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INTEGRABLE FUNCTIONAL EQUATIONS AND
ALGEBRAIC GEOMETRY

B. A. DUBROVIN, A. S. FOKAS, anDp P. M. SANTINI

Introduction. The main goal of this paper is to show that certain functional
equations can be solved using an appropriate version of the inverse spectral
method. (We refer the reader to the books [1]-[5] where the basic ideas of the
application of the inverse spectral method to integrable systems of differential
equations are explained.) Here we shall demonstrate our method by considering
in detail the functional equation

@‘q"gq‘f D)y, 3) = riz. ) + plx 2). 0.1)

Note that, in the case

p(xs y) = p(x - y)a q(x, y) = Q(x - y): T(X, J/) = r(x - .}’) (02)

where (z) is an odd function, this equation reduces to the more simple functional
equation

4090 _ ) 1 r(y) + plx + 9), (03)

q(x +y)

introduced by Calogero and Bruschi in connection to integrable many-body
problems [6].

The usual way to solve functional equations of this type is to derive a differ-
ential equation for the involved functions assuming appropriate smoothness. This
was done for equation (0.3) in [7]. (The differentiated form of the functional
equation (0.3) was also used by I. Krichever [14] in his theory of action-angle
variables for Calogero-Moser systems with an elliptic potential.) Here we shall
solve the functional equation (0.1) without assuming smoothness or even continu-
ity for the functions p, g, r. We only assume that these functions are Lebesgue
measurable.

The equation (0.1) has a rich symmetry group. Indeed, one can transform the
functions as follows:
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ﬂ%ﬁﬂ%%ﬂ%w, sipins s g (0.4

g—q, rxy)-rxy)+ () +gx), plxy) - pxy) —gx) +g(y); (0.5

p, 4,1 — kp, kg, kr. (0.6)

Here v(x), f(x), g(x) are arbitrary functions and k is constant. Also, one can change
the arguments by an arbitrary function z(x):

p(x, y), q(x, »),  rlx, ) —=plzx), 2(y),  qz(x), z2(»),  z(x), 2(y)).
(0.7)

Our main result is that, modulo the ambiguity (0.4)—(0.7), a generic solution of
the functional equation has the form (0.2) with

Yalzis )

pz) = {(z0) = Lz + 20). gl = sZ)o) r(z) = {(2), (0.8)

(cf. [7]) where ¢ and { are the Weierstrass elliptic o- and {-functions (see [9]) and
zy is @ complex number.

Our method of solution of the functional equation (0.1) involves first relating
(0.1) to the algebraic equation

By~ ray + D (0.9)
qik

We then construct a commutation representation (“Lax pair™) for equation (0.9).
Because of the existence of such a representation, we can call (0.9) an integrable
algebraic equation and equation (0.1) an integrable functional equation. We shall
show that the problem of solving the functional equation (0.1) can be reduced to
the problem of classifying certain commutative algebras of A-matrices (4 plays
the role of spectral parameter). Using ideas of the algebraic-geometric integration
method (see surveys [10]-[12]) we obtain such a classification.

We note that equation (0.9) is not the first algebraic equation to be solved by
the inverse spectral method. In fact, Krichever [8] used algebraic-geometric tech-
niques to classify two-component solutions of the Yang-Baxter equation. How-
ever, the nature of integrability of equations (0.1) and (0.9) is substantially differ-
ent from that of the Yang-Baxter equation.

Remark. Within the ambiguity (0.4), the function

_a(x —y—z)
4% 3) = o(xg)a(x — y)
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solving the functional equation (0.1) coincides with the Baker-Akhiezer function

Wi(x, ¥, o) = explzol(x) — zoL(¥))a(x, ¥)-

We recall that ¥(x, y; z,) as a function of x is a single-valued function on the
elliptic curve

x e C/{2mw + 2nw'},

and it has an essential singularity in x =0
Zg
Wix, yizg) ~exp—  forx—0.
X

A generalization of the Baker-Akhiezer function (essentially, a generalization of
the exponential function on the Riemann sphere) plays a very important role in
the machinery of the algebraic-geometric method of integration of nonlinear equa-
tions [11]. We have found that Baker-Akhiezer functions on Riemann surfaces of
genus ¢ are related to the integrable functional equation’

q(x. ¥)g(y, z)
q(x, z)

= ey — 7z )+ 3 S0P D, (0.10)

(See Appendix for the precise formulations.)

Tt would be interesting to derive all the standard facts of the theory of Baker-
Akhiezer functions from the functional equation (0.10). We are also tempted to
consider solutions of the integro-functional equation

=r(x,y) — 1z y + j s(y, O)p(x, z, 1) dt (0.11)

M

(integral over a space M with a measure di) as Baker-Akhiezer functions of infi-
nite genus. We will consider these problems in subsequent publications.

1. Commutation representation for the functional equation. Let X be a set of
at least 5 elements. Let p(x, ), q(x, y), r(x, y) be complex-valued functions on
X x X\(diagonal) satisfying the functional equation

q(x, ¥)q(y, z) = q(x, z)[r(x, y) — r(z, )] + plx, 2), (1.1
x, y, z distinct.

! In [15] it was shown that the Baker-Akhiezer function on a Riemann surface of any genus g as a
function of z, (ie., of a point of the Jacobian of the Riemann surface) satisfies certain functional
equations. These coincide with ours only for g = 1.
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Let xy, ..., x, be arbitrary distinct points of the set X, n > 4. Let us fix n numbers
Yis-..s Y, satisfying

it + =0, (1.2a)

7412 + -+ Inal? £ 0, (1.2b)

and the following condition: there exist n pairwise distinct numbers a,. ..., a,
such that

a;+--+a,=0 and y,a; + - + vy,a, =0. (1.2¢)

We introduce n x » off-diagonal matrices
pij = plx;, xj)’ Gy = q(xi, X;)7;, P =, X075 (1.5)

In these formulae i # j. We put zeros on the diagonals of the matrices.

Lemma L1, If p(x, y). g(x, ). r(x, y) satisfy the functional equation (1.1), then
the matrices (1.3) satisfy the following system of algebraic equations:

Qi = Quelryy — il + vba. (1.4)
i, J. k distinct .
Proof. Obvious.

We construct now a “Lax pair” (more precisely, a commutation representation)
for the system of algebraic equations (1.4). This system will be represented as the
condition of commutativity of a family of n x » matrices depending on an addi-
tional spectral parameter 4. We will call these matrices A-matrices. The idea to
consider equations of commutativity of a pair of A-matrices as “integrable alge-
braic equations” was proposed by one of the authors (P. S.) in [13]. Here we
develop this idea further by considering multidimensional commutative algebras
of A-matrices.

Let us fix n numbers y = (y,. ..., 7,) satisfying (1.2). Let #” be a commutative
algebra of n x n A-matrices L generated by the subspace ¢} of the form

FP={L =14+ U|A = diag(a,, ..., a,), U = (u:;)} (1.5a)

where ay, ..., a, are arbitrary complex numbers satisfying (1.2¢c). We assume the
algebra " to be irreducible; i.e., there exists no nontrivial subspace V' < C" which
is invariant with respect to #”. This is guaranteed by the inequalities

> (gl + lugl?) #0 (1.5b)

sFi

foranyi=1,...,nand for some matrix U = (4;;) such that L = 4 + U € #}.
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LEMMA 1.2, There exist off-diagonal matrices Q = (q;;) and R = (ry;) such that
all the elements of £} can be represented in the form

L=L,=14A+[A 0]+ D+l (1.6)

where D, is a diagonal matrix with entries given by the vector [R, A](1,1,..., 107,
ie.,

D, = diag([R, 41(1, 1,..., )"), (L.7)

¢ is an arbitrary constant, and 1 is the unity matrix.

Proof. Let < be the space of matrices A = diag(ay, ..., a,) satisfying (1.2¢).
The map

Lifclt > o,  AA+U—A (1.8)

is an isomorphism of linear spaces. Indeed, let A € o/ be a matrix with pairwise
distinct diagonal elements. Let L = A4 + U be an element of #7. We define an
off-diagonal matrix Q by the equality

U=[A4,0]+D, D=diagd,,....d,). (1.9)

For any L' = A4’ + U’ € %, the commutativity of L and L’ implies [A, U] =
[4, U], or using (1.9)

U'=[4,0]+D, D =dagd,...d).

Let L, = AA 4+ [4, Q] + D;, i = 1, 2 be two elements of #7. Here Dy, D, are some
diagonal matrices. Then D, — D, € £7. So D; — D, = c! because of the irreduc-
ibility condition (1.5b). So the linear map (1.8) is an isomorphism, The inverse
map is just given by (1.6). (The formula (1.7) gives the general form of a diagonal
matrix D = D, linearly depending on the traceless matrix 4.) Lemma 1.2 is proved.

The matrices Q, R can be considered as parameters of commutative algebras of
j-matrices of the above form. The matrix Q is determined uniquely by the com-
mutative algebra, while the ambiguity in determining R is of the form

f‘ij ~ J’ij + pi‘)"j (110)
for arbitrary p;.

In the coordinate form, the formulae of Lemma 1.2 mean that for any matrix 4
satisfying (1.2) there exists a unique matrix L, € % of the form

(L= [/las + Z risla, — ai):] 0y + (a; — a5, iLj=1..,n (L11)
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We obtain (together with Al) an (n — 1)-dimensional family of commuting n x n
A-matrices.

ProPOSITION 1.1.  The equations of commutativity of the i-matrices (1.11), sat-
isfying (1.2c), are equivalent to the algebraic equations (1.3).

Proof. Let A = diag(a,, ..., a,), B = diag(b,, ..., b,) be two diagonal matrices
satisfying (1.2c). The commutativity of L, and Ly implies

b; Z (a; — a))ey; — by Z (a; — aj)ey; + (a; — a)) Z bicy; =0, (1.12)
where
Ciij = qudy; + (rp — 1)y (1.13)

and the sums are over | with [ # i, j. Since equation (1.12) is an identity for any B
satisfying (1.2c), this guarantees the existence of numbers p, ; such that

Citj = Vilij» (1.14)
i, j, | are distinct,

Proposition 1.1 is proved.

Remark. More generally, one can consider commutative algebras of Ai-matri-
ces with the generators of the form (1.5) where the diagonal leading terms 4 =
diag(a, ..., a,) satisfy g + 1 independent linear constraints

a, ++a,=0, (1.15a)

Y via;=0, T R, (1.15b)

Y yi=0, I=1..,g. (1.16)

Then under certain regularity conditions for the linear space (1.15), the equations
of commutativity of the (n — g)-dimensional family of A-matrices (1.11) read

q
Qi = quclri; — rkj] + IZI ?’;nga (1.17)

i, j, k distinct,
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for some matrices (pL), ..., (p4). We leave as an exercise to the reader to derive
the equations (1.19) for arbitrary g from the commutation representation. For
g = 1 this gives (1.4). The case g = 0 is even simpler; but the corresponding alge-
braic equations (1.17) for d = 0 can be solved in an elementary way:

Y 1, _
G=— ", rijzz—léj+fj, (1.18)
i i

where 4;, v;, f}, z; are arbitrary complex numbers.

2. Spectral curve of the integrable algebraic system. The idea of the spectral
curve corresponding to the integrable algebraic system (1.4) (or, equivalently, to
the commutative algebra of A-matrices (1.11)) is very simple. We consider the
family of common eigenvectors of the commuting operators L,

Ly = p.

Here p, is some algebraic function of i (depending linearly on A) defined on an
algebraic curve consisting of all common cigenvectors considering them up to a
factor. This is the spectral curve we need. In our case the spectral curve is an
elliptic curve; we will give a very explicit description of it. Investigating the ana-
Iytic properties of the eigenvectors i as functions on the spectral curve is the core
of the algebraic-geometric integration method [10]-[12]. In our case this investi-
gation provides us with explicit formulae for solutions of (1.4) in terms of elliptic
functions.
Let us assume that

71+ 72+ 73 #0. (2.1
Choose two vectors (by, b,, by), (c,, ¢, ¢5) with nonzero components satisfying
9.by + 72by + y3by =0 (2.2a)
and
viCy + P2y + Yacy =0, (2.2b)
such that the points (hy, ¢;), (b3, ¢3), (b3, ¢3) are not on a line. We assume also
that all the matrix elements g,; fori,j = 1,2, 3,i # j do not vanish.
Let
B = diag(bh,, b5, b3,0,...,0), C = diag(cy, ¢, ¢3,0,...,0) (2.3)

be two diagonal matrices of order n. Let us consider the corresponding matrices
Ly, L of the form (1.11) with the substitution B and C instead of 4. The matrices
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B, C are not traceless. Note that adding a scalar matrix to the matrix A4 in (1.11)
shifts the corresponding i-matrix L, by all. So the matrices Ly, L. still
commute,

Lp, Lee #7. (2.4)

We first prove the existence of a common eigenvector  of the commuting
A-matrices Ly, L. The eigenvector y satisfies

Lp = wf, (2.52)
Loy = vy, (2.5b)
where u, v, the corresponding eigenvalues are certain functions of A,
u = u(d), v =v(d). (2.6)
As the first step we will eliminate A from the system (2.6) and prove that the
eigenvalues u, v are related by a cubic equation. This equation will give us an
explicit realization of the spectral curve.
Multiplying equation (2.5a) by C, equation (2.5b) by B, and subtracting the
results, we obtain

Mg =0 2.7)

where ¢ = (Y, 5, ¥3)" and M = M(u, v)is a 3 x 3 matrix of the form

bio—ciu+d, Bi2412 B34
M{u, v) = B21421 byv — cou + d, B23425 . (2.8)
B31d3; B32432 bsv — cyu +d;
Here
Bij = bst = bjci = Pk (2.9)

for some p # 0. Here i, j, k is an even substitution of 1, 2, 3, and
3
d; = 7121 Fubu - (2.10)

LemMa 2.1, If a nonzero common eigenvector yr of the i-matrices Ly, L exists,
then

Alu, v) = det M(u, v) = 0. (2.11)
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Proof. TIf A(u,v) # 0, then ¥y =, = 3 =0. If such nonzero common eigen-
vectors W of Ly, L exist, then they form an invariant subspace of all the commu-
tative algebra 7. This contradicts irreducibility of #7. Lemma 2.1 is proved.

The algebraic curve (2.11) is a plane cubic curve. Generically this is an elliptic
curve; for certain values of the parameters it can degenerate to a rational one. Let
us assume this curve to be generic (ic., an elliptic one). We will consider itasa
3-sheet covering of the complex u-plane. There are 3 infinite points on the curve,

v C;
v o, S il i=1,23. 1
u, v — 0 i (i A (2.12a)

We will denote them by co;, 00,, 003 respectively. Near these points the ratio v/u
has the expansion

i di - -
=z~ gu Y — (B4 + Bradriduu 24+ 0w7%) (2.12b)

3

I

where i, j, k is a permutation of 1, 2, 3. Equation (2.12b) follows easily from (2.11).
Let us study the analytic properties of the eigenvector ¢ = (W1, Y, Y3)7 of the
matrix M (u, v) on the curve (2.11).

PROPOSITION 2.1.  The components i, Y5 of the eigenvector ¢ of M(u, v) nor-
malized by

Uy, =1 (2.13)

are rational functions on the curve (2.11). They vanish at the point oo,; W, and s
have a pole at oo, and ooy respectively of the form

u

W, = e + O(1) near o, , (2.14a)
2412
vs = —; 1:1 + O(1) near o0, . (2.14b)
3413
Also
qsz
3(00,) = 0 (2.15a)
12
Paloos) = 222 (2.15b)

di13
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For |u] < o0, the functions y,, Y5 have a pole at the point (u,, v,),

Uy = b, &‘?12‘1_23 b Eggm%z n bydy — bad_z

, (2.16a)
Bis ais 215112 di2 Bas
Bi2 412423 Bis 41393, Cady — c3d,
Vg = Cq—- —~22=2 —_—— 7 7 (2.16b)
g 31913 d13 Zﬁlz qdi2 Bas

Proof. Let A;,(u, v) be the cofactor of the (i, j)th element in the determinant of
the matrix M(u, v). Then the eigenvector can be represented as

Ai?_ (u: U)

_ Ailu, v)
Ay (u, v)’ Va=Z

lpz N ﬁAuil(u:?)’

(2.17)

for any i =1, 2, 3. Hence 1,, 5 are rational functions on the curve (2.11). The
behavior of the eigenvector at infinity follows immediately from the expansion
(2.13). Let us look for finite poles of Y2, Y. As it follows from (2.17), they could
be only at the point (u, v) where

Api(u,0) = A,y (u,0) = Asi(u,v)=0.

Let vus write explicitly a part of this system:

Ay, ) = ﬁlaﬂm‘hsqaz = B12412(b3v — c3u +d3) =0, (2.18a)
Asy (1, 0) = B,,B239,,423 — B13q13(byv — cou + d,) = 0. (2.18b)

Solving the linear system (2.18), we find the unique solution u = u,, v = v, of the
form (2.16).

Let us prove that the point (u,, vo) belongs to the curve (2.11). (This implies
also that A, (u,, v,) = 0.) Indeed, otherwise the functions ¥, Y5 would have no
poles for [u| < co. But any of them has precisely one pole at infinity. It is impossi-
ble for a rational function on an elliptic curve to have one pole. Proposition 2.1 is
proved.

Let us consider now the other components of the common eigenvector (2.5).

PROPOSITION 2.2.  The components Ya, ..., W, of the common eigenvector W oof
the matrices Ly, L. normalized by (2.13) are rational functions on the curve (2.11).
They vanish at the point w,. In the point (g, vo) all of them have poles; each
component Y, j = 4, also has a pole at the point

0= (U, v;),j=4,...,n, (2.19a)

3

3
U = Zl Faby, v= ) e, (2.19h)
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of the form

Vj .
=1 4 0(1), =4,...,n, 2.20
Z u—uﬁ (1) J n (2.20)

where

=1

V= {lebl |:zZ (rjl —rau)fxn i; (g —r3)Ba — ﬁzaﬁaz‘hsqaz]

3
+ szbz BaaBs1d23qa1 — B21d2: Z (T‘jl - r3I)B3I:|

=1

3
+ stbs [ﬁazﬁu%z‘?m — B31931 Z (rjp — ”21)52{[}/

.
Proof. Forj = 4, the jth equation in the system (2.5) reads

¢’j _ Z?=1 (bj S bt)‘?jzl.l’z i

e

I

3
. (rp — 3082 1;1 (riy — r3)Bar — ﬁ23:6329235132:|v (2.21)

iia (2.22a)
i
3 —_— -
!,Uj — Zlﬂl (5,17 UCI)QJIWI : (222b)
i

where u;, v; have the form (2.19). So all the y; are rational functions on the same
curve (2.11). The statements about the pole at (u,, v,) and the behavior at infinity
are obvious from the analytic properties of ¥, and ;. The function ; also can
have a pole only at the point (;, v;) of the form (2.19) (zero of the denominators
in (2.22)). Let us prove that the point (u;, v;) belongs to the curve (2.11) for any
j=4,..., n Indeed, otherwise the function ; would have only one pole at (u,, vy).
So it should be a constant. Hence y; = 0 since y;(c0,) = 0. This contradicts to
irreducibility of the commutative algebra #7.
To prove (2.20)—(2.21) we use (2.22) and the formulae

Proposition 2.2 is proved.

It is time now to remember the spectral parameter A. We will show that A is
also a rational function on the curve (2.11).
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PRrOPOSITION 2.3, The spectral parameter A of the matrices Ly, L is a rational
Junction on the curve (2.11) having poles only at the points ooy, ..., o, of the form

A=ty io+0W™)  near oo, ;

by
3 _
7, = iz rulbi = by) (2.23a)
b,

A==§i4-0(n near oo, | (2.23b)
2

i bi +0(1)  near oo, (2.23¢)
3

A~ B ey o, j =4, o, (2.23d)
u—u

where ¥; are given by (2.21).

Proof. Taking the first equation of the system (2.5), we obtain

3

= Z rll = bl) - Z ( z)qlz(},/z + b Z Z! i lqﬂ']b!, (2243)

- J

3 n 3= qu/
ruler —ep) = [Zl (1 —a)quy +¢1 ), a4y ZM

j=4 v —

-

Acy =v—

(2.24h)

i

I i

So 4 is a rational function on the curve (2.11) having poles at the points 01, -+,
<, and, possibly, at the point (i, v,). To prove that 4 has no pole at (i, vy) We
consider the second equation in (2.5a):

(sz + 2‘,1 Falb, — bz)) Yy =uih, — i (by — b)ga + by Z 21_1 blq"!!’bl

I=1 uj
and we proceed similarly for (2.5b). If 4 has a pole at (uy, v,), then the left-hand
side of this equation has a double pole at this point. But the right-hand side has
at most a simple pole at this point. This contradiction completes the proof of
Proposition 2.3,

PROPOSITION 2.4, The common eigenvector  of Ly, L¢ is an eigenvector of any
operator L, (1.13) of the commutative algebra ¥7

Loy = . (2.25)
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The function p, is a rational one on the curve (2.11) having poles only at the points
o0y, ..., o0, of the form

fa=phut g+ OW™)  mear ooy flo = Trislas — @), (2.263)
1 ]

b= %%u +0(1)  near oo, (2.26b)
2
as
Ba =7 + 0(1) Hear ooy, (2.26c)
3
s % near oy, j =4, ..., n. (2.26d)
J

Proof. Since  is the unique common eigenvector of the A-matrices Ly and
L, it should be also an eigenvector for all the operators of the commutative
algebra. To describe the poles of the eigenvalue yu, we have to consider the first
equation of the system (2.25). To prove the cancellation of the pole at (i, vo) it is
enough to consider the second equation of (2.25). We omit here the calculations
since they are similar to the previous proposition.

We conclude this section by obtaining explicitly the conditions for g(x;, x;),
r(x;, x;), i, j = 1, 2, 3, which guarantee that the spectral curve (2.8) is nonsingular.

We first observe that the spectral curve does not depend on the choice of the
solutions (b,, b,, b3) and (c,, ¢,, c3) of (2.2). Indeed, changing these vectors sim-
ply implies a linear transformation on the (1, v)-plane. Such a transformation pre-
serves the genus of the spectral curve.

So we will use the following particular choice of the vectors:

(b1, b5, b3) =(—7v1,0,7,) (2.27a)

(cy, Cayc3) = (0, —73.72)- (2.27b)
Renormalizing

U="7,73X, V=Y,V (2.28)

we obtain the following equation of the spectral curve:

—y+ Ry3 — Ry; P =043
det -0, x+ R,; — R4 0sa =0. (229

034 —03, y—Xx+ Rz, — Rs,y
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Here we introduce the notation
Qi = q(x;, x;), R = r(x;, x;), Lj=1,273. (2.30)
The equation (2.29) can be written in the form
a(x)y? + Blx)y + y(x) = 0, (2.31)
where
a(x) =x + Ry, — R,,, (2.32a)
B(x) = x* + x(R3; — Ry, + Ry3 — Ry, + Ry, — Ry3) + 0,,0,,
= 023055, (2.32b)
7(x) = x*(Ry; — Ry3) + x(Q1303; — 01,051)
+(Ris — Ry3)(Ry3 — Ry3)(Ryz — Ryy) + 04,0530
= 013032021 + 013Q31(Ryy — Rys) + 0120,1(Ry; — Ryy)

+ 02303,(Ry3 — Ry,). (2.32¢)

The ramification points over the x-plane of the Riemann surface (2.31) are the
zeros of the discriminant

D(x) = f(x) + da(x)p(x) = x* + a; x> + ayx* + a3x + a,, (2.33)
where
a, = 2Ry, — 2R, + 2R,; — 2R,3 + 2Ry, — 2R, (2.34a)
ay = —20Q1,05 + 40,3031 — 20,305, + R}; — 2R;,R, ;5 + R,
+2R,,R,, — 2R 3R, + RE, — 2R,R;3 4+ 2R 3R,3 — 2R, R,
+ R3; — 2R, Ry, + 2R 3R5, + 2R, Ry, — 2Ry, Ry, + R2,

+ 2R3R35; — 2R 3R;3; — 2R, Ryy + 2Ry3R;3; — 2R, Ry, + R, (2.34b)
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ay =40,,0,305; — 4013021032 — 20,2021 Rz — 20,3032R 2
+20,,0:,Ri3 +202303:R15 — 2012021 Ray + 801303 Roy
—20,3032Rs1 + 201,021 Rz3 — 8013Q31 Ros + 202303205
— 201,051 Ra; — 2023035, R3; + 4RI, Ry — 4R R13R5,

— 4R, ,R,3R5; + 4R 3R,3R;3 +20,,051R3, + 20,304,R;5
— 4R?,R;; + 4R ;R 3R;; + 4R, R33R;5; — 4R, ;R,3R;,, (2.34¢)

a, = 03,03, —20,,051053032 + 03303, + 401023031 Ray

—40,3051032Rz; — 402303, R 2Ry + 4023052 R13R:,

+ 40,3031 R3; — 4012023051 Ra3 + 401302105223

+40,303,R ;R — 40,5303, R13R 3 — 8013051 Ra1 R,
+40,304,R%; —40,,0,,R;,R;3; + 4R?,R, R4,

— 4R, R 3R, Ry + 401,05, R53R5 — 4R?,R,3R3,

+ 4R ;R 3R,3R3; — 4R 3R Ry3R,, + 4R 3R, Ry3R5,
+4R,,R2,R,, — 4R3R33R;; + 401,05, Ry Ry — 4R1 R, Ry,

+ 4R, R{3R5 Ry, — 40,05, Ry3R;, + 4R?,R,3R;,
—4R,,R3R,3R;3; + 4R 2R, Ry3Ry; — 4R 3R, Ry3R5,

— 4R,,R%;R;, + 4R 3R33R;; . (2.34d)

Equation (2.31) is an elliptic curve unless the polynomial (2.33) has multiple zeros.
This happens if and only if the discriminant

J(X1, Xq, X3) = a?alal — 4a3a} — 4alad + 18a,a,a3 — 2703 — dajasa,
+ 16a%a, + 18a}a,asa, — 80a;a3aza, — 6aiaia,
+ 144a,a2a, — 27ata} + 14da}a,af — 128a3a;

— 192a,aya2 + 25643 (2.35)
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of the polynomial (2.33), whose coefficients are defined by (2.34), vanishes. We do
not give the explicit form of J (x1, X3, X3) in terms of g(x,, xy), r(x;, x;), since the
relevant formula is longer than the entire present paper.

We conclude that the condition

J(X1. x5, X3) #0
guarantees that (2.8) is a nonsingular elliptic curve.

3. Uniformization of the spectral curve. Elliptic parametrization of commutative
algebras of l-matrices, Propositions 2.1-2.4 justify calling the curve (2.11) the
spectral curve of the commutative algebra #”. The formulae of Section 2 can be
interpreted as the solution of the direct spectral problem that assign to the alge-
bra #7 a set of spectral data: the spectral curve with marked points GO, vvy OO,
the pole (u,, v,), and the parameters v, ..., ¥,, where

1 1
¥, = — , ¥y=— , (3.1)
’ byq:, ’ bsq,;
and the numbers ¥,, ..., ¥, are given by the formula (2.21). In this section we solve

the inverse problem: we reconstruct the commutative algebra for a given set of
spectral data.

Let us fix a basis a, b of cycles on the spectral curve (appropriately oriented),
We will use an elliptic uniformization of the spectral curve (2.11). For this we fix a
holomorphic differential on the curve (2.11),

du

T A v)

(3.2)

where

_ b](bzv _— Czu + dz)(b3U bl Cau + da)
+ba(byv —cyu+dy)(byy — catt + dy)
+ b3(byv —cyu+ dy)(byv — cou + dy) + by B3,02145,

+ b,B13q13q5; + b3f:291295; - (3.3)
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We denote by 2w, 2w’ the basic periods of the holomorphic differential, i.e.,

2o = 3(5 Q, 20" = (J; Q. (3.4)
a b

Their periods satisfy the inequality

'

Im” 0. (3.5)
)
We dissect the spectral curve along the cycles a, b and introduce the complex
coordinate
{u,v)
Z= j Q. (3.6)
Ty

(Paths of all the integrals should not intersect the canonical cuts a and b.) The
coordinate z is defined up to an integer linear combination of the periods 2w, 2w'.
So the uniformization map (3.6) establishes an isomorphism of the spectral curve
with the torus

C/{2mw + 2nw'|m, ne Z}. (3.7)

Rational functions on the spectral curve become elliptic functions on the torus
(3.7). Let us obtain explicit formulae for the rational functions constructed in
Section 2. Put

J

2, =0, z.=f’gz, e (3.8)

0y

(ug. vg)
Zie j Q. 3.9)

o0y

ProrosiTioN 3.1.  The following formulae hold:

A=Y Alz—z) + A, (3.10a)
i=1
where
, 1 1 1 . 41V .
Ay = — 5 Ay = i ;":_'m ) A = JJ'-; ;41
S 2= Bizba: ST b oA
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n 1 d i
= Z-mmniﬂi—ﬁﬂ, (3.10c)
i=2 2 B2
and 1, Vi, A; are defined in (2.23a), by (2.21), and
3 3
IZ, —ra)fy Z (rjl —r3)f32
3
+ b, I; ( —ri)Bu Z ( —r3)faz
3
+ b [Zl (ry — 7By Z (rig = 7202 + b1 B32d2345,
+ b2 B3q13431 + b3f12412021 (3.10d)
respectively.
(i)
My = Zl a4z = z,) + o, (3.11a)
where
n L a; by(bydy, — byd
Ho = flg + Y, a;i{(z) — = il — 2 1), (3.11b)
=1 2 B2
and fiy is defined in (2.26a ).
(iii)
o(z)o(z — z; — z,) .
—_— =2, 3.12
v v’a(z —z)o(z — z) 22 (3.12a)
where
q23 o(z3 — z;)0(z5 — Zo) _ 42 0(z5 — z))o(z; — zp) .
vy = = — , Jj=3.
g13 0(23)0(z5 — 2, — z) 415 6(2;5)0(z, — Z; — Zp)
(3.12b)

Proof. The formulae (3.10a), (3.11a), (3.12a) give the most general form of
elliptic functions with the analytic properties described in Section 2. To calculate
the coefficients 4;, one should take into account that near oo,

Av(u, U) - B2;ﬁ31 2 ﬁSl
1

b1z = badyJu + (1),
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(This follows from (2.12b) and (3.3).) So near z = 0,

L b Ubibidy—bady)

ﬁ21B31 2 B%lﬁll

(1), (3.13a)

or equivalently,

1 _ ﬁmﬁalu wfﬁm(}hdz — byd,) L0

-1
p; b, 3 b, ™). (3.13b)

Similarly, near co,

b
z—z,= — ot g (3.13¢)
1812 32
while near co,
bﬂ -1 =
Z—Z3= — w4+ 0w, 3.13d)
* T B :

This (and the formulae (2.23a, b, ¢)) give 4,, 4,, 4;. To obtain 4; for j = 4, we use
the obvious formula

dr_ 1
du  A,(u,v)’
Putting
A; = A (uy, vy) (3.14)

and using (2.23d), one obtains the formula for 4;. The formula (3.10¢c) follows from
(3.13b) and (2.23a). For y, the calculations are similar. The formulas for v; follow
by comparing the values of the functions y; at the infinite points. Proposition 3.1
is proved.

COROLLARY. The coefficients 4,, ..., 4, in (3.10a) are proportional to v, ...,
Tnt
A =Ky, p=1 e 0, (3.15a)
where
1
K= ——5— , (3.15b)
P7V1V2¥s

and the coefficient p is the same as in (2.9).
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Proof. The sum of residues of the elliptic functions A, u should be equal to
zero. This gives

A+ +4,=0
and also
ady + -+ ad, =0

for arbitrary a,, ..., a, satisfying (1.2c). So the proportionality (3.15a) holds true.
The coefficient x can be found from (3.10b). The corollary is proved.

ProrosiTion 3.3, The following formulae hold for the matrices Pij» qij» Ty for
iLj>1:

piy = K*[L(z0) — {(zi — 2; + 2o) —g:+ 9] (3.16a)
v; olz;—z; — zq)
a2 = —_. —— 3.1
= Y (e, = 2)0(z,) (3.16b)
ri = Kky;l(z — z)) + fiv; + g; (3.16¢)

Jor some f;, g;.

Proof.  We consider the ith equation in the system L, = u 1. Letting, in this
equation, z — z; for j # i, we obtain (3.16b). Consider now the same equation near
z = z;. We obtain

i‘i rifa; — a;) = a;hy — Uy + Z (a; — aj);l'jC(Zi —z)
i=

= 3 (@ @)L — 2) + ALE)T~ T e - a)

J

(We used the formulae (2.26b), (3.10c), and (3.11b).) Both sides of these equations
are linear functions of the vector (ay, ..., a,) satisfying (1.2¢). From this we obtain
(3.16¢). Substituting (3.16b, ¢) into the equation (1.4), we obtain (3.16a). Proposi-
tion 3.3 is proved.

Remark. Using the same ideas, one can prove that the algebraic integrable
system (1.17) can be solved in terms of theta-functions of Riemann surfaces of
genus g for n = g (see Appendix).
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4. From algebraic to functional equations and proof of the main theorem

THEOREM. Let X be a set of at least 5 elements. Let p(x, y), q(x, ¥), r(x, y) be
complex-valued functions on X x X\(diagonal) satisfying the functional equation
(1.1) and the genericity assumption

J =J(xy, x5, X3) # 0, (4.1)

Jfor some distinct x,, x5, x5 € X, where J is defined by equation (2.35). Then these
functions can be represented in the form

a5, y) = v(x) a(z(y) — z(x) — zo)

= () 0(z0)oz(y) — 2(x))’ (4.22)

r(x, y) = k[{(z(x) — z()) + f(¥) + g(x)], (4.2b)
p(x, y) = kq(x, y) [{(20) — {(z(x) — 2(¥) + 20) — 9(x) + g(¥)]. (4.2¢)

Here 0 = o(z|w, ©'), { = {(z|w, ®") are the Weierstrass elliptic functions with the
same periods w and o', v(x), z(x), f(x), g(x) are arbitrary complex-valued func-
tions on X, z, is a complex number such that z, # 0 (modulo periods of ¢ and {),
and k is an arbitrary complex constant. Conversely, the formulae (4.2) determine
a solution of the functional equation (1.1) for arbitrary w, @', zo, k, and arbitrary
functions v(x), z(x), f(x), g(x).

Proof. Let us take a solution p(x, y), g(x, y), r(x, y) of the functional equation
(1.1). We put now n = 5 and choose three points x;, x,, x5 such that g(x;, x;) # 0
fori=1, 2, 3, i #j, and such that the genericity assumption (4.1) as well as the
irreducibility assumption (1.5b) hold. The spectral curve (2.11) then is an elliptic
curve (J in (4.1) is the discriminant of (2.11)). We put also x, = x, x; = y. Taking
arbitrary constants y,, ..., ys with y;7,7; # 0 (as in the beginning of Section 1
also satisfying (2.1)), we obtain from the Proposition 3.3 that, particularly,

Pas = K2[{(20) — {(z4 — 25 + 24)],

q _sz&y o(zs — 24 — zo)
45 = K —Yg————
Vs al(z0)o(zs — 24)

ras = kys{(z4 — z5),

up to adding inessential terms f,, gs. From the formulae of Sections 2 and 3 we
infer that:
1. The parameters of the {- and g-functions do not depend on x, = x, x5 = y.
2. z, does not depend on x, y (see equations (2.16) and (3.9)).



666 DUBROVIN, FOKAS, AND SANTINT

3. z, and z; depend only on x, y respectively, and this dependence is given by
the same function

a3 =2(x),  zs=z(y).

(The function z(x) can be expressed explicitly using (2.19) and (3.8) via the spectral
curve and via the functions r(x, x)), [ = 1, 2, 3)

4. The coefficients v,, v5 are functions depending only on x, y respectively, and
this dependence is given by the same functions

Ve =v(x),  vs=v(y).

(The function v(x) can be expressed explicitly using (3.12b) via the spectral curve
and via the functions q(x, x,) and z(x).) Recalling that g,5 = g(x, WYss Fas =
r(x, y)ys, we complete the proof of the theorem.

Remark. 1f J = 0, the general solution of (0.1) can be obtained from (4.2) by
degeneration of the elliptic curve. We will not consider here all these possible
degenerations.
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APPENDIX

Functional equation for Baker-Akhiezer functions of arbitrary genus g. Here
we will describe the general solution of the functional equation (0.10). We will use
notations of [16] of the theory of theta-functions on Riemann surfaces.

THEOREM. Let X be a set of at least 3g + 2 elements. Let p(x, y), q(x, ), r(x, y)
be complex-valued functions on X x X\(diagonal). Let s,(x), ..., s,(x) be linearly
independent complex-valued functions on X. Assume that the above Jfunctions sat-
isfy the functional equation (0.10). Then, for a generic solution, the Sunction g(x, y)
has the form

s ) — k0 OUFR W =)

=g Uy Al
W(y) 8Gz0)e(PG3), P) (A

Here 6 = 0(z) is the Riemann theta-function of a Riemann surface T of genus g
with a marked symplectic basis of cycles a;, ..., a4 by, ..., b,. The vector w =
(Wi, ..., w,) denotes the normalized holomorphic differentials on T,

fﬁ w; = 2midy, .
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The map
P.X-T, x +— P(x),

is an arbitrary map, (P(x), P(y)) is expressed via the prime-form of I" with re-
spect to arbitrary local parameters z(x) on I" (such that z(x)|p., = 0)

E(P(x), P(y)) = e(P(x), P(y)(dz(x))""(dz(y)) .

The vector z, is an arbitrary g-component complex vector with 0(z,) # 0, v(x) is
an arbitrary function, and k is an arbitrary constant. Conversely, for any Riemann
surface of genus g, the formula (A.1) (together with (A.2)—(A.4) below) gives a
solution of (0.10).

The functions r(x, y), px(x, ¥), s,(x) can be found from the functional equation
(0.10) using formulae of [16]:

—kd log E(P(y), P(x))

Hx, y) = 20) (A.2)
_ wi(P)
si(x) = 2209 |p e (A.3)
_ k G(ﬁ( y W= 20)0([pi W + 20) E(P(x), P(y))
PO I = "o 55 0o 0I5 w — 20 B, POVEE, PO~

The genericity assumption of the theorem means that the corresponding spec-
tral curve is nonsingular. The coefficients of the equation of the spectral curve can
be expressed via values of g(x;, x;), 7(x;, x;), s(x;) in arbitrary 2g + 1 fixed points
Xy, ..., X3 4. All solutions of the functional equation can be obtained from the
above formulae by degenerating the Riemann surface I'.

The proof of the theorem will be published elsewhere. We hope that the reader
familiar with Riemann surfaces and their theta-functions can reconstruct the proof
after reading our paper (the only new point in the proof is an application of
Clifford and Riemann-Roch theorems [17] to calculate the genus of the spectral
curve).

In order to explain the relation of (A.1) to Baker-Akhiezer functions (more
precisely, to Baker-Akhiezer 1/2-bidifferentials in P(x), P(y)), let us fix a generic
point P e T". There exists a unique differential Q% of the second kind on I" with a
pole of order <g + 1 in the point P, and with zero a-periods, such that the
vector of b-periods coincides with z,:

Z0 —
fﬁﬁﬂﬁzo.
b
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We put
. . £ o 9(_[5 W —z,)
]lb(P, Q! ZO) - exp[fp Q :I B(Zo)E(P, Q) 4 (A'S)

This is a single-valued 1/2-bidifferential in P(Q)e I" x I with an essential singu-
larity in P = P, and Q = P, and with residue 1 on the diagonal P = Q. It is clear
that this can be obtained from (A.1) for P = P(x), Q = P(y) by an appropriate
choice of v(x).
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