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ABSTRACT

Recent results on classification of massive topological conformal field theories (TCFT)
in terms of monodromy data of auxillary linear operators with rational coefficients are
presented. Procedure of coupling of a TCFT to topological gravity is described (at tree
level) via certain integrable bihamiltonian hierarchies of hydrodynamic type and their 7-
functions. It is explained how the calculation of the ground state metric on TCFT can be
interpreted in terms of the theory of harmonic maps. Also a construction of some TCFT
models via Coxeter groups is described.

Introduction

It is known, due to Kontsevich - Witten [24, 25, 31] that 2D topological gravity
(coinciding with the intersection theory on the moduli space of stable algebraic curves) is
described by the KdV hierarchy. For the examples of 2D topological field theories (TFT’s)
related to intersection theory on certain coverings over the moduli space it was conjectured
descriptions of the models in terms of certain integrable hierarchies [30, 39, 40]. There are
many other examples of 2D TFT’s (e.g., topological sigma-models for any Kéler manifold
as the target space and Landau - Ginsburg topological models [1-3, 28-31, 36]), and it is
unknown if it is possible to describe these theories by appropriate integrable hierarchies.
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(At least, an “experimental fact” is that the number of known integrable hierarchies is
much less than the number of known 2D TFT’s.) My aim is to try to construct these
unknown integrable hierarchies.

I'start with classification of massive 2D topological conformal field theories (TCFT’s).
The classification is based on the following system of nonlinear PDE for the unknown
function F(1), t = (t,...,t"),

B F(t) a O°F(t) _ BF(t) an OPF(t) (0.1)
01281981 | 51nb10 51960701 iR BIBHL '
with the constraint oy
(*) (0.2)

0i1gtapes ~ 1oh
All the Greek indices run from 1 up to m, 7ap is a nondegenerate symmetric matrix,
the matrix %7 is its inverse. These equations were called in [21] Witten - Dijkgraaf -
E.Verlinde - H. Verlinde (WDVV) equations. In fact in TCFT the function F(¢) should be
a quasihomogeneous one of a degree 3 — d where degrees of the variables t® equal 1 — Qo
@1 = 0. In TCFT the function F(t) is the primary free energy as a function on the coupling
constants (moduli of the given TCFT model, see (4, 20]). The numbers d and g, coincide
resp. with the dimension of the model and with the charges of the primary fields.

My program is:

1. To classify 2D TCFT as quasihomogeneous solutions of WDVV equations, and

2. For any solution of WDVV (I recall that this describes the matter sector of a
TCFT model) to construct (i.e., to calculate the partition function) a complete TCFT
model (coupling of the given matter sector to topological gravity).

It turns out that TCFT models are parametrized by the monodromy data (Stokes
matrices) of a certain linear differential operator with rational coefficients. Correlators of
the primary fields of the TCFT with given Stokes matrix proves out to be high-order ana-
logues of the Painlevé-VI transcendents being expressed via isomonodromy deformations
of the linear operator. For any solution of WDVV an integrable hierarchy is constructed
such that the tau-function of a particular solution of the hierarchy coincides with the tree-
level partition function of the theory. The hierarchy proves out to carry a bi-hamiltonian
structure (under certain nonresonancy conditions for the charges and the dimension of the
theory). In Section 4 I discuss integrability of the tt* equations [23] for the ground state
metric of the TCFT and their relations to the theory of harmonic maps. In the last section
the problem of selection solutions of WDVYV is discussed.

1. Geometry of coupling space of a TCFT: Frobenijus manifolds

I recall that 4 is called a Frobenius algebra (over R or C) if it is a commutative asso-
ciative algebra with a unity and with a nondegenerate invariant symmetric inner product

<ab,c>=<a,bec > . (1.1)
Ifei, 1=1,...,nis a basis in 4 then the structure of Frobenius algebra is specified
by the coeflicients Mij, cf‘j where
< ei,ej >=1; (1.2¢)
eie; = c,’fjek (1.28)

(summation over repeated indices will be assumed). The matrix 7;; and the structure
constants cf-‘j satisfy the following conditions:

nji = 1Mij, det(ni;) #0 (1.3a)

e 1 _ 1 &
C,'J-an = ciacjk (1.3b)
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(associativity),
Cijk = MinCjx = Cjik = Cikj (1.3¢)
(commutativity and invariance of the inner product). If e = (e') is the unity of A then
escij = 6; (1.3d)
(the Kronecker delta).
1-dimensional Frobenius algebras are parametrized by 1 number (length of the unity).

Any semisimple n-dimensional Frobenius algebra is isomorphic to the direct sum of n
one-dimensional Frobenius algebras

fifi =6iifi, < fi,fj >=nuibij. (1.4)

Moreover, any Frobenius algebra without nilpotents is a semisimple one.

Definition 1.1. A manifold M is called Frobenius if it is equipped with three tensors
c= (cfj(z)), 1 = (nij(z)), e = (e'(z)) satisfying (1.3) for any z € M. We need also the
invariant metric

ds® = 7;;(z)de’ do’ (1.5a)

to be flat, the unity vector field e to be covariantly constant
Ve=0 (1.56)

(here V is the Levi-Civita connection for ds®) and the tensor
V. <u-v,w> (1.5¢)

to be symmetric in the vectors u, ..., 2.

The three tensors provide a structure of Frobenius algebra in the space of smooth
vector fields Vect(M) over the ring F(M) of smooth functions on M:

[v-w)f(z) = cfj(z)vi(z)wj(z), v-e=w, (1.6a)

<v,w > (z) = 7ij(z)v’ (z)w? (z) (1.6b)

for any v, w € Vect(M).

Informaly speaking, n-dimensional Frobenius manifolds are n-parameter deformations
of n-dimensional Frobenius algebras. For any « € M the tangent space T, M is a Frobenius
algebra with the structure constants cé‘j(z), invariant inner product 7;;(z), and unity e'(z).

Localy Frobenius manifolds are in 1-1 correspondence with solutions of WDVV equa-
tions (i.e., with 2D TFTs). Indeed, for the flat metric (1.5a) localy flat coordinates ¢"
exist such that the metric is constant in these coordinates, ds? = Napdt®dt?, o5 = const.
The covariantly constant vector field e in the flat coordinates has constant components;
using a linear change of the coordinates one can obtain €* = 2. The tensor c,u,(t) in
these coordinates satisfies the condition

Oscapy = Oycaps. (1.7a)
This means that c,p+(t) can be represented in the form
Cap~(t) = 0,030, F(1) (1.75)

for some function F(t) satisfying the WDVV equations.
The first step in solving WDVV is to obtain a “Lax pair” for these equations. The most
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convenient way is to represent them as the compatibility conditions of an overdetermined
linear system depending on a spectral parameter \.

Proposition 1.1. The condition of symmetry of (1.5¢) in the definition of Frobenius
manifold holds iff the pencil of connections

Vu(A)o = Vv + du v, u, v € Vect(M) (1.8)

13 flat identicaly in .
Indeed, WDVYV is equivalent to compatibility of the following linear system

VoA =0, a=1,..,n, (1.9a)
(here £ is a covector field), or, equivalently, in the flat coordinates £
Buts = Al (1)es. (1.98)

Compatibility of the system (1.9) (identicaly in the spectral parameter A) together with
the symmetry of the tensor cog, = NaeCy., is equivalent to WDVV,

A suitable version of inverse spectral transform for the integrable system can be de-
veloped for the important class of massive Frobenius manifolds.

Definition 1.2. A Frobenius manifold is called massive if the algebra on T, M is
semisimple for any z € M.

In physical language massive Frobenius manifolds are coupling spaces of massive TFT
models.

Local classification of massive Frobenius manifolds in terms of inverse spectral trans-
form was obtained in {21]. The crucial point in this classification is in constructing canon-
ical coordinates on a massive Frobenius manifold.

Definition 1.3. Local coordinates u!(t), ..., u™(t) on a Frobenius manifold are called
canonical if the structure tensor ¢ in these coordinates has the constant form

cf; = 6;;65. (1.10)
It was proved in [21] that local canonical coordinates exist on any massive Frobenius
manifold.

Here we will consider in more details the TCFT case. In this case there is a vector
field v on the Frobenius manifold

v= (1-ga)t"ds (1.11)

generating conformal transformations of the tensors ¢, 7, e

Lye=c¢ (1.12a)
L,e = —¢ (1.128)
L.y =(2—d)m. (1.12¢)

Here £, means the Lie derivative along the vector field v. I will assume g, # 1 for all
a=1, .. n.

I will call M in this case conformal invariant Frobenius manifold. On a massive
conformal invariant Frobenius manifold the canonical coordinates can be found explicitly
(i.e. without quadratures).
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Proposition 1.2. The canonical coordinates u',...,u" on a massive conformal in-
variant Frobenius manifold coincide with eigenvalues of the matriz

U =(U5(1)) = (1 + g5 — a4)F (%)) (1.13a)
Fj(t) = n"840.F(t). (1.13b)
This is the matrix of multiplication by the vector field v.

To complete local classification of massive conformal invariant Frobenius manifolds
let us consider the following linear ordinary differential operator with rational coefficients

A:aA—U+¥ (1.14a)
U = diag(u',...,u"). (1.14b)
V=-VT=(v;). (1.14c¢)

The matrices U and V do not depend on . Solutions of the differential equation
Ap(A) =0 (1.15)

are multivalued functions in the complex domain. The equation has regular singularity at
A=0,s0 )
P~ A7V,

The infinite point of the A-plane is an irregular singularity. There exist solutions Y1, P,
3 of (1.15) with the asymptotics

Yr~expAU, k=1,2,3

defined in certain sectors of the A-plane near the infinity. These matrix solutions of (1.15)
differ by constant matrix factors

Yrt1 = xSk

called Stokes matrices. There are n(n—1)/2 independent parametersin the Stokes matrices.
They determine also the monodromy in the origin (see, e.g., [21]).

Theorem 1.1. Let A(u) be a family of operators of the form (1.14), v = (u?,...,u"),
V = V(u) = (vij(u)) with the same monodromy (independent on u). Then the following
procedure gives a massive conformal invariant Frobenius manifold: let 1;, (u), a=1,..,n
be a basis of solutions of the linear system

vij ..
aj"l’ia = i—"jd’jaa T 7é Js (1160')
ul —u
> Bithia = 0, (1.16b)
k
a=1,..,n. They can be chosen in such a way that
V"Z’a = ,u'(x¢'a
where p1, ..., py, are the eigenvalues of V,

ba + ln-at1 = 0.
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Putting

Nas = 3 bia(u)pig(u), (1.176)
i=1
3 (43
o = Y (wiau), (117¢)
cass(t(u)) = Y Pebit¥n (1174)
i=1 tl

we obtain a massive conformal invariant Frobenius manifold with the charges

Ja = Ha — M1

and the dimension
d = —2}.L1.

Any maassive conformal invariant Frobenius manifold with g, # 1 localy can be obtained by
this procedure.

The equations of isomonodromy deformations of the operator A have the form

Okvij = Yirveis k #14,5 (1.18a)
> Oyij=0 (1.186)
k=1
Z“kak‘)’ij = —7ij (1.18¢)
k=1
where W)
v,'j u
ij = = .18d
Yij g} (1.184)

This system is equivalent in the massive case to the WDVV equations + quasihomogenuity.
For n = 2 this gives vy5 = —vy; = id/2. For the first nontrivial case n = 3 the system
1(18.) reads

I‘i =I‘2F3 (119&}
(ng)r = —I‘ll";, (1.19b)
((z=1)l3)" =TTy (1.19¢)
where
vij(u) = T'x(z), i, j, k are distinct (1.19d)
b — ud

z = m. (1196)

Using the first integral
I + (2T2)? + ((2 — 1)T3)? = const (1.20)

one can reduce [14] the system (1.19) to a particular case of the Painlevé-VI equation. For
n > 3 the system (1.18) of isomonodromy deformations can be considered as a high-order
analogue of the Painlevé-VI. If the Stokes matrix of (1.14) is close to the identity then
(1.18) can be reduced to linear integral equations [21].
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Remark. The case where some of the charges g, = 1 can be included in the general
picture if the equations (1.12) for some vector field v are postulated. The vector field v in
the flat coordinates then should have the form

(1 - ga)t®8a+ D raba, (1.21)
1 a=k+1

k
v =

a

where g, # 1, r, are constants. Particularly, for the case n = 2, d = ¢» = 1 this will
give only one solution: the primary free energy (3.5) of the CP!-model. I do not know if
there are physical motivations for the conformal invariance (1.12) w.r.t. (1.21). Interesting
solutions of WDVV for n = 8, 9 were constructed in [49, 50].

In all the examples (below) of massive TFT the coupling space M (a massive Frobenius
manifold) can be extended by adding certain locus M,ing (at least of real codimension 2).
The structure of Frobenius manifold can be extended on M = M U M,ing but the algebra
structure on the tangent spaces T,M for £ € M,;ngy has nilpotents. The flat metric 545 is
extended on M without degeneration. So M is still a localy Euclidean manifold.

Remark: Local classification of “massless” Frobenius manifolds where the multi-
plication on the tangent planes is nilpotent everywhere still is an open problem. These
manifolds could depend on many functional parameters since the associativity equations
(1.3b) are too “weak” in the nilpotent case. Local classification of massless Frobenius man-
ifolds with an assumption of existence of a big group of algebraic symmetries was obtained
in [44].

2. Systems of hydrodynamic type: their bi-hamiltonian formalism, solu-
tions, and 7-functions. Coupling of a TCFT to topological gravity

Let us fix a Frobenius manifold (i.e. a solution of the WDVV equations). Considering
this as the primary free energy of the matter sector of a 2D TFT model, let us try to calcu-
late the tree-level (i.e., the zero-genus) approximation of the complete model obtained by
coupling of the matter sector to topological gravity. The idea to use hierarchies of Hamil-
tonian systems of hydrodynamic type for such a calculation was proposed by E.Witten
(28] for the case of topological sigma-models. An advantage of my approach is in effective
construction of these hierarchies for any solution of WDVV. The tree-level free energy of
the model will be identified with 7-function of a particular solution of the hierarchy. For
a TCFT-model (i.e. for a conformal invariant Frobenius manifold) the hierarchy carries a
bihamiltonian structure under a non-resonance assumption for charges and dimension of
the model .

So let czﬂ(t), 7o be a solution of WDVV, ¢ = (¢!,...,t"). I will construct a hierarchy
of the first order PDE systems linear in derivatives (systems of hydrodynamic type) for
functions t*(T'), T is an infinite vector

T=(T*?), a=1,...,n, p=0,1, ...; T*' =X,
aTu»ptﬁ = C(a’z,){:(f.)a_\'t’Y (210,)
for some matrices of coefficients c(a,p)z(t). The marked variable X = T1:¥ usualy is called
cosmological constant.
I will consider the equations (2.1) as dynamical systems (for any (a,p)) on the space

of functions ¢ = ¢(X') with values in the Frobenius manifold M.
A. Construction of the systems. I define a Poisson bracket on the space of functions
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t = t(X) (i.e. on the loop space L(M)) by the formula
{1°(X), P (V)} = 7°8'(X - V). (2:2)
All the systems (2.1a) have hamiltonian form
Orart? = {t°(X),Ha p} (2.1b)

with the Hamiltonians of the form

Hap = / B (4(X))dX. (23)

The generating functions of densities of the Hamiltonians
ha(thA) =) Rap(t)A, a=1,...,n (2.4)

p=0

coincide with the flat coordinates of the perturbed connection V() (see (1.8)). That

means that they are determined by the system (cf. (1.9))
050 ha(t, X) = Ach, (t)0ehalt, A). (2.5)

This gives simple recurrence relations for the densities hn,,. Solutions of (2.5) can be
normalized in such a way that

ha(t,0) = ta = nagt?, 2.6a
n

< Vha(t,/\),th(t,—/\) >=Nug-. (2.6b)

Here V is the gradient (in t). It can be shown that the Hamiltonians (2.3) are in involution.
So all the systems of the hierarchy (2.1) commute pairwise.
B. Specification of a solution ¢ = {(T). The hierarchy (2.1) admits an obvious scaling

group
TP v TP, tt. (2.7)

Let us take the nonconstant invariant solution for the symmetry
(Br11 = Y T*PO7as )H(T) = 0 (2.8)

(Iidentify 71" and X. So the variable X is supressed in the formulae.) This solution can
be found without quadratures from a fixed point equation for the gradient map

t = Vor(t), (2.9)
Or(t) = Y T*Pha,(t). (2.10)

It can be proved the existence and uniqueness of such a fixed point for sufficiently small T*?
for p > 0 (more precisely, in the domain: 7% are arbitrary, T?'! = o(1), T®? = o(T"!)
for p > 0).
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C. 7-function. Let us define coefficients Via,p).(8,9)(t) from the expansion

A+ #)7H< Vha(t:2), Vhg(t i) > =1ag) = D Viwp) () OA47 = Vas(t, A, ).
P.g=Y

(2.11)

The infinite matrix of coefficients Via,p).(8,9)(t) has a simple meaning: it is the energy-

momentum tensor of the commutative Hamiltonian hierarchy (2.1). That means that a

matrix entry Vi, )49 (%) is the density of flux of the Hamiltonian H, , along the flow
A

Ors.aha,pt1(t) = a-\'V(a,p),(ﬁyq)(t)' (2.12)

Then

1 . oy 1
T(T) = > Z Viap)(8,0(H(T))T*PT2 z Viap),a ) (((T)T*P + §V(1,1),(1,1)(t(T))

(2.13)
Remark. More general family of solutions of (2.1) has the form

V[®r(t) — &1,(1)] = 0 (2.14)

for arbitrary constant vector T, = T"”. For massive Frobenius manifolds these form a
dense subset in the space of all solutions of (2.1) (see [21] and references therein). Formally
they can be obtained from the solution (2.9) by a shift of the arguments 7%?. r-function of
the solution (2.14) can be formaly obtained from (2.13) by the same shift. For the example
of topological gravity [2, 3, 28] such a shift is just the operation that relates the tree-level
free energies of the topological phase of 2D gravity and of the matrix model. It should be
taken in account that the operation of such a time shift in systems of hydrodynamic type is
a subtle one: it can pass through a point of gradient catastrophe where derivatives become
infinite. The correspondent solution of the KdV hierarchy has no gradient catastrophes
but oscillating zones arise (see [16] for details).

Theorem 2.1. Let
F(T) =log r(T), (2.154)

< t,‘ba,pd)g,q A aTa,p 6Tﬂ,q vee f(T) (215b)

Then the following relations hold

F(T) sarrco tor o, ra0mia = F(t) (2.16a)
1
B_YT(T) = Z T"”’(?Ta,p-n]-'(T) -+ Ena[aTa’“Tﬂ‘U (216b)
< ¢a,p¢/3,q¢‘7,r >p=< ¢u,p—1¢A.U >u TI'\” < ¢u.0¢ﬁ,q¢v,r >0 - (2~160)

Let me establish now a 1-1 correspondence between the statements of the theorem and
the standard terminology of QFT. In a complete model of 2D TFT (i.e. a matter sector
coupled to topological gravity) there are infinite number of operators. They usualy are
denoted by ¢ or 0,(¢a). The operators ¢, ¢ can be identified with the primary operators
¢a; the operators ¢, , for p > 0 are called gravitational descendants of ¢o. Respectively
one has infinite number of coupling constants 7*?. The formula (2.15a) expresses the
tree-level (i.e. genus zero) partition function of the model of 2D TFT via logarythm of
the 7-function (2.13). Equation (2.15b) is the standard relation between the correlators in
the model and the free energy. Equation (2.16a) manifests that before coupling to gravity
the partition function (2.15a) coincides with the primary partition function of the given
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matter sector. Equation (2.16b) is the string equation for the free energy (2, 3, 20, 28].
And equations (2.16c) coincide with the genus zero recursion relations for correlators of a
TFT {3, 20, 28].

Particularly, from (2.15) one obtains

< ¢a,p¢(1,q >0= V(a,P)y(ﬂ,q)(t(T)L (2'170‘)
< ¢u,p¢1,u >o= hu,p(t(T)), (217b)
< Gap8,ebvr >0=< Vha,p Vhg g Vhyrle— > T¥PVha, 4] > (2.17¢)

The second factor of the inner product in the r.h.s. of (2.17c) is an invertible element (in
the Frobenius algebra of vector fields on M) for sufficiently small 72?7, p > 0.

Up to now I even did not use the conformal invariance. It turns out that this gives
rise to a bihamiltonian structure of the hierarchy (2.1).

Let us consider a conformal invariant Frobenius manifold, i.e. a TCFT model with
charges ¢, and dimension d. We say that a pair a,p is resonant if

d+1

5 T +p=0. (2.18)
Here p is a nonnegative integer. The TCFT model is nonresonant if all pairs a,p are
nonresonant. For example, models satisfying the inequalities

all are nonresonant.

Theorem 2.2. 1) For a conformal invariant Frobenius manifold with charges q, and
dimension d the formula

E0 0k = (55— )P 0) + (55— g PP )X ~ ) (220)

Fo(t) = n°'n°% 8,185 F(t)

determines a Poisson bracket compatible with the Poisson bracket (2.2). 2) For a nonres-
onant TCFT model all the equations of the hierarchy (2.1) are Hamiltonian equations also
with respect to the Poisson bracket (2.20).

The nonresonancy condition is essential: equations (2.1) with resonant numbers (e, p)
do not admit another Poisson structure.

Remark: According to the theory [12, 13] of Poisson brackets of hydrodynamic type
any such a bracket is determined by a flat Riemannian (or pseudo-Riemannian) metric
gap(t) on the target space M (more precisely, one needs a metric g*#(t) on the cotangent
bundle to M). In our case the target space is the Frobenius manifold M. The first
Poisson structure (2.2) is determined by the metric being specified by the double-point
correlators 7,5. The second flat metric for the Poisson bracket (2.20) on a conformal
invariant Frobenius manifold M has the following geometrical interpretation. Let w; and
wy be two 2-forms on M. We can multiply them w;, ws — w; -w; using the multiplication
of tangent vectors and the isomorphism 7 between tangent and cotangent spaces. Then
the new inner product < , > is defined by the formula

< wy,we >1= Ip(wy - wr). (2.21a)
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Here i, is the operator of contraction with the vector field v (the generator of conformal
symmetries (1.12)). In the flat coordinates t* the metric has (contravariant) components

9°°(t) = (d+ 1 — go — gp)F2(2). (2.215)

The metric (2.21) can be degenerate. The theorem states that, nevertheless, the Jacobi
identity for the Poisson bracket (2.20) holds.

Let us consider examples of the second hamiltonian structure (2.20). I start with the
most elementary case n = 1 (the pure gravity). Let me redenote the coupling constant

u=1tl.

The Poisson bracket (2.20) for this case reads
1
{v(X),u(Y)} = E(U(X) +u(Y))§'(X -Y). (2.22)

This is nothing but the Lie — Poisson bracket on the dual space to the Lie algebra of
one-dimensional vector fields.

For arbitrary graded Frobenius algebra A the Poisson bracket (2.20) also is linear in
the coordinates ¢

X, = (5 — a0 (x) + (L - gyessovysx —v). (22

It determines therefore a structure of an infinite dimensional Lie algebra on the loop
space L(A*) where A* is the dual space to the graded Frobenius algebra A. Theory of
linear Poisson brackets of hydrodynamic type and of corresponding infinite dimensional
Lie algebras was constructed in [17] (see also [12]). But the class of examples (2.23) is a
new one.

Let us come back to the general (i.e. nonlinear) case of a TCFT model. I will assume
that the charges and the dimension are ordered in such a way that

0=qg1 <g<...<gnoy < gqn =d. (2.24)
Since it L4
« n + af v — « '
{t3(X),t"(V)h = (5= = ga)t%(X) + —5 )X - Y), (2.25)
the functional 0
p=—2 /t"(X)dX (2.26)

generates spatial translations. We see that for d % 1 the Poisson bracket (2.20) can be
considered as a nonlinear extension of the Lie algebra of one-dimensional vector fields.

3. Examples

I start with the most elementary examples of solutions of WDVV for n = 2. Only
massive solutions are of interest here (a 2-dimensional nilpotent Frobenius algebra has no
nontrivial deformations). The equations (1.18) in this case are linear. I consider only
TCFT case (the similarity reduction of WDVV). Let us redenote the coupling constants

th =, t? = p. (3.1)
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For d # 1 the primary free energy F' has the form

1 g
F=_—pu?+ —2 _p**t2 3.2
2™ +ﬂ,(a+2)p (3-2)
1+4d
a—m (3.3)

g is an arbitrary constant. The second term in the formula for the free energy should be

understood as
g a+2 a—1
L = +1 .
@i’ fffg(a )P

The linear system (2.5) can be solved via Bessel functions [21]. Let me give an example of
equations of the hierarchy (2.1) (the T = T"!-flow)

ur +uuy +gp'px =0 (3.4a)

pr + (pu)x = 0. (3.4b)

These are the equations of isentropic motion of one-dimensional fluid with the dependence
of the pressure on the density of the form p = ;_%p“"’z. The Poisson structure (2.2) for
these equations was proposed in [19]. For a = 0 (equivalently d = —1) the system coincides
with the equations of waves on shallow water (the dispersionless limit [37] of the nonlinear
Schrodinger equation (NLS)).

For d = 1 the primary free energy has the form

1
F= Equ + ge’. (3.5)

This coincides with the free energy of the topological sigma-model with CP* as the target
space. Note that this can be obtained from the same solution of the system (1.18) as
the semiclassical limit of the NLS (the case d = —1 above) for different choices of the
eigenfunction ¥y; (in the notations of (1.17)). The corresponding T = T*"-system of the
hierarchy (2.1) reads

ur = g(e”)x
PT = UX.
Eliminating u one obtains the long wave limit
prr = g9(e”)xx (3.6)
of the Toda system
oy = € = 2em 4 e, (3.)

(The 2-dimensional version of (3.6) was obtained in the formalism of Whitham-type equa-
tions in [26].) It would be interesting to prove that the nonperturbative free energy of the
CP'-model coincides with the 7-function of the Toda hierarchy.

Example 2. Topological minimal models. I consider here the A,-series models only.
The Frobenius manifold M here is the set of all polinomials (Landau - Ginsburg superpo-
tentials) of the form

M ={w(p) = p" T+ ap" "t 4.+ an| a1,...,a, € CL (3.8)
For any w € M the Frobenius algebra A = 4,, is the algebra of truncated polynomials

Au = Clpl/(v'(p) = 0) (3.9)
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(the prime means derivative with respect to p) with the invariant inner product

< f,g >= resp=mM (3.10)

w'(p)

The algebra A4, is semisimple if the polynomial w’ (p) has simple roots. The canonical
coordinates (1.15) ul,...,u" are the critical values of the polynomial w(p)

u' = w(p;), where w'(pi)=0,1=1,...,n. (3.11)

The metric on M is diagonal in the canonical coordinates
D miw)(du'V, mis(u) = fw(pi)) . (3.12)
i=1

The correspondent flat coordinates on M have the form

1 n-—a
1% = —%ireslmmwnﬁ(p)dp, a=1,...,n. (3.13)

The metric (3.12) in these coordinates has the constant form
Z"ii(")(dui)z = Napdt®dt’, oy = ni1 048 (3.14)
i=1

The ortonormal basis in A4,, with respect to this metric consists of the polynomials é1(p),
- ¢n(p) of degrees 0, 1, ... , n — 1 resp. where

d o
da(p) = d—p[wm]+, a=1,...,n, (3.15)
Here [ |, means the polynomial part of the power series in p. This is a TCFT model with
the charges and dimension -

a—1 de _n-—1
n+1’ _q"—n-i-l’

(3.16)

9o =

In fact one obtains a n-parameter family of TFT models with the same canonical
coordinates u’ of the form (3.11) where

mii(w) = i, €) = [w' ()] [ cada(p:)l?, (3.17a)
£ 1%(e) =~ s W () ey (p)ldp (3.176)
n—a+1 7
depending on arbitrary parameters €1y .y Cp. This reflects the ambiguity in the choice of

the solution %;; in the formulae (1.17). These models are conformal invariant if only one
of the coefficients c., is nonzero.

The corresponding hierarchy of the systems of hydrodynamic type (2.1) coincides with
the dispersionless limit of the Gelfand — Dickey hierarchy for the scalar Lax operator of
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f_—'

order n+ 1. This essentialy follows from [4, 6]. I recall that the Gelfand — Dickey hierarchy
for an operator
L=8""4+a;(2)8" ' +...+ an(z)

8 =d/dz

has the form
atu.PL = Cﬂ‘p[L,[LﬁT+P]+], a = 1, ey, Pp= U, 1,. . (3-18)

for some constants c, ,. Here [ ] denotes differential part of the pseudodifferential oper-
ator. The dispersionless limit of the hierarchy is defined as follows: one should substitute

z—ex =X, t*" o ™ =T (3.19)
and tend € to zero. The dispersionless limit of 7-function of the hierarchy is defined [6, 34,

35] as
log Taispersionless (') = ].iIIb € 2 log T(et). (3.20)

Modified minimal model (3.17) is related to the same Gelfand - Dickey hierarchy with
the following modification of the L-operator

L L= e L], (3.21)
The linear equation (2.5) for the minimal model can be solved in the form [21]

ha(t;)‘) = “n+1

resp—ocw 11 Fi (151 + n—}_—l;z\w(p))dp. (3.22)

Here | Fi(a;c; z) is the Kummer (or confluent hypergeometric) function [18]

1Fi(aje52) = Z ((‘3: z;"‘!, (3.23a)
(a)m =afa+1)...(a+m—1). (3.230)

The generating function (2.11) has the form

a

Van(ti i) = (A + 1) 7! [ (resp=oow ™1 1 Fi(13 -5 Mw(p) )éu(p)dp) x

(resymoow ™ 1y Fy (1; ——; pw(p))du (p)dp) — nas)- (3.24)

B
n+1

From this one obtains formulae for the 7-function.
Example 3. My.,,.... n,.-models (8, 9, 21, 44]. Let M = M,.n,
of dimension

n,, be a moduli space

n=2g+n,+...+n,+2m (3.25)
of sets

(C;000,.+,00m;Wikoy- ey kmiai,...,85,b1,..0.,b0y) € Mgng...n,. (3.26)
where C is a Riemann surface with marked points ooy, ..., 00,,, and a marked meromorphic

function
w:C — CP', w'(o0)=o00¢U...,Uc0om (3.27)
having a degree n; + 1 near the point oo;, and a marked symplectic basis a1,...,a,,
bi,...,by € H(C,Z), and marked branches of roots of w near ooy, ..., 00y, of the orders
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ny +1, ..., oy + 1 resp.,
k?"“(P) = w(P), P near co;. (3.28)

We need the critical values of w
'u.jzw(PJ-), dw|lp, =0, j=1,...,n (3.29)

(i.e. the ramification points of the Riemann surface (3.27)) to be local coordinates in open
domains in M where _ _
u' #Ful fori#j (3.30)

(due to the Riemann existence theorem). Another assumption is that the one-dimensional
affine group acts on M as

(C;000,...,00m;w;...) — (Cio0p,...,00m;aw + b;...) (3.31a)

v s au' +b,i=1,...,n. (3.31b)

The flat metric 7,4 and the flat coordinates for these models are calculated in (8, 9, 21,
44]. For g = 0 and m = 0 one obtains the A, minimal models (see above).

Remark. The above models with m = 0, ¢ > 0 can be obtained [21] in a semiclas-
sical description of correlators of multimatrix models (at the tree-level approximation for
small couplings they correspond to various self-similar solutions of the hierarchy (2.1)) as
functions of the couplings after passing through a point of gradient catastrophe. The idea
of such a description is originated in the theory of a dispersive analogue of shock waves
[16]; see also [12].

More general algebraic-geometrical examples of solutions of WDVV were constructed
in [26]. In these examples M is a moduli space of Riemann surfaces of genus g with a
marked normalized Abelian differential of the second kind dw with poles at marked points
and with fixed b-periods

ﬁ =Bi,i=1,...,g.
b;

For B; = 0 one obtains the above Frobenius structures on Mgy.n,. .. n... Unfortunately, for
B # 0 the Frobenius structures of [26] does not admit a conformal invariance.

4. Calculation of the ground state metric and pluriharmonic maps

An additional structure that should be defined on a Frobenius manifold comes from
the ground state metric of the family of TCFT models (the coupling space) as a Hermitean

metric on the parametr space of the family. Equations of such a metric generalizing the
equations of special geometry [22] were obtained in [23]. Their integrability was proved
in [27]. Here I give a brief description of the underlined geometrical structure of these
equations (see [27] for the details).

Let us consider the space Q = GI(n)/O(n) of real positive definite quadratic forms.
This is a symmetric space. (In the tables of symmetric spaces usualy the correspondent
irreducible symmetric space Q = S1l(n)/O(n) of unimodular quadratic forms occurs.) A
map

G:M—Q

is called pluriharmonic if the restriction of it onto an arbitrary complex analytic curve is
a harmonic map of this curve to Q. The class of pluriharmonic maps depends only on the
complex structure on M.

The ground state metric on the Frobenius manifold is determined by a certain pluri-
harmonic map G : M — Q (I assume here M to be a simply connected manifold; otherwise
one could meet with twisted pluriharmonic maps). The constraint imposed on the pluri-
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harmonic map by the Frobenius structure on M can be described in terms of Higgs bundles
[45]. I recall that a Higgs bundle on a complex manifold M is a pair (E, A) where E — M is
a complex holomorphic bundle and 4 is a holomorphic section of the bundle T’ M @ EndE
such that: 1) d4 =0;2) An 4 =0.

Any pluriharmonic map G : M — () determines a Higgs bundle over M according to
the following construction. We put

E=MxC"
where the holomorphic structure on E is determined by the d"-operator
& = dzFVy,
where (V, V) = pull-back of the Levi-Civita connection on @Q;
A=G'dG.

The equations dA = 0 and A A A = 0 were proved in [27] (for pluriharmonic maps to a
compact Lie group these were proved in [46]). This implies integrability of the equations
of pluriharmopnic maps to Q.

In fact the above Higgs bundle carries an additional structure. We say that (E, 4, G)
is a symmetric Higgs bundleif (E, A) is a Higgs bundle and G is a holomorphic symmetric
nondegenerate inner product on F and the operators A are symmetric w.r.t. G. In our
example the symmetric inner product is the pull-back of the invariant metric on . There
is a real subbundle ReE C E where G is a real positive definite quadratic form.

There is another symmetric Higgs bundle (E', 4',G') on a Frobenius manifold:

E'=TM, (A") = c};dz*, G = ;.

Now we can formulate the geometrical interpretation of the constraints for the plurihar-
monic map G : M — @ equivalent to the {¢*-equations of [23]. We are looking for such a

pluriharmonic map that the above symmetric Higgs bundles (E, A,G) and (E', A',G") are
isomorphic. Then the quadratic form G can be extended from ReE onto E ~ T'M also as
a Hermitean positive definite form. This Hermitean metric satisfies the ¢t*-equations of
[23].

Local classification of pluriharmonic maps of a massive Frobenius manifold to Q can
be reduced to the isomonodromy deformation machinery [27]. In the first nontrivial case
n = 2 this gives the Painlevé-III equation; for n > 2 one obtains a high-order analogue
of the Painlevé-III. Interesting results in global classification of solutions were recently
obtained by Cecotti and Vafa [48].

5. Selection of solutions of WDVYV

What the solutions of WDVV could be of special interest? The possible test for
selection of solutions was proposed by C.Vafa [41]: to find solutions of WDVV for which
the free energy F(T') can be expanded in a power series in T with rational coefficients?
This test could be motivated by the interpretation of F(T') as the generated function
of intersection numbers of cycles on certain moduli spaces of algebraic curves and their
holomorphic maps [28]. From the constructions of Sect.2 above it follows

Proposition 5.1. A TCFT corresponding to a solution F(t) of WDVV passes through
the Vafa’s test in the tree-level approzimation iff F(t) is analytic in t = 0 and its Taylor
ezpansion in the origin has rational coefficients.
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It turns out that analyticity of a solution of WDVV in the origin imposes very strong
restriction for F(t). Particularly, for 0 < d < 1 for n = 2, 3 one obtains the following list
of solutions analytic in the origin:

n=2:

F= tits  hio
= T + 1ty (5.1)

for integer k > 2;
n = 3: here one has only three solutions

=t§t3+t1t‘;’ 212 5

F 5 ry 50 (5.2)
3 + 1183 3ty 243 t:
== -2, 27,278 "3 5.3
F 2 6 6 210 (5-3)
B + 482 1312 2 4!
=1= 2,723 273 . 5.4
F 2 6 20 3960 (5-4)

The formula (5.1) for k = 2 is the primary free energy of the 4, topological minimal model,
(5.2) is the primary free energy of the 4; minimal model. Other solutions seems to be
new.

V.L.Arnol’d recently brought my attention to a relation of degrees of the polynomials
(5.2) - (5.4) to the Coxeter numbers of the three Coxeter groups in the 3-dimensional
Euclidean space. Trying to explain this observation I found a general construction of poly-
nomial solutions of WDVYV for arbitrary Coxeter group G (finite group of linear transfor-
mations of a n-dimensional Euclidean space generated by reflections). In this construction
the Frobenius manifold coincides with the space of orbits of the Coxeter group. The Eu-
clidean coordinates z;, ..., z, will be the flat coordinates of the second flat metric (2.21).
The first flat metric 7,45 on the space of orbits can be defined using the affine structure on
the space of orbits introduced by K.Saito [42]. The correspondent affine coordinates t'(z),
.-, t"(2) were constructed in [43]. They are certain homogeneous polynomials in z, ...,
Ty invariant w.r.t. G of the degrees

dn =2< dn—l <.Zdy< dl = h, da =Mp—o+1 + 17 (55)

h is the Coxeter number of G, m,, are the exponents of G (I reverse the standard order of
the invariant polynomials!). It is important that the vector field

0
61 = =
at?
is well-defined within a factor due to the strict inequality d; < d;. Let g®?(t) is the
(contravariant) Euclidean metric in the coordinates t*

n a ﬂ
9°7(0) = (de"(e), deP(a)) = Y 200 (5.6)

(In the literature on reflection groups (g*#(t)) is called discriminant matrix. It degenerates
on the discriminant of G, i.e. on the set of singular orbits where 2, ..., z,, fail to be local
coordinates on the space of orbits. In the canonical coordinates u of Prop. 1.2 the
discriminant has the form u!..u” = 0.) The affine structure of Saito is uniquely defined
by the following condition: the matrix alg"‘/’(t) is a constant one. In these coordinates we

put
af
! o g=°(t
Feo(t) = Z#)—z" (5.7a)
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n** =8 F*%, (nap) = (n*")7" (5.70)
8*F
oteats

This gives a massive TCFT with a polynomial free energy F and with the dimensions and
charges

= naﬂ.qgﬂzFQ'ﬂ,. (5.7¢)

2 mn—u+l+1
d: —_— 11:1——
=59 )

Example. For the group I>(k + 1) of symmetries of a regular (k + 1)-gone on the
Euclidean plane the basic invariant polynomials are

(5.8)

8= Re(z + iy) !, 12 = 22 + 42,

1
k+1
di=k+1, d=2.
The matrix (5.6) has the form

N t2)k 2(k + 1)
(%) = (2(1§+1)t1 42 )

The formulae (5.7) immediately give the solution (5.1) (up to rescaling of the couplings).
Note that for any integer k£ > 2 (5.1) is the primary free energy of the topological Landau
- Ginsburg model with the superpotential

k1

w(p) =t + () F Tepa((82)1/2p),

Tik41(cosz) = cos(k + 1)z is the Tchebyscheff polynomial.

For the ADFE Coxeter groups one obtains the corresponding topological minimal mod-
els [4, 20, 47]. The solutions (5.2) and (5.3) correspond to the groups B; and Hj resp.
Details of this construction will be given in a separate publication. Probably, my construc-
tion gives all polynomial solutions of WDVV (at least this is true for n = 2, 3.

Acknowledgments: I am grateful to V.I.Arnol’d and C.Vafa for fruitful discussions.
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