 2. Probably the exactness of the differential dA is not
necessary. Almost all the constructions of this section seem to be realizable 0
also for any normalized Abelian differential dA with poles in Qq,..., Q. This f
possibility also is to be investigated. ' ' : .
The quasihomogeneous property of the partition function (4.37) has
the form
: . F(cntl,u,,,cztn_l,cn”tn,.,.,,c“”tmg_l,ctn+g,,..,ctN)=cz(“+1) F(t). (4.42) ‘

We shall also analyze the problem of glueing all the Riemann manifolds

M with different genuses g in the next publication.

i
I
i




/e) has

(4.40)

4.40")

(4.41)

linear

s not
izable
- This

) has

4.42)

ifolds
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Appendix. Deformation of Frobenius algebras and partition functions of
TCFT.

The partition function F=F(t,,...,ty) of TCFT satisfies the following

system of nonlinear equations: its third derivatives (after raising of an
index) for any t form a set of structure constants of a commutative
associative N-dimensional algebra with a unit with invariant nondegenerate
scalar product (in fact, only the equation of associativity is nontrivial). Such
an algebras are wellknown as Frobenius algebras. We see that the partition
function F(t) determines some deformation of Frobenius algebra

Cjk(t) b nlS CS]k(t)’ Ci.]k(t)=atiatjalkF(t) (A'l)

such that the corresponding invariant scalar product n' does not depend on t
(let us call (A.1) F-deformations). Here we shall construct some class of F-
deformations of any Frobenius algebra using the results of ref.25,

Let A be any N-dimensional Frobenius algebra and M=A* (the dual

space). A multiplication is defined on T*M: if u]i,...,uN is a basis in A
(providing the co-ordinate system in M) then

dui-du¥ = cllduk, (A.2)

ij .
ckJ being the structure constants of A. The non-degenerate scalar product on

T*M (and, therefore, a metric on M) is defined by the formula

<df, dg> = 2iy (df-dg), _ (A.3)

250
8:11‘8—; is the dilation generator. It was observed?> that the metric (A.3) is
u

flat and the corresponding Levi-Civitd connection have the form
ViTi=iTi.c TS | (A.4)

(raising of indexes using the metric (A.3)). The flat co-ordinates ty,...,t,; can
be introduced via appropriate quadratic substitution of the form?35

ul =% afxﬁ t¢B (A.5)
<di®, dif> = n*P = const. (A.5"
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Let us introduce the coefficients

1150eesin hiig sii3 Sn-2in

c = 2¢;, Cop G 1 ufn-1 (A.6)

and the functions

_ap at® 5¢P duk ij
“y = dul gul Ho % (3.1

Proposition. The functions (A.7) defines a F-deformation of the

Frobenius algebra A with constant scalar product (A.5') and with the
"partition function”

N P (A.8)

Proof. It is sufficiently to prove that in the curvilinear co-ordinates
ul,...,uN the function (A.8) satisfies the equation

Vivivk F = ik, (A.9)
The proof of. (A.9) is straightforward using the identities

Ve = ) op, VEu; = 5 5. (A.10)
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