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1. Introduction 

The concept of algebraic-geometrical integrable systems was discovered 
on the basis of the theory of periodic and almost periodic solution~ of the KdV 
equation (although some of their features were known for classical integrable 
problems of analytic mechanics). The main property of these integrable sys­
tems is that, their complexified Liouville tori can be compactified to give 
Abelian varieties [6]. On this basis some classification results on algebraic­
geometrically integrable Hamiltonian systems were developed in the cycle of 
papers [1, 2]. 

The theory of action-angle variables for algebraic-geometrical integrable 
systems was started in the pion~er works of Flaschka and McLaughlin and of 
S. Alber [11, 3]. The calculation of action- angle variables was based on the 
discovery of remarkable Darboux coordinates in the theory of KdV equation 
[11] and of certain finite dimensional Hamiltonian systems related to KdV [3]. 
These are constructed as the coordinates of the poles of Baker-Akhiezer func­
tion meromorphic on the spectral curve. The observations of these papers 
were generalized by Novikov and Veselov [16, 17] for essentially all known 
algebraically integrable systems (some of these ideas were developed later 
also in [14], see also references therein). 

Quantum theory applications of these algebraic-geometrical Darboux co­
ordinates were initiated in the paper [19] of Sklyanin. Using these coordinates 
for the periodic Toda lattice he elaborated the general scheme of functional 
Bethe ansatz (see also [19, 20, 18]). 
The main technical difficulty in application of the functional Bethe ansatz 
to higher rank systems (where the number of sheets of the spectral curve 
is greater than 2) is to separate the equation for the algebraic-geometrical 
canonical coordinates from the equation for the canonical momenta. This 
difficulty was overcome by a sophisticated algebraic technique in particular 
cases [20, 18]. 
We propose a simple solution of the problem essentially independent on the 
concrete structure of the algebraic-geometrically integrable system.. Let the 
integrable system be represented by an evolution of a n X n matrix T( A) 
depending on the spectral parameter A. Let Pa = (Aa, /La) be the poles of 
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properly normalized eigenvector of T(A) on the spectral curve 

. det(T(A) - 1'1) == o. 

We find an explicit equation 
D(A) 0 

for the A-projections A == Aa of the poles, where D(A) is an explicit simple 
polynomial of the entries of T(A) (see (9) below). 
Algebraic-geometrical Darboux coordinate, according to the general scheme 
of [16, 17] are obtained from the coordinates of the poles as 

(1) 

where f and 9 are some functions (the function f can be depend also on the 
spectral curve). The action angles variables then are given by the periods of 
the differential 

f(p"A)dg(A) 
and the correspondent angle variables are given via Abel-Jacobi map [9, 16, 
17] 

We address then the problem of relation between the concrete structure 
(1) of the Darboux coordinates and the R-matrix Hamiltonian structure of 
the integrable system. For the simplest R-matrix 

P
r(A) 

A 

(P is the permutation operator) and for linear/quadratic Poisson brackets 
for the matrix T(A) we show that the canonical Darboux coordinates are 
represented, respectively, as 

and 
qa == Aa Pa == log p,a· 

This generalizes (and gives a proof on the basis of R-matrix machinery) the 
results of [11, 3]. 
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An interesting problem is to analyze further the correspondence 

R - matrix ~ alg. - geom. Darboux coordinates 

for other R-matrices. 

2. Algorithm to find the poles. 

Let T(A) be an entire n X n matrix-valued function of the complex pa­
rameter A. We assign to the matrix a collection of spectral data (r, D) where 
r is a n-sheet Riemann surface over the A-plane and D is a divisor on r. To 
construct r we consider first the spectral curve roof the matrix T(A) 

R(A,JL) - det(T(A) - JLl) == 0 (2) 

where 
det(T(A) - JLl) (_JL)n - G:l(A)JLn- 1 

- ... - G:n(A), (3) 

I is the unity matrix. Let us assume that for generic complex A the equation 
(2) has precisely n roots JLl(A), ... ,JLn(A). These are the eigenvalues of the 
matrix T(A). So they become the branches of the function JL == JL(P), P == 
(A, JL) E r 0 being single-valued on r o· 

The ramification points of r 0 over the A-plane are those A for which the 
matrix T(A) has less than n linearly independent eigenvectors. They are 
among the zeroes of the discriminant: 

1)(A) == greatest common divisor 

of R( A, JL) and aRJ~'IJ) as polynomials in JL. 

This is also an entire function of A. However, some zeroes of 1)(A) correspond 
to singular points of the spectral curve. For example, a double singularity 
on r 0 occurs when for the given A such that 1)(A) == 0 two of the eigenvalues 
coincide but the matrix T(A) has still n linearly independent eigenvectors. 
These are double zeroes of the discriminant. In the double point (A, JL) E r 0 

we have thus 
rank(T(A) - JLl) == n - 2 

In some part of our considerations we will need the following genericity 

ass'umption about the matrix T(A): we assume that the discriminant V(A) 
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has at most double zeroes. Moreover, we assume that any of the double 
zeroes is the A-projection of a double point of the spectral curve. In other 
words, the assumption is that all the branch points of A : r 0 ~ C are sim­
ple and their A-projections cannot coincide, and that all the singularities of 
ro are double points with pairwise distinct A-projections. By r we denote 
the desingularization of the spectral curve. This will be the first part of the 
spectral data. 

Under the genericity assumption the eigenvector "p == ("pI, ... ,,,pn)T of the 
matrix T(A) 

T(A)"p == {k"p, "p == "p( P), P == (A, {k) E r 0 .(4) 

determines a holomorphic map of the desingularization r to the projective 
space [13] 

The second part of the spectral data is the divisor D == PI +P2 + ... obtained 
in the intersection 

"p(r) n H 

with the generic hyperplane H C cpn-l. If the hyperplane is specified by 
the equation 

(6) 

then the points Pi of the divisor are the solutions (with their multiplicities) 
of the equation 

(7) 

If we normalize the eigenvector "p of T(A) by 

(8) 

then the components "pi == "pi (A, {k) will be merom orphic functions on r hav­
ing their poles just at the points of the divisor D. 

If some infinite points 001, ••• , OOk , at A == 00 , of the multiplicities 
nl, ... , nk (with nl + ... + nk == n) can be added to r to obtain a com­
pact Riemann surface of a genus 9 in such a way that the map (5) can be 
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extended onto the compactification then the matrix T(A) can be uniquely 
reconstructed from the spectral data (r, D) (the multiplicity ni of the point 
OOi is, by definition, the order of the pole at OOi). 

Our first result is a simple algorithm to find the points of the divisor D. 
The principal advantage of the algorithm is a sort of "separation of vari­
ables" A and JL: the A-projections A( Pi) of the points of the divisor D can be 
found, independently on the JL-projections as zeroes of an entire functionD( A) 
polynomial on T(A). 

Let en be the linear space where the matrix T(A) acts. By e n* we 
denote the dual space. T(A) acts on the right in the dual space. By 
K == (K1 , ••• , Kn) E en * we denote the covector specifying the hyperplane 
(6). The function D(A) is defined by the formula 

D(A) == K /\ KT /\ KT2 /\ .... /\ KTn- 1 E /\nen (9) 

In the coordinate form for any basis in en D(A) is given by the determinant 

Kl K2 Ki Kn 

D(A) :== det 
(KT)l (KTh (KT)i (KT)n 

(10) 

(KTn-1 h (KTn-l )n 

We consider the equation 
D(A) == 0 (11) 

Let us assume that all the zeroes A == Ii of the function D(A) are simple. 
We also define the analytic functions q;( A) putting 

(-1 )n-l Qi( A, JL):== K i JLn- 1 + qH A)JLn- 2 + ...+ 
(12) 

+... + q~-1 (A) i == 1, ... , n 

where the functions Qi(A, JL) are defined as 

Qi(A,JL) :== L
n 

K j .6.ij (A,JL), i == 1, ... ,n 
j=1 
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and ~ij(A,JL) is the cofactor of the (i,j) entry in the determinant ofT(A)-JLI. 

THEOREM 1. 

1. 	 The poles P = Pa of ,¢(P), normalized as in (8), on the Riemann 
surface r could be only in the points (A = fa, JL = JLa) where fa 1,S a 
root of the equation D(A) = 0 and JLa is a solution of the system 

(13) 

2. 	 For any double point Q E r the A-projection A(Q) is a zero of the 
function D(A). 

3. 	 If T(A) satisfies the above genericity assumptions then the poles are in 
the points (A fa, JL = JLa = JL( fa)) where fa is any of the roots of 

. the 	(11) not coinciding with the A-projection of a double point of the 
spectral curve, then the matrix 

has rank n - 1. Assuming the minor 

1 
•• qn-3 

to 	be non zero, we obtain 
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1 	 1K1 	 qi qn-3 qn-1 

n-1 n-1 n-1K n- 1 	 q1 qn-3 qn-1 , 	 (14)JLa 	 JL('a) = ­ 1 	 1K1 	 q{ qn-3 qn-2 

n-1 n-1 n-1K n- 1 	 q1 qn-3 qn-2 

and qf 	= qf('a). 

Proof: 

The eigenvectors of the matrix T(A) with an eigenvalue JL can be written 
as 

~i1 
~i2 

~in 

for any i, where Ci is a normalization constant and ~ij 's are the cofactors 
of the matrix (T(A) - JLl). The normalization "'£i Ki4> 1 gives for Ci the 
following expression 

Ci = CL: Kj~ij )-1 
j 

So, "p 	can have poles only in the points (A, JL) of r that satisfy 

L Kj~ij(A, JL) = 0 Vi 
j 

The ~ij 's are polynomial in JL at most of order (n -1), and they are analytic 
in A; so we have a system, i.e. the system (13), of n equations in A and JL 
and we want to check if there are solutions belonging r. 
We first obtain equation for A as compatibility conditions of the linear system 
(13). 

Let us denote by K the row-vector 
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LEMMA 1. 

1. 	 If the vectors 

(15) 

for a given AO are linearly independent then any point on r of the form 
(A, JL) is not a pole of'lj;. 

2. 	 If the vectors (15) are linearly dependent then there exists a point 
(Ao,JL) E r and an eigenvector ofT(Ao)'lj;· JL'lj; such that 

Proof: 

Let (AO' JL) E r and the vectors (15) are linearly independent. We consider 
them as vectors in the dual space e n*. Let eI, .... , en be the basis of en dual 
to the basis (15). We have 

(16) 

We put 

'lj; :== el + JLe2 + .... + JLn- 1 en 


for any root JL == JL(Ao) of the characteristic equation (2). This is an eigen­

vector of T(AO) with the eigenvalue JL due to (16). 

From the duality 


it follows that 
K'lj; == 1 

So (Ao,JL) E r is not a pole of'lj;. 
The first part is proved. 
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Let us assume now that the vectors (15) are linearly dependent. Let 
V c en * (the dual space) be the span of the vectors (15). This is an invariant 
subspace for the right action of T in the dual space. The annihilator Va C en 
of V 

Va = {"p: V"p = 0 VV E V} 

is an invariant subspace for T. We can find an eigenvector in the subspace 

This will satisfy 

The lemma is proved. 

From this Lemma we obtain that the A-coordinate of the poles of"p could 
be only in a root of the equation (11). Conversely, if Aa is a root of (11) than 
there exists such j.£ that (Aa, j.£) E rand 

L KjLlij(Aa, j.£) = 0 Vi = (1, ... , n) (17) 
j 

We show first that, if Aa is not a ramification point then j.£ is specified uniquely 
in the form (14) by the system (17) and (Aa, j.£) is a pole of "p. 
In this case one can choose n analytic branches j.£l = j.£l (A), ... , j.£n = j.£n(A) of 
the algebraic function j.£(A) for A close to Aa, j.£i(Aa) =1= j.£j(Aa) for i =1= j. There 
exists a basis of the correspondent eigenvectors of T(A). Since j.£;'s are simple 
then the eigenvectors are analytic functions of A and the transformation 
matrix to the basis of the eigenvectors is an invertible ones and analytic in 
A. So D is proportional to the 

K'1 K'n 

K~j.£1 K~j.£n 

K'lI.n - 1 K ' n-l
1,-1 .. nj.£n 

with an analytic in A non vanishing coefficient of proportionality. Here 
(K~, ... , K~) are the components of K in the correspondent basis. 
So Aa is solution of 

D(A) = 0 ~ K~ (A ) ... K~(A) II(j.£i( A) - j.£j(A)) = 0 (18) 
i<j 
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The right hand side of (18) has locally a simple zero A Ao since D(A) has 
only simple zeroes by assumption. So Ao is a zero of, say, Kj( A), and there 
are no common solutions of 

KI(A) 0 

{ Kj(A) = 0 i:f= j 

(otherwise this solution does not give simple zeroes of the (18)). 
So, there is a (n - I)-minor of the matrix 

K' 

K'T 

K'T2 


that is not zero, more precisely, if Ao is solution of KI = 0 then a non zero 
minor is obtained by dropping out the i-th column and the last row 

n n k 

II Kj II II (Pk - P8) :f= O. 
i:f:.i k=1,k:f:.i 8=1,8:f:.; 

The conclusion is that the dimension of the span of the vectors (15) is n - l. 
So the annihilator of this system (see the proof of the lemma 1) is one­
dimensional. This is nothing but the eigenvector of T(Ao) satisfying K'lj; = O. 
So the linear system (13) in the variables p, p2, ... , pn 

- 1 for A Ao has one 
and only one solution P = Po. From Lemma 1 we have (Ao,Po) E r. Apply­
ing the Cramer rule to this system system we obtain the (14). 

Let us prove now that, the A-projections of the double points of r satisfy 
(11). However, there are no poles of'lj; over these A. 
Let be (A,p) a double point of r, and 'lj;', 'lj;" two linearly independent eigen­
vectors 

T(A)'lj;' = p'lj;' 

T(A)'lj;" p'lj;". 
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In the linear span of 'if;' and 'if;/1 we can find a vector 'if; such that 

(19) 


For this (Ao,p,) the rank of (T(Ao)-p,I) is n-2. This implies that this point 
is a common zero of the system 

Vi 
~in = 0 

LjKj~ij = 0 

because the first n equations are minors of order n 1 of (T - p,l) and the 

last equation is the same of the (19). 

So we can conclude that such AD is not a pole for 'if;. 


3. Algebraic-Geometrical Darboux Coordinates 

The next step of our investigation is to prove that the variables la, f(P,b) 
are canonically conjugated variables w.r.t. some important class of Poisson 
brackets on the space of A-matrices T(A). Here f(p,) is a function. The 
following two types of Poisson brackets will be under consideration. 

Quadratic Poisson brackets. The Poisson bracket has the form 

{T(A) ® T(p,)} = [1'(A -p,), T(A) ® T(p,)] . (20) 
, (q) 

Here l' = 1'( A) is a classical 1'-matrix, i.e. a solution of the linearized Yang -
Baxter equation (see [10] regarding the definitions and notations). 

The main source of the quadratic Poisson brackets comes from considera­
tion of the Poisson brackets of the monodromy matrix of a linear differential 
operator with, say, periodic coefficients. We recall briefly this construction. 

Let us consider the family of operators L depending on the parameter A. 

L := ax + U(z, A) T1'(U) 0 (21) 
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with periodic coefficients 

U(x +T, A) = U(x, A). 

We assume that the matrix-valued function U(x, A) is analytic in x near a 
point x = Xo. We assume also that U(x, A) is an entire function in A with a 
possible singularity at infinity (e.g., a polynomial in A). 

The matrix T = T(A, xo) is the monodromy matrix of the operator (it 
depends on Xo as on parameter). This is the matrix of the monodromy 
operator 

T</>( x ) </>( x +T) 

acting in the space of solutions of the equation 

L(x, A)</>( x, A) = O. (22) 

A basis in the space of solutions can be constructed from the columns of the 
fundamental matrix Y(xo, x, A) := (Y/(xo, x, A)) i.e. the matrix solution of 
the equation LY = 0 with the initial conditions Y(xo, Xo, A) f. 
This is an entire function of the complex variable A due to the formula 

T(A, xo) Y(xo +T, Xo, A). (23) 

The eigenvectors 1jJ of the monodromy matrix are in one-to-one correspon­
dence with the Bloch - Floquet eigenfunctions, i.e. with the solutions </> of 
(22) satisfying 

</>( x +T) = epT</>( x). (24) 

The correspondence is given by 

</> = Y1jJ 

{ pTe = 

for </> = </>( P), p = (A, JL) E r. The multivalued function p p(P) is an 
Abelian integral on r, i.e. dp is an Abelian differential on r with poles only 
at the infinite points. All the periods of the differential are integer multiples 
of 27rIT. 

I recall [10] that if the coefficients of the operator L(A) satisfy linear 
r-matrix Poisson bracket 
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then the monodromy matrix T(A, xo) satisfies the quadratic Poisson bracket 
(20). 

The second type will be r-matrix Poisson brackets 

{T(A)®T(JL)} = [r(A - JL), T(A) ® I + I ® T(JL)] . (26) 
, (I) 

These appear in the description of Hamiltonian structure of algebraic-geome­
trically integrable finite dimensional systems, i.e. of the equations of commu­
tativity of an operator of the form (21) with the operator of multiplication 
by T(A) 

[ox + U(X,A), T(A,X)] = o. (27) 

The equation (27) can be rewritten as a finite dimensional Hamiltonian sys­

tem on the space of matrices T(A) w.r.t. the Poisson bracket (26). The 

variable x plays the role of the time. 

We will consider the particular case of the r-matrix: 


P
r(A) := - (28)

A 

where: 
P : en ® en -)0 en ® en 

is the permutation operator. 

In these cases the important property of both the Poisson brackets is the 

commutativity of the eigenvalues of T(A) [10] 


(29) 

for any fixed Al , A2 and for any branches a , b. 

THEOREM 2. 

Let the r-matrix have the form (28), and let Pi = (,i, JLi) E r be the points 
of the divisor of the poles of1/;. Then Ii, Pi := log JLi have the canonical Pois­
son brackets w.r.t. the P.B .(20), or Ii, Pi := JLi have the canonical Poisson 
brackets w.r.t. the P.B .(26). 
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{Pi,Pi} = 0 Yi,j 

Remark. To obtain the complete set of Darboux coordinates for the 
Poisson brackets (26) or (20) we are to add the Casimirs of the brackets. To 
do this we need to impose some restrictions on the behaviour of the spectral 
curve and of p, == p,(A) at infinity (see examples below). 
In order to proof this theorem we need some lemmas. 

LEMMA 2. 

The P.B. between log D(Al) and T(A2) given by 

{log D('\l), T~('\2)} = L L "p~('\2)("p-l)~('\2) X 

a,r,s bi=a (JLa(Al) - JLb(Al)) 

X (K')~l (Al)K~(Al) ({T(Al) ® T(A2) }/)~:+, 

+ L L ({T('\l) (8), T('\2)}/)::"p~('\2)("p-l)~('\2) 
a,r,s ci=a (JLa(Al) - JLc(Al)) 

where "p;( A) is the i-th component of the eigenvector of T with eigenvalue P,i 

and the' means the components of the tensors in the eigenvector basis, and 

{T(Al) ® T(A2)}' := W-1(A1) ® W-1(A2){T(Al) ® T(A2)}W(Al) ® W(A2) 

W ( A) == ("pI (A )) is a n X n matrix. 

Proof: 

What we need is an expression for the variation of the D(A) as a function 
of T(A). 
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Let us consider 

D := el A e2 A .... A en 


and e l 
, ... ~ en are vectors of en. Suppose that 

8ei = LA~ei 
i 

So 
8logD LA~ 

In the our case let 

8e i = L KTP 8T Tq 
p+q=i-2 

Let F I , .. , Fn be the dual basis to el 
, ... , en, then 

If we chose the eigenvector basis of T, Fi's are 

and the ft are the coefficients of the family of the Lagrangean polynomials 
In J.L: 

1pb(J.L) := L
n 

ft J.Li 
- pb(J.La) = 8! 

;=1 

So 

~n ~ P qfa
X L..Ji=l L..Jp+q=i-2 J.LbJ.La ; 

LEMMA 3. 

_l_ 
ILa -ILb 
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Proof: 

If a =f. b then 
i-I i-I 

'"' p IIq - JLa - JLb 
L....J JLbr'a­

p+q=i-2 JLa - JLb 

so 


n 

L L JL1JL~/i == 
i=I p+q=i-2 

;" i-I 'i-I
L JLa - JLb Ii 
i=l JLa - JLb 

1 

the last equality follows by the definition of it. 
If a = b then 

L
n 

L Ji-~-2it = L(i - 1)Ji-~-2 It· 
i=l p+q=i-2 i 

Let us observe that this is just the derivative of the polynomial pa(Ji-) w.r.t. 

Ji- evaluated in the point Ji-a. 

Using the Lagrange interpolation formula we obtain 


=L 1 
cia Ji-a - Ji-c 

this complete the proof of the Lemma. 


We go back to the Lemma 2, using the Lemma 3 we obtain an expression for 
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Slog D(.A) 

(30) 
(oT'):

+ :La :Lc:¥=a J-La - J-Lc 

Now, the substitution of this expression 

gives the Lemma 2. 

Let us represent D(.A) in the form 


D(.A) = V(ib ",in, .. ) II(.A - id 

I 

where the coefficient V(iI, ... ,in' ..) does not depend on .A. 
Then 

In this way the P.B. between two different i's is given by 


{'·n,I;} == lim lim [{logD(Al),logD(A2)}(Al -li)(A2 -I;)]

Al-1'i A2-1'j 

(31 ) 
U sing the Lemma 2 we can write explicitly the P.B. between log D for two 
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different values of .A 

Let us suppose that there exist some u,v s.t. Ii and Ij are simple zeroes 

of K~(A) = 0 and K~(.A) 0 respectively ( observe that u and v label the 

sheets of the spectral curve). 

So, the only contribution in the limit (31) is given by 

By now all the equations hold for arbitrary r-matrix. 

Now we use the form (28) of the r matrix and alternatively the linear P.B or 

the quadratic P.B. for the T matrix. We obtain 
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for the quadratic case and 

(33) 
for the linear case. 

The substitution of these formulas in the previous one gives 

where 

. . (AI - 1'i)(A2 - 1'i)
F(7i. 7j) := lim lim KI (>, )KI (,x) x 

• "\l-"(i "\2-"(j u 1 v 2 

XL K;(7j )/Lr(7j) (1/1-1 ):t(7j)1/1:(7i) 
r,d (/-Lv - /-Lr)(1'i)(1'i - 1'i) 

. . (AI - 1'i)(A2 - 1'i)
G( 7i. 7j) := lim lim KI (,x )KI (,x) X 

"\l-"(i "\2-"(j U 1 v 2 

XL Kb(7i)/L"(7i)(1/I-1)~(7i)1/I~(7j) 
b,d (/-Lu - /-Lb)(1'i)(1'i - 1'i) 

for quadratic case and 
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x L KHli)(1/1-1 )~(-yi)1/I~('i) 
b,d (/-Lv, - /-Lb)('Yi)('Yi - 'Yj) 

for the linear case. But by hypothesis K~(ld = 0 and K~(lj) = 0 so 

LEMMA 4. 

Let .Po be a pole of"p, and Q an arbitrary point of the spectral curve with 
a fixed (i.e., independent on T ) value of A(Q). Then for the matrix (28) 

1. if T satisfies the Poisson bracket (20) then 

2. if T satisfies the Poisson bracket (26) then 

2:i 8 Kjg!( Q)gJ~(P)dA( P) U ' 
{A(PO), JL( Q))} res' . vJ 

P=Po (A(P) A(Q)) Ei Kjgj(P) 


Here g{ (P) is defined as 


if P is repres ented in local coordinates as P = (AI, JLa). 

Proof: 

Firstly, we compare the P.B. 

for any Al , A2; at this end let us consider the log det(T(A) - JLI) for any 
complex JL being not an eigenvalue of T, and let us consider the P.B. 
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U sing the explicit form of the r-matrix we obtain for the quadratic case 

_ [T(At}(T(A2)-p.I)- IT(A2)]j-[T(A2)(T(A2)-p.1)-IT(Ad]j 
- AI-A2 

and, for the linear case 

_ [(T(A2)-p.1)-1 (T(A2)-T(AI))];+[(T( Al)-T(A2) )(T( A2)-p.I)- ~ ]} 
AI-A2 

Let us observe that det(T(..\) - JLl) is a polynomial in JL of the degree n, so 
it can be written as 

det(T(..\) JLl):= W(JLl,". ,JLn) II(JL - JLk(..\)). 
Ie 

It follows immediately that 

Now 

the sum on the repeated indices is assumed here. So, for the quadratic case 

we obtain 

Lij("p-l )r(Al)"p~(Al){Tj(Al)' JLc(A2) }(q) = limp.-.p.c(JL - JLc) X 

XL:r [JLb(.~l) (1jJ-l(Al )1jJ( A2))~ p~{).:2_p (1jJ-l (Al)1jJ(A2)): ­

- JLa(Al) (1jJ-l (A2) (1jJ( AI)): p:'(l~~i< (1jJ-l (Al)1jJ(A2))!] ).1 ~).2 = 
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= ~C~~I (JLa - JLb ) (AI) (1/1-1 (>'2)(1/1 (Ad): (1/1-1 (AI) (1/1(A2)): 

and, for the linear case 

L:(1/;-1)~(A1)1/;~(A1){T;(A1), JLc( A2) }(l) = 
ij 

= A2 ~ Al (JLa - JLb) (AI) (1/1-1 (A2) (1/1(AI)): (1/1-1 (Al)(1/1(A2)): 

The substitution of the explicit form of the derivative of log D( A) gives for 

the quadratic case 

{logD(Al),JLc(A2)}(q) = ;c(A~ L L(K:)-I(Al)K~(Al) X 
2 - 1 a b:j:a 

X (1/;-1(A2)1/;(A1)): (1/;-1(A1)1/;(A2)): 

and for the linear case 

Let us observe that the previous two expressions differ by a factor Pc, i.e. 

So 
{log D(Al),log(Pc(A2))}(q) == {log D(Al),Pc(A2)}(l) 

and we continue the proof only for one of these. 
If the pole of 1f; is Po = (,i, Pu) then 

. Al -,i K~(A2) ( -1 )c
Ii, log pc A2) == 1f;{ (}(q) lim K' (,\ ) A ,\ (A2)1f;(Ad . 

.\1 -'Yi u 1 2 1 u 
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If we multiply by (7/;-1 )j(At} the numerator and the denominator of this 

expression for any j and remember the definition of K' and g{ we obtain for 
allj 

.1 (')} - Ii AI-,i Er,p Krg;(A2, C)g}(Ab U ){ II, og JLc "2 (q) - m 
>'l-I'i Er Krgj( AI, u) A2 - Al 

This completes the proof of the lemma. 

Let us consider a point Qo on the spectral curve s.t. that is a pole of 7/;, 

(possibly, coinciding with the pole Po) and compute the P.B. 

{,\(Po), f(J-L(Qo))} == {'\(Po), f(J-L(Q))}IA(Q)=A(QO) + 

+ af(~iQ)) {,\(Po),'\(Qo)} 

where f is either the identity or the logarithm. 
The second term of this expression is zero by the equation {,i, I j} = 0 proved 
before. So 

so 

{>.(Po),/(JL(Qo))} = { ~ ~::~: 
this is because in the first case Ei Ki9~(Qo) = 0, but in the second case the 
P.B. became 

dA(P) 
{A(PO), f(JL(Po))} = I~~o A(P) _ A(PO) = 1 

The P.B. between two different pi's is given, using (29) and the commu­

tativity of A(PO) and A(QO), and of A(PO) and f(JL(Qo)) for distinct poles 
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Po, Qo 

+ (8~~) ~~) (Po) (8~~) ~~) (QO){ ,\(PO),,\(QO)}+ 

+ (8~~)~) (Po) (8~~») (QO){'\(PO),JL(QO)}+ 

+ (8~~)) (Po) (8~~)~) (QO){JL(PO),,\(QO)} = a 

this complete the proof of the theorem. 

4.:Examples 

Example 1. For the Sturm-Liouville operator with periodic coefficients 

L:=-8; u(x), u(x+T)=u(x) 

the monodromy matrix: 

with detT = 1, is defined in the standard way (23). the eigenvectors of T 
correspond to the Bloch-Flouquet eigenfunctions of L 

L4> = A4>, 4>(x +T) = fL4>( x) 

4>(xo) ) 4>(xo) )
T (A, xo ) ( 4>'(xo) fL ( 4>'(xo) . 
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Using the normalization <!>(xo) == 1 (i.e. K == (1,0)) we obtain for the A­
projections of the poles the well known [6] equation 

Example 2. Consider a first order matrix operator with potential 
U( x, A), linear in variable A, i.e.: 

U(X,A) :== V(x) - AA Tr(V) == 0 (35) 

Here A is a diagonal matrix with pairwise distinct entries. 

We assume that the matrix-valued function V(x) is analytic in x near a point 

x == Xo. 


Following the scheme, say of [5] we construct a Poisson structure; on 
appropriate space of functionals of V (x). 
To a matrix X with entries Xij belongings to a suitable space of functions A 
of the variables Vij a vector field corresponds 

The space of vector fields {8x } is a Lie algebra g, w.r.t. the standard com­
mutator. Moreover let n° be the space of functionals 

f[V] :== / fdx f E A 

Let set a pairing between 9 and the space of matrix-valued functions of V( x) 
by 

(8x ,Y) :== / Tr(XY)dx. 

So the dual space n1 of the Lie algebra 9 is defined as the space of m.atrix­

valued functions {X s.t. X'm E A}. 

The family of Poisson structures depending on the parameter A is defined by 

the map 
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(Le. I-forms to vector fields) of the form: 

X E nl ~ H>.(X) = [X' + V(x) - AA,X] 

The Poisson bracket can be written as: 


(5f) 59

{f,g} = JTrH 5V 5V dx . 

where the variational derivative of the functionals are defined by 

To each functional f[V] a Hamiltonian vector field corresponds 

f[V] ~ 8 H (8//8V) = 8[8+V-AA,U]" 

The limiting cases are: A = 0 and A 00, 

(36) 

xo T 
(0)._ 1 l + {59 [ 5f ] } (37){f,g} .- T Xo Tr 8V o+V(x)'8V dx 

The matrix entries of V (x) and so of U (x, A) are local functionals of V (x). 
for their P.B. we obtain from (36) 

(38) 
8,i5jk( aj - ad8(x y) 

where ai are the entries of the matrix A; and from (37) 

{l/ij(x), V,m(Y)}(O) = 8l j8mioy8(x - Y)+ 
(39) 

+8(x - y) (V,j(x)5mi - l/im(x)8,j ). 
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The P.B. (38) is called ultralocal Poisson bracket because on the right­
hand side of the (38) there are no terms with derivative of the 0 function. 
This P.B. can be put in a r-matrix form: 

{U(x, A) ® U(Y,JL)}(oo) [r(A JL), U(x, A) ® 1 + 1 ® U(y, A)]O(X - y) 
, 

where the r-matrix is given by: 

r(A) := -
p 

(40)
A 

P being the permutation matrix in en ® en. 
Suppose that V(x) is a periodic matrix, with period T. We recall here the 
derivation of the P.B. (38) between the entries of the monodromy matrix 
T(A), T(JL). In order to do this we use the representation (23) of T(X) via 
the solution of the equation (22). We consider the variation equation, for 
fixed A, 

o8x Y(x) +oV(x)Y +V(x)oY(x) - AAoY(x) = 0 

This is a first order matrix differential equation in OY(x) with initial condition 
oY(xo) = 0 .The solut~on has the form: 

oY(x) = Y(x)C(x) 

and the matrix C(x) satisfies the following equation: 

Y(x)8x C(x) +oVY(x) = 0 

so 
8x C(x) _y­1 (x )oV(x )Y(x) 

and 
oY(x) = -Y(x) IX y-1(x')oV(x')Y(x')dx'.

1xo 
So for x Xo +T we obtain: 

(41) 

So: 

{T(A) ® T(JL)}~~ = , 
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fxo+T rxo+T 6T~(A) 6T~(JL) ik 
(42)= L Jx J:x d:v dy 6Vi( ) 6V;k( ){V(:v) ® V(y)}jl'i,j,k,l Xo Xo J:V I Y , 

Using the (41) and (38) we obtain: 

{T~(A), T~(JL)}(oo) == 

= LT~(A)T~(JL) f d:v (y- 1(:v,A)Y(:V,JL)); (y- 1(:V,JL)AY(:v,A)): 
m,s 

-T~(A)T~(JL) f d:v (y- 1(:v,A)AY(:V,JL)); (y-1 (:V,JL)Y(:v,A)):. 

Because Y(:v, A) is a matrix solution of the (22) the following identity: 

-holds. 

The substitution of this identity in the previous formula gives: 


{T~(A), T~(JL)}(oo) = 

= L T~(A)T~(JL) [(y-1 (:v,A)Y(:V,JL))m (y- 1(:V,JL)Y(:v,A))S]Xo+T
A-a d c~m,s r­

Td(JL)T~(A) Td(A)T~(JL)
-

A-JL 
The last expression can be rewritten as: 

{T(A) ® T(JL)}(oo) == [r(A - JL), T(A) ® T(JL)]. (43) 
, 

with the same r-matrix (40) 
The hierarchy of commuting Hamiltonian systems related with the op­

erator L can be constructed as follows [7]. We consider a solution R := 
E~o RiA-i with an arbitrary constant diagonal matrix Ro (this is a formal 
series) of the equation: 

[L,R]=O (44) 

For the coefficients one obtains the following recursion equations 

(45) 
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here R-1 == O. Then [12] all the entries of the coefficients Ri are polynomial 
on V, V', ... ,_ 
The equation of the hierarchies are linear combinations of the equations of 
the form 

(46) 

for the matrix-valued function V == V(x, t). This is a Hamiltonian system 
with the Hamiltonian 

in the H(oo) structure-, 
and: 

in the nCO) structure. 

Taking k == 2 for an arbitrary diagonal matrix BRowe obtain the 
Hamiltonian system with a quadratic non linearity 

here the operator adA have the form: 

All these systems commute pairwise. Imposing the reality constrains of the 
form (52) (see below) we obtain from (47) a system describing various type 
of non linear n-wave interaction [21]. 

The spectral curve (2) is an n-sheet covering of the Riemann A sphere. It 
has n distinct infinite points 001,. _ • ,00n such that 

near 00;,- For the H(oo) structure we have that the Darboux coordinates are, 
in the previous notations, log p,(,i) , and Ii, as a direct consequence of the 
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Theorem 2. 

Periods of the Abelian integral 


f dlog p, 

over the cycles on the spectral curve are the Casimirs of the first P.B. (38). 
It easy to see from the recursion relation (45) that the Darboux coordinates 
for the second Poisson structure (39) can be obtained from the poles (ii,P,i) 
in the form 

qi == log ii, Pi == log P,i· 

Example 3. Suppressing the x-dependence in (47) we obtain a system of 
ODE 

•V == [V, adB 
-1

adA V]. (48) 

This is a Hamiltonian system on the Lie algebra sl( n) with the quadratic 
Hamiltonian 

(49) 

depending on the parameters A and B. 

This coincides with the multidimensional analog [4] of the Euler equations 

describing free rotations of a solid. 

We introduce the matrix 


T(A) == AA - V. 

Then the equations (48) coincide with the commutativity conditions [15] 

The Hamiltonian structure of (49) can be described by linear r- matrix Pois­
son brackets (26). 

The spectral curve 
det(AA - V - p,l) == 0 

generically is a plane algebraic curve of degree n (the genus equals (n -1)(n­
2)/2 ). 
Our Theorem 2 gives an algorithm of construction of canonical Darboux 
coordinates ii, p,(id for the Hamiltonian system (48). The function D(A) in 
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this case will be a polynomial of degree n( n - 1) /2. Generically all the roots 
of this polynomial corresponds to the poles of the eigenvector. 

The Casimirs Cl, •.• ,Cn in this case are the coefficients of the expansions 

near the infinite points 

{A 	---+ 00, 
J.L 

---+ a'}A I 

A = diag( at, ... , an). These are nothing but the diagonal entries of the ma­
trix V being constant due to the equations (48). 

Remark. 

1. 	 Changes of the normalization (8) of the eigenvectors "p give canonical 
transformations of the variables (P(i),i). 

2. 	 All of these canonical transformations can be covered by a similarity 
transformations: 

(50) 

where M = diag(mt, ... , m n). 

The part 1) follows immediately if we consider another normalization for the 
eigenvector 

This condition changes the ii and p(ii) but the Poisson brackets between 
the new ii'S and p(ii)' s are the same. This means that the change of the 
normalization corresponds to a canonical transformation. 

The second statement is obvious. 
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For the operator of the form (21), the transformations (50) form a part 
of the hierarchy (46). Indeed, if we take 

hB = f Tr(BV(x))dx 

as the Hamiltonian of the transformation w.r.t. the second P.B. {, leO) for 
some diagonal matrix B then we obtain a transformation of (for an appro­
priate B) 

{Vij(x), hB}(O) [B, V(X)]ij = -6l/ij(x). • 
The corresponding monodromy matrix will transform as in (50). 

In application the coefficients of the operator L satisfy certain reality 
conditions. The most important of them are: 

V* -v (51) 


(the * denotes the hermitian conjugation) or, more generally: 


(52) 

for a diagonal real matrix J. The matrix iA in these cases must be real. 
This reduction is compatible with the hierarchy (46) (one should take real 
matrix Ro ). Our technique of construction of canonical coordinates works 
also for the real case (52) (the reality restrictions for the Darboux coordinates 
are discussed in [8]). More complicated reduction of the hierarchy (46) is 
obtained imposing an additional constraint of reality 

(53) 

The problem of separation of variables using Darboux coordinates of the 
algebraic-geometric type, for the operators satisfying (52) and (53) is still 
open. 
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