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Abstract: We compute the genus one correction to the integrable hierarchy describing
coupling to gravity of a 2D topological field theory. The bihamiltonian structure of
the hierarchy is given by a classicalW -algebra; we compute the central charge of this
algebra. We also express the generating function of elliptic Gromov–Witten invariants
via tau-function of the isomonodromy deformation problem arising in the theory of
WDVV equations of associativity.

1. Introduction

According to [5, 8, 31], the primary free energy of the matter sector of a 2D topolog-
ical field theory (TFT) withn primaries as a functionF (t) of the coupling constants
t = (t1, . . . , tn) must satisfy WDVV equations of associativity. The problem of selection
of physical solutions among all the solutions to WDVV equations is still open. Refor-
mulating, the problem is to understand which part of the building of a 2D TFT can be
constructed taking an arbitrary solution of WDVV equations as the basement.

The first problem to be settled is coupling of a given matter sector to topological
gravity. In the full theory, besides the primariesφ1 = 1, φ2, . . . , φn that we now
redenote φ1,0, . . . , φn,0, there are infinite number of their gravitational descendents
φ1,p, . . . , φn,p, p = 1, 2, . . . . The generating function of their correlators is the full free
energy of the theory

F (T ) =
〈
e
∑

Tα,p φα,p

〉
. (1.1)

Here Tα,p are the coupling constants correspondent to the fieldsφα,p,

〈...〉 :=
∑
g≥0

∫
6g

...e−S[ψ] [dψ] (1.2)
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(the sum over the fieldsψ living on the surface of genusg, S is the classical action).
According to the idea of Witten [32] this procedure of coupling to topological gravity
must be described by an integrable hierarchy of PDEs. The unknown functions of the
hierarchy are the particular two-point correlators

vα :=
〈
φα,0 φ1,0 e

∑
Tβ,q φβ,q

〉
=

∂2 F (T )
∂Tα,0∂T 1,0

, (1.3)

T 1,p, . . . , Tn,p are the times of thepth flow of the hierarchy, and the cosmological
constantX := T 1,0 plays the role of the spatial variable of the hierarchy. The partition
function of the full theory is theτ -function of a particular symmetric solution of the
hierarchy. This idea works perfectly well for the case of pure gravity (the matter sector
is trivial, n = 1, F (t) = 1

6 t
3). According to the theory of Witten - Kontsevich [26, 33]

the partition function of 2D gravity is a particularτ -function of the KdV hierarchy.
For a 2D TFT with a nontrivial matter sector the correspondent integrable hierar-

chies are not known, although there are interesting conjectures about their structure for
topological minimal models [7], forCP 1 topological sigma-model [11, 14, 15, 16, 17].
However, the properties ofgenus expansionof a 2D TFT provide us with certain nontriv-
ial assumptions about the structure of the hypothetical hierarchy. DenoteFg the genus
g part of the free energy

Fg :=
〈
e
∑

Tα,p φα,p

〉
g
, (1.4)

F =
∑
g≥0

Fg. (1.5)

Particularly, the primary free energy is obtained restrictingF0 onto thesmall phase
spaceTα,p>0 = 0,

F (t) = F0|Tα,0=tα, Tα,p>0=0. (1.6)

The procedure of genus expansion consists of the following two parts.

1) We introduce slow spatial and time variables rescaling

X 7→ εX, Tα,p 7→ εTα,p. (1.7)

2) We change

F 7→
∞∑
g=0

ε2g−2 Fg. (1.8)

The indeterminateε is calledstring coupling constant. As ε → 0 one has a singular
limit of the tau-function(i.e., of the partition function) of the theory

τ (T, ε) := exp
(
ε−2F0 + F1 + ε2F2 + ...

)
. (1.9)

Also all of the correlators become series inε. Particularly, the series of the two-point
correlators (1.2) have the form

vα =
∞∑
g=0

ε2gvgα, (1.10)
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where

vgα :=
〈
φα,0φ1,0e

∑
Tβ,qφβ,q

〉
g

=
∂2Fg

∂Tα,0∂X
. (1.11)

The genus zero (i.e., the tree-level) approximation of the theory corresponds to the
dispersionless approximation of the hierarchy. The solution

(
v0

1, ..., v
0
n

)
to the hierarchy

is given by the genus zero two-point correlatorsv0
α =

〈
φα,0 φ1,0 e

∑
Tβ,q φβ,q

〉
0

as the

functions of the couplings. The solution is specified by the initial data on the small phase
space

v0
α|Tα,p>0=0 = ηαβT

β,0, (1.12)

where the constant “metric”ηαβ is specified by the primary correlators of the form

ηαβ := 〈φ1,0φα,0φβ,0〉0 |Tα,p>0=0. (1.13)

The construction of the would-be dispersionless approximation of the unknown inte-
grable hierarchy for an arbitrary solution to equations of associativity and of the needed
τ -function of it was given in [9] in terms of the geometry of WDVV equations (see
also [11]). The bihamiltonian structure of the hierarchy was found in [10]. We briefly
recollect this construction in Sect. 2 below. (We also describe more accurately the quasi-
homogeneity property of the hierarchy and of theτ -function formulated in [9] only for
a generic solution of WDVV equations.)

One can try to go beyond the tree-level approximation expanding the unknown hier-
archy in a series w.r.t.ε2. The string coupling constantε plays the role of the dispersion
parameter. The reader can keep in mind the dispersion expansion

ut = uux +
1
12
ε2 uxxx (1.14)

of the KdV equation as an example of such a series. Particularly, for the one-loop (i.e.,
genus= 1) approximation of the theory, it is sufficient to retain the terms of the hierarchy
up to theε2 order. Particular solutions of the one-loop approximation must have the form

vα = v0
α(T ) + ε2 v1

α(T ) + O(ε4)

=
〈
φα,0 φ1,0 e

∑
Tβ,q φβ,q

〉
0

+ ε2
〈
φα,0 φ1,0 e

∑
Tβ,q φβ,q

〉
1

+ O(ε4)

=
∂2

∂Tα,0∂T 1,0

(F0(T ) + ε2 F1(T )
)

+ O(ε4). (1.15)

So forε = 0 the one-loop approximation becomes the already known tree-level approx-
imation of the hierarchy. We will call the genus one approximation of the integrable
hierarchythe one-loop deformationof the genus zero hierarchy.

Our result is that, under the assumption of semisimplicity (see below) the one-loop
deformation of the hierarchy exists for any solution of WDVV equations and it is uniquely
determined by the general properties of the genus one correlators proved by Dijkgraaf
and Witten [6] and by Getzler [21]. (For the solution of WDVV equations with one and
two primaries the one-loop approximation of the hierarchy was constructed in [6, 16]).
Recall that the genus one part of the free energy has the form

F1(T ) =

[
1
24

log detMαβ(t, ∂Xt) +G(t)

]
t=v0(T )

, (1.16)
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where the matrixMαβ has the form

Mαβ(t, ∂Xt) = cαβγ(t) ∂Xt
γ , (1.17)

cαβγ(t) = ∂α∂β∂γF (t), (1.18)

andG(t) is a certain function specified by Getzler’s equation [21] (see also Sect. 6
below). The first part of the formula becomes trivial on the small phase spaceTα,p = 0
for p > 0. The second part describes, in the topological sigma-models, the genus one
Gromov–Witten invariants of the target space. For this function we derive the following
formula

G = log
τI
J1/24

(1.19)

(as above, semisimplicity of the solution of WDVV is assumed). HereJ is the Jacobian
of the transform between canonical and flat coordinates (see Sect. 2 below). To explain
who isτI we recall that, in the semisimple case, WDVV can be reduced to equations of
isomonodromy deformations of a certain linear differential operator with rational coeffi-
cients [9]. OurτI is the tau-function of the solution of these equations of isomonodromy
deformations in the sense of [24]. According to [24, 30] the tau-function appears as the
Fredholm determinant of an appropriate Riemann–Hilbert boundary value problem (see
[12] for reduction of WDVV equations to a boundary value problem). Remarkably, the
formula makes sense for an arbitrary semisimple solution of WDVV equations. Using
explicit expressions (2.17), (2.19) forτI one can derive from (1.19) the proof of main
conjectures of the recent paper of Givental [22].

As a byproduct of our computations, we obtained a nice formula for the generating
function of elliptic Gromov–Witten invariants of complex projective plane. Namely, the
function

ψ :=
φ′′′ − 27

8(27 + 2φ′ − 3φ′′)
, (1.20)

where

φ(z) =
∑
k≥1

N (0)
k

(3k − 1)!
ek z, (1.21)

N (0)
k = the number of rational curves of degreek

onCP 2 passing through generic 3k − 1 points

is the generating function for the numbersN (1)
k of the elliptic curves of degreek onCP 2

passing through generic 3k points:

ψ(z) = −1
8

+
∑
k≥1

N (1)
k

k

(3k)!
ek z. (1.22)

We prove also that the compatible pair of Poisson brackets describing the tree-
level hierarchy admits a unique deformation to give a bihamiltonian structure, modulo
O(ε4), of the one-loop hierarchy. The deformed bihamiltonian structure turns out to be a
nonlinear extension of the Virasoro algebra (i.e., a classicalW -algebra) with the central
charge
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c =
12ε2

(1 − d)2

[
1
2
n− 2

n∑
α=1

(qα − 1
2
d)2

]
. (1.23)

Hereε is the string coupling constant,d andqα are the “dimension” and the “charges” of
the theory. In the case of quantum cohomology ofX (i.e., the topological sigma-model
with the target spaceX) d coincides with the complex dimension of the target space
X andqα are the halfs of the degrees of the basic elements inH∗(X). Remarkably,
this formula works not only in quantum cohomologies. It gives the correct value for the
central charge [20] of the classicalW -algebras for the topological minimal models of
A - D - E type (see below Sect.8)!

We can continue this procedure trying to construct a higher genera approximation
of the unknown integrable hierarchy. Of course, it would be too optimistic to expect that
our procedure will go smoothly for any genusg for an arbitrary solution of equations of
associativity. Moreover, from [16] it follows that, constructing the integrable hierarchy,
probably for a generic solution of WDVV one cannot go beyond the genus one. However,
our results suggest that in an arbitrary physical 2D TFT coupling to gravity is given by
an integrable bihamiltonian hierarchy of 1 + 1 PDEs. Bihamiltonian structure of the
hierarchy is to be described by a classicalW -algebra with the prescribed central charge
and the conformal dimensions of the primaries. So, we embed the problem of coupling
to topological gravity into the problem of classification of a certain class of classical
W -algebras.

We briefly discuss this project in the final section, postponing the study of the higher
genera corrections for a subsequent work.

The paper is organized as follows. In Sect. 2 we recall some important points of the
theory of WDVV equations of associativity (equivalently, the theory of Frobenius man-
ifolds) and the construction of coupling to gravity at tree-level. The main results of the
paper are formulated in Sect. 3. In Sect. 4 we derive some useful identities of the theory
of semisimple Frobenius manifolds used in the proof of the main results. The derivation
of the bihamiltonian structure of the hierarchy in the genus one approximation is given
in Sect. 5. In Sect. 6 we solve Getzler’s equations for elliptic Gromov–Witten invariants
for any semisimple Frobenius manifold. The examples of the deformed bihamiltonian
hierarchies are given in Sect. 7. In the last Sect. 8 we discuss the programme of study
of higher genera corrections in the setting of classicalW -algebras.

2. WDVV Equations of Associativity and the Structure of a 2D TFT at Genus
Zero

WDVV equations of associativity is the problem of finding a functionF (t) =
F (t1, . . . , tn), a constant symmetric nondegenerate matrix (ηαβ), numbersq1, . . . , qn,
r1, . . . , rn, d such that

∂α∂β∂λF (t) ηλµ ∂µ∂γ∂δF (t) = ∂δ∂β∂λF (t) ηλµ ∂µ∂γ∂αF (t) (2.1)

for anyα, β, γ, δ = 1, . . . , n,

∂1∂α∂βF (t) ≡ ηαβ , where (ηαβ) = (ηαβ)−1, (2.2)∑[
(1 − qα) tα + rα

]
∂αF (t) = (3− d)F (t) +

1
2
Aαβ t

α tβ +Bα t
α +C (2.3)
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for some constantsAαβ , Bα, C. The numbersqα, rα, d andAαβ , Bα, C must satisfy the
following normalization conditions (see [12]):

q1 = 0, rα 6= 0 only if qα = 1,

Aαβ 6= 0 only if qα + qβ = d− 1,

Bα 6= 0 only if qα = d− 2,

C 6= 0 only if d = 3,

A1α =
∑
ε

ηαε rε, B1 = 0. (2.4)

We will usually normalize the coordinatestα reducingηαβ to the antidiagonal form

ηαβ = δα+β,n+1. (2.5)

This can always be done ford 6= 0. Then

qα + qn−α+1 = d, qn = d. (2.6)

Any solution of WDVV equations provides the space of parametersMn 3 (t1, . . . , tn)
with a structure ofFrobenius manifold. That means that there exists a unique structure
of a Frobenius algebra(At, < , >) on the tangent planesTtMn such that

〈∂α · ∂β , ∂γ〉 = ∂α∂β∂γF (t), 〈∂α, ∂β〉 = ηαβ . (2.7)

Explicitly

∂α · ∂β = cγαβ(t) ∂γ wherecγαβ(t) = ηγε ∂ε∂α∂βF (t). (2.8)

The vector field

e = ∂1 (2.9)

is the unity of the algebra. We introduce also the Euler vector field onMn

E(t) = Eε(t) ∂ε :=
n∑
ε=1

[
(1 − qε) t

ε + rε
]
∂ε. (2.10)

This is the generator of the scaling transformations (2.3). All the equations (2.1)–(2.3)
can be easily reformulated in a covariant way (see [11]).

One of the main geometrical objects on a Frobenius manifold is a deformation of
the Levi–Civita connection∇ for < , >:

∇̃u v = ∇u v + z u · v. (2.11)

Hereu, v are two vector fields onMn, z is the parameter of the deformation. The
connection (2.11) is flat for anyz. It can be extended to a flat connection onMn × C∗

∇̃ d
dz
v = ∂zv +E · v − 1

z
µ v, (2.12)

where
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µ := −∇E +
1
2

(2 − d) = diag(µ1, . . . , µn), µα = qα − d

2
, (2.13)

〈µa, b〉 = − 〈a, µ b〉 . (2.14)

(Comparing with [11] we change the normalization of the component∇̃ d
dz

doing an
elementary gauge transform.) The connection onMn × C∗ is still flat.

The Frobenius manifold is said to satisfythe semisimplicity condition(or, briefly, it
is semisimple) if the algebrasAt are semisimple for generict. On the open domain of
the points of semisimplicity one can introducecanonical coordinatesu1, . . . , un such
that

∂

∂ui
· ∂

∂uj
= δij

∂

∂ui
, i, j = 1, . . . , n. (2.15)

(We will use all lower indices working with the canonical coordinates. No summation
over the repeated indices will be assumed in this case.) In these coordinates WDVV
can be reduced to a commuting family of nonstationary Hamiltonian flows on the Lie
algebraso(n) with the standard Poisson bracket

∂V

∂ui
= {V,Hi(V ;u)}, i = 1, . . . , n (2.16)

(the definition of the matrixV = (Vij), V T = −V ∈ so(n) see below in Sect.4), the
canonical coordinatesu1, . . . , un play the role of the times and the quadratic Hamiltonian
has the form

Hi =
1
2

∑
j 6=i

V 2
ij

ui − uj
. (2.17)

These are the equations of isomonodromy deformations of the operator

d

dz
− U − 1

z
V, U = diag(u1, . . . , un) (2.18)

with rational coefficients [9]. The tau-functionτI of a solution in the theory of isomon-
odromy deformations is defined [24] by the quadrature

d logτI =
n∑
i=1

Hidui. (2.19)

(We denote this functionτI to avoid confusions with the tau-function (1.9) of the inte-
grable hierarchy.)

Another geometric object is a deformation of the flat metric< , > onMn [9, 11].
We introduce theintersection form

(ω1, ω2)t := iE (ω1 · ω2), ω1, ω2 ∈ T ∗
t M

n. (2.20)

The metric

( , )t − λ < , >t (2.21)

on T ∗
t M

n does not degenerate for almost all (λ, t). It is flat for these (λ, t). In the
coordinatestα
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gαβ(t) := (d tα, d tβ) = Eε cαβε = (d + 1− qα − qβ)Fαβ(t) +Aαβ , (2.22)

where

Fαβ(t) := ηαα
′
ηββ

′ ∂2F (t)
∂tα′∂tβ′ , Aαβ := ηαα

′
ηββ

′
Aα′β′ . (2.23)

We give also the formula for the Levi–Civita connection for the flat (but not constant in
the coordinatestα !) metric ( , )

0αβγ (t) := −gαε(t) 0βεγ(t) =

(
1 +d

2
− qβ

)
cαβγ (t), (2.24)

where

cαβγ (t) = ηαα
′
ηββ

′
∂α′∂β′∂γF (t). (2.25)

The flat metric (2.22) is responsible not only for the second Poisson bracket of the
integrable hierarchy (see below), but also for the relation between Frobenius manifolds
and reflection groups [11].

The genus zero approximation of the needed integrable hierarchy will be an infinite
family of dynamical systems on the loop spaceL(Mn). We supply the loop space with
a Poisson bracket

{vα(X), vβ(Y )}(0)
1 = ηαβ δ′(X − Y ), (2.26)

(to avoid confusions we redenotetα → vα the coordinates onMn when dealing with
the hierarchy; comparing with the above notations of the Introduction we omit the label
0, i.e.,vα = ηαε v0

ε). The second Poisson bracket on the same loop space has the form

{vα(X), vβ(Y )}(0)
2 = gαβ(v(X)) δ′(X − Y ) + 0αβγ (v(X)) vγX δ(X − Y ). (2.27)

Particularly, ford 6= 1 the Poisson bracket of

T (X) :=
2

1 − d
vn(X) (2.28)

has the form

{T (X), T (Y )}(0)
2 = [T (X) + T (Y )] δ′(X − Y ). (2.29)

This coincides with the Poisson bracket on the dual space to the Lie algebra of one-
dimensional vector fields. Therefore the full Poisson bracket (2.27) can be considered as
a nonlinear extension of this algebra (the classical W-algebra with zero central charge).
Observe that

{vα(X), T (Y )}(0)
2 =

(
2 (1− qα)

1 − d
vα(X) +

2rα
1 − d

)
δ′(X − Y ) + vαX δ(X − Y ).

(2.30)

SoT (X) plays the role of the stress-energy tensor, and the conformal dimensions of the
fieldsvα havingqα 6= 1 are

1α =
2(1− qα)

1 − d
. (2.31)
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Whenqα = 1 the variablesα := expvα has the Poisson bracket with the stress-energy
tensor of the form

{sα(X), T (Y )}(0)
2 =

2rα
1 − d

sα(X)δ′(X − Y ) + sαXδ(X − Y ). (2.32)

So it is a primary field with the conformal dimension

1α =
2rα

1 − d
. (2.33)

The two Poisson brackets are compatible, i.e., any linear combination

a1 { , }(0)
1 + a2 { , }(0)

2 (2.34)

with arbitrary constant coefficientsa1, a2 gives a Poisson bracket onL(Mn) [11]. This
gives a possibility to construct a hierarchy of commuting flows onL(Mn) starting from
the Casimirs of the first Poisson bracket

Hα,−1 =
∫
vα(X) dX, α = 1, . . . , n (2.35)

using the standard bihamiltonian recursion procedure [29]

{·, Hα,p}(0)
1 = kα,p {·, Hα,p−1}(0)

2 (2.36)

for appropriate constantskα,p. These constants are to be chosen in a clever way to make
the hierarchy compatible with the genus zero recursion relations for the topological
correlators. For the genus zero approximation the needed normalization of the Hamilto-
nians is given by an alternative procedure [9] using the flat coordinates of the deformed
connection∇̃.

The flat coordinates of̃∇ are functionsθ(t, z) such that

∇̃ dθ = 0. (2.37)

Let us forget for the moment about the last component (2.12) of the connection∇̃. Then
the flat coordinatesθ are specified by the equation

∂α∂βθ = z cγαβ ∂γθ. (2.38)

A basis of the solutionsθ1(t, z), . . . , θn(t, z) can be obtained as power series

θγ(t, z) = tγ +
∑
p≥1

θγ,p(t) z
p, (2.39)

where the coefficientsθγ,p(t) are determined recursively from the equations

∂α∂β θγ,p+1(t) = cραβ(t)∂ρθγ,p, θγ,0(t) = tγ = ηγε t
ε. (2.40)

One can normalize the deformed flat coordinates requiring

〈∇ θα(t, z),∇ θβ(t,−z)〉 ≡ ηαβ . (2.41)

There still remains some freedom in the choice of the deformed flat coordinates
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θα(t, z) 7→ θε(t, z)G
ε
α(z) (2.42)

with an arbitrary matrix-valued seriesG(z) = (Gβα(z)),

G(z) = 1 +z G1 + z2G2 + . . . , (2.43)

G(z) η G(−z)T ≡ η. (2.44)

Later we put also the Eq. (2.12) into the game. This will fix the deformed flat coordinates
almost uniquely.

The Hamiltonians of the genus zero hierarchy have the form

Hβ,p =
∫
θβ,p+1(v(X)) dX, p = 0, 1, . . . . (2.45)

The hierarchy itself reads

∂v

∂T β,p
= K (0)

β,p(v, vX ) = {v,Hβ,p}(0)
1 = ∂X∇ θβ,p+1(v) = ∇ θβ,p(v) · ∂Xv, (2.46)

(we treat∂Xv and∂Tβ,pv as tangent vectors to the Frobenius manifold). Observe that
the coefficients in front of∂Xv are functions well-defined everywhere on the Frobenius
manifold.

The genus zero two-point functions

v0
α(T ) =

〈
φα,0 φ1,0 e

∑
Tβ,q φβ,q

〉
0

(2.47)

give a particular solution of the commutative hierarchy (2.46) specified by the following
symmetry reduction (

∂T 1,1 −
∑
α,p

Tα,p ∂Tα,p

)
v0 = 0. (2.48)

(We identifyT 1,0 andX. So the variableX is supressed in the formulae). The solution
can be found in the form

v0(T ) = T0 +
∑
q>0

T β,q ∇ θβ,q(T0) +
∑
p,q>0

T β,q T γ,p ∇ θβ,q−1(T0) · ∇ θγ,p(T0) + . . . .
(2.49)

This is a power series inTα,p>0 with the coefficients depending onT0 := (T1,0, . . . , Tn,0),
Tα,0 := ηαβT β,0. The series can be found as the fixed pointt = v0 of the gradient map
Mn → Mn

t = ∇ 8T (t), (2.50)

where

8T (t) =
∑

Tα,p θα,p(t). (2.51)

Defining the functions�α,p;β,q(t) on the Frobenius manifold by the following gen-
erating function

(z +w)−1
(〈∇ θα(t, z),∇ θβ(t, w)〉 − ηαβ

)
=

∞∑
p,q=0

�α,p;β,q(t) z
p wq, (2.52)
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we complete the construction of the genus zero free energy of the TFT coupled to gravity
by setting

logτ = F0(T ) =
1
2

∑
�α,p;β,q(v

0(T ))T̃α,p T̃ β,q, (2.53)

where

T̃α,p = Tα,p if (α, p) 6= (1, 1),

T̃ 1,1 = T 1,1 − 1. (2.54)

The resulting functionF0(T ) satisfies the string equation

∂F0(T )
∂T 1,0

=
∑

Tα,p∂Tα,p−1 F0(T ) +
1
2
ηαβ T

α,0 T β,0. (2.55)

On the small phase spaceTα,p>0 = 0 one has

F0(T )|
T α,p>0=0

T α,0=tα

= F (t). (2.56)

Also the derivatives of the functionF0(T ) satisfy the genus zero recursion relations of
Dijkgraaf and Witten. Observe that

∂2F0(T )
∂Tα,p∂T β,q

= �α,p;β,q(v
0(T )). (2.57)

The proofs of all these results can be found in [9].
We now use the last component∇̃ d

dz
of the deformed connection to fix the densities of

the commuting HamiltoniansHα,p. Let us consider first thenon-resonant caseµα−µβ 6∈
Z 6=0 forα 6= β. Then the system of deformed coordinatest̃α(t, z) of ∇̃ can be constructed
in the form

t̃α(t, z) = θα(t, z) zµα =
∞∑
p=0

θα,p(t) z
p+µα , (2.58)

∇̃ d
dz
dt̃α(t, z) = 0. (2.59)

The coefficientsθα,p(t) are now defined uniquely by (2.40) and by the quasihomogeneity
equation following from (2.59),

LEθα,p(t) =

(
p +

2 − d

2
+ µα

)
θα,p(t). (2.60)

The functions�α,p;β,q(t) are also quasihomogeneous of the degreep + q + 1 +µα +µβ .
From this one easily derives the quasihomogeneity constraint forF0 (see [9]).

Let us now consider the non-generic case. We describe first the fundamental matrix
solution of the linear system

∇̃ d
dz
dt̃ = 0. (2.61)
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We rewrite this system for the gradient

(∇ t̃)α = ηαβ ∂β t̃ (2.62)

of the deformed flat coordinates. So the columns of the fundamental matrix are the
gradients of the deformed flat coordinatest̃1(t, z), . . . , t̃n(t, z). The fundamental matrix
has the form

Y (t, z) =
(∇t̃1(t, z), . . . ,∇t̃n(t, z)

)
= (∇θ1(t, z), . . . ,∇θn(t, z)) zµ zR, (2.63)

where the constant1 matrixR = (Rαβ ) satisfies the following requirements:

1. Rαβ 6= 0 only if µα − µβ is a positive integer,

2. Let Rk
α
β =

{
Rαβ if µα − µβ = k
0 otherwise

.

We have

R = R1 +R2 + . . . (2.64)

(finite number of terms). Then we must have

〈Rk a, b〉 + (−1)k 〈a,Rk b〉 = 0, k = 1, 2, . . . (2.65)

for any two vectorsa, b.

The matrixR is determined uniquely up to the transformations

R 7→ G−1RG, (2.66)

where the matrixG = (Gαβ ) must satisfy the following conditions:

1. Gαβ 6= 0 only if µα − µβ is a non-negative integer.
2. Define the decomposition

G = G0 +G1 + . . . (2.67)

similar to (2.64). We must have

G0 = 1 (2.68)

and the matrixG must satisfy the following orthogonality condition

〈G+ a,G b〉 =< a, b >, (2.69)

for anya, b, where

G+ = G0 −GT1 +GT2 −GT3 + . . . . (2.70)

1 Constancy of the matrixR is a manifestation of the general isomonodromicity property proved in the
theory of Frobenius manifolds [9, 11, 12].
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Proof can be found in [12]. The class of equivalence of the matrixR modulo the trans-
formations (2.66) together with the matrixµ completely specifies the class of gauge
equivalence of the operator̃∇ d

dz
modulo gauge transformations of the form (2.42)–

(2.44) near the singularity atz = 0. Particularly, the coefficientsAαβ Bα, C in (2.3)
have the form

Aαβ = ηαε(R1)εβ , (2.71)

Bα = η1ε(R2)εα, (2.72)

C = −1
2
η1ε(R3)ε1, (2.73)

Plugging the formula (2.63) into the equatioñ∇ d
dz

= 0 we obtain the following
quasihomogeneity constraint for the functionθα,p(t)

LE θα,p(t) =

(
p +

2 − d

2
+ µα

)
θα,p(t) +

p∑
k=1

θε,p−k(t) (Rk)εα + const. (2.74)

(Observe that the functionsθα,p(t) are defined up to an additive constant.) A more
involved computation shows that

LE �α,p;β,q(t) = (p + q + 1 +µα + µβ)�α,p;β,q(t) +
p∑
r=1

(Rr)
ε
α �ε,p−r;β,q(t)

+
q∑
r=1

(Rr)
ε
β �α,p;ε,q−r(t) + (−1)q

(
Rp+q+1

)ε
α
ηεβ . (2.75)

Using this and the explicit formula (2.53) we arrive at

Proposition 1. The genus zero partition functionτ satisfies the following constraint

L0τ = 0, (2.76)

where

L0 =
∑(

1
2

+ k + µλ

)
T̃λ,k∂Tλ,k +

∑
T̃λ,k (Rr)

ε
α ∂T ε,k−r

+
1
2

∑
(−1)qT̃α,p T̃ β,q

(
Rp+q+1

)ε
α
ηεβ . (2.77)

HereT̃α,p are defined by (2.54).

Example.For topological sigma-modelsR coincides with the matrix of multiplication
by the first Chern classc1(X) in the classical cohomologies of the target spaceX [11].
Since degc1(X) = 1 we have

R = R1. (2.78)

The recursion relation (2.74) in this case coincide with the recursion relation of Hori
[23], and the particular case of (2.75) was obtained in [17]. We infer that the coefficients
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θα,p(t) of the expansion of the deformed flat coordinates coincide2 with the two-point

functions
〈
φα,0φ1,0 e

∑n

α=1
tα φα,0

〉
0

defined in terms of intersection theory on the moduli

spaces of instantonsS2 → X. The general identity (2.76) in this particular case coincides
with theL0 Virasoro constraint derived in [23].

Remark.Applying an appropriate recursion procedure to the operatorL0 we can derive
a half-infinite sequence of the Virasoro constraints

Lkτ = 0, k ≥ −1 (2.79)

generalizing the constraints of [18]. All the operatorsLk, k ≥ −1 are given in terms
of the monodromy data (µ,R) at z = 0. We will present these results in a separate
publication.

We conclude this section with an explicit formula for the bihamiltonian structure of
genus zero hierarchy (2.46).

Proposition 2. Let (α, p) be a pair of indices such that

p + µα +
1
2

6= 0. (2.80)

Then the equation

∂v

∂Tα,p
= {v,Hα,p}(0)

1 (2.81)

of the hierarchy (2.46) is also a Hamiltonian flow w.r.t. the second Poisson bracket (2.27)

{v,Hα,p}(0)
1 = {v, Ĥα,p}(0)

2 . (2.82)

The HamiltonianĤα,p has the form

Ĥα,p =
∑
k,l

(−1)k
(
Rp−l,k

)ε
α

Hε,l−1

(p + µα + 1
2)k+1

, (2.83)

where the matricesRk,l are defined as follows

R0,0 = 1, Rk,0 = 0 for k > 0, Rk,l =
∑

i1+...+il=k

Ri1...Ril for l > 0.
(2.84)

Proof. We use the identity

{ · ,
∫
t̃(v(X), z)dX}(0)

2 = {·,
∫ (

∂z − 1
2z

)
t̃(v(X), z)dX}(0)

1 (2.85)

valid for an arbitrary flat coordinatẽt of ∇̃ (see Lemma H.3 in [11]). Inverting, we obtain

{ · ,
∫ (

z
1
2

∫ z

w− 1
2 t̃α(v(X), w)dw

)
dX}(0)

2 = { · ,
∫
t̃α(v(X), z)dX}(0)

1 .
(2.86)

Integrating the expansions in both sides of the equation and using

t̃α(t, z) =
∑

θε,p z
p+µε

(
zR
)ε
α

(2.87)

we obtain the formula (2.82). Proposition is proved. �
2 Our normalization of the correlators differs from that of Hori
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3. Formulation of the Main Results

We formulate now the main requirement to uniquely specify the one-loop correction to
the hierarchy (2.46). We want to find a hierarchy of equations of the form

∂t

∂T β,p
= K (0)

β,p(t, tX ) + ε2K (1)
β,p(t, tX , . . . ) (3.1)

such that the following property holds true (cf. [6, 16]):

Main assumption. For any solution v = v(T ) of the hierarchy (2.46) the function
t(T ) = (t1(T ), . . . , tn(T ))

t(T ) := v(T ) + ε2w(T ), (3.2)

where

wα(T ) =
∂2

∂Tα,0 ∂T 1,0

{[
1
24

log detMαβ(t, tX ) +G(t)

]
t=v(T )

}
(3.3)

satisfies (3.1) modulo terms of the orderε4. Here the matrixMαβ(t, tX ) is defined by
(1.17), andG(t) is the G-function of the Frobenius manifold (see below).

We denotet = (t1, . . . , tn) the dependent variables of the hierarchy to emphasize
that they live on the Frobenius manifoldMn. So (3.1) is still a dynamical system on the
loop spaceL(Mn).

It is clear that the correctionsK (1)
β,p are determined uniquely. Indeed, the deformed

hierarchy (3.1) is obtained from the tree-level hierarchy (2.46) by the infinitesimal
Bäcklund transform

vα 7→ vα + ε2wα(v, vX , vXX , vXXX ) = tα, (3.4)

where the functionswα are defined by the formula (3.3). The functionswα are polyno-
mials invXX , vXXX but they arerational functions invX . Remarkably, all the denom-
inators willdisappearfrom the deformed hierarchy.

We will prove that the corrections are polynomials intX , tXX , tXXX for the case of
semisimple Frobenius manifold (see the definition in Sect. 2 above). Observe thatMαβ

is the matrix of multiplication by the vector∂Xt. So the determinant detMαβ vanishes
identically on the nilpotent part of the algebraAt.

First we observe that the correctionK (1)
β,p can be subdivided into two parts

K (1)
β,p = K ′

β,p +K ′′
β,p, (3.5)

whereK ′
β,p is the contribution of the first term in the r.h.s. of (3.3), andK ′′

β,p is the
contribution of the second term respectively. The main difficulty is in the computation
of K ′

β,p.

Theorem 1. There exists a unique hierarchy of the form

∂t

∂T β,p
= K (0)

β,p(t, tX ) + ε2
[
K ′
β,p;λ(t) tλXXX +K ′

β,p;λµ(t) tλXX t
µ
X

+ K ′
β,p;λµν(t) tλX t

µ
X t

ν
X

]
(3.6)
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such that the functiont(T ) = (t1(T ), . . . , tn(T )) satisfies (3.6) up to terms of orderε4

for an arbitrary solutionv(T ) of (2.46)

tα(T ) = vα(T ) +
ε2

24
∂2

∂Tα,0 ∂T 1,0

[
log detMαβ(t, tX )

]
t=v(T )

. (3.7)

The coefficientsK ′
β,p;λµν(t),K ′

β,p;λµ(t),K ′
β,p;λ(t) of the hierarchy are analytic functions

on the Frobenius manifold.
The hierarchy (3.6) admits a representation

∂t

∂T β,p
=
{
t(X), Hβ,p + ε2 δH ′

β,p

}′
1

+ O(ε4), (3.8)

where the perturbation of the first Poisson bracket has the form

{tα(X), tβ(Y )}′
1 =

{tα(X), tβ(Y )}(0)
1 +

ε2

24

(
ηµν cαβµν (t(X)) + ηµν cαβµν (t(Y ))

)
δ′′′(X − Y )

− ε2

24

[
ηµν ∂2

X (cαβµν (t(X))) + ηµν ∂2
Y (cαβµν (t(Y )))

]
δ′(X − Y ) + O(ε4). (3.9)

The operation{ , }′
1 is skew-symmetric and it satisfies the Jacobi identity moduloO(ε4).

The perturbations of the Hamiltonians have the form

δH ′
β,p =

∫
χβ,p+1;µν(t(X)) tµX t

ν
X dX, (3.10)

whereχβ,p;µν = χβ,p;νµ are given by

χα,0;µν = 0,

χα,p+1;µν =
1
24
wγµν

∂θα,p
∂tγ

− 1
24
cγξζ c

ξσ
ν cζσµ

∂θα,p−1

∂tγ
, p ≥ 0. (3.11)

Hereθα,−1 = 0 andwαµν are defined by

wαβγ = cµνµβ c
α
νγ − cµνγ cαµνβ = cµνµβ c

α
νγ + cµνµγ c

α
νβ − ∂µ (cνβγ c

αµ
ν ). (3.12)

The HamiltoniansHβ,p + ε2 δH ′
β,p commute pairwise moduloO(ε4) w.r.t. the bracket

(3.9).

Here and belowcαγµ, c
α
γµν , c

α
γµνσ, c

αβ
γµ , c

αβ
γµν , c

αβ
γµνσ are obtained by taking derivatives

of the functionF (t1, . . . , tN ) with respect to the coordinatest1, . . . , tN and by using
ηαβ to raise the indices, for example,

cαβγµ = ηαα
′
ηββ

′ ∂4F (t)
∂tα′ ∂tβ′ ∂tγ ∂tµ

. (3.13)

Remark.The first theorem does not use the quasihomogeneity condition (2.3). The next
theorem does use it.
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Theorem 2. The following formulae give the perturbation of the second Poisson
bracket:

{tα(X), tβ(Y )}′
2 = {tα(X), tβ(Y )}(0)

2

+ ε2
[
hαβ(t(X)) δ′′′(X − Y ) + rαβγ (t(X)) tγX δ

′′(X − Y )

+
(
fαβγ (t(X)) tγXX + qαβγµ (t(X)) tγX t

µ
X

)
δ′(X − Y )

+
(
bαβγµ (t(X)) tγX t

µ
XX + aαβγµν(t(X)) tγX t

µ
X t

ν
X + pαβγ (t(X)) tγXXX

)
δ(X − Y )

]
+ O(ε4), (3.14)

where

hαβ =
1
12

(
∂ν(gµν cαβµ ) +

1
2
cµνν cαβµ

)
, (3.15)

pαβγ =
1
12

(
1
2

− µβ) cαβµν c
µν
γ , (3.16)

aαβγµν =
1
72

(
1
2

− µβ)
(
ηασ (∂σ ∂ν w

β
γµ + ∂σ ∂γ w

β
µν

+ ∂σ ∂µ w
β
γν − 2∂µ ∂ν w

β
γσ − 2∂µ ∂γ w

β
νσ − 2∂ν ∂γ w

β
µσ)

+ ηξζ (6cασξζ c
β
σγµν + 3cασξζγ c

β
σµν + 3cασξζµ c

β
σγν

+3cασξζν c
β
σγµ + cασξζγµ c

β
σν + cασξζγν c

β
σµ + cασξζµν c

β
σγ)
)
, (3.17)

bαβγµ =
1
12

(
1
2

− µβ)
(
ηασ (−2∂γ w

β
µσ + ∂σ w

β
γµ − ∂µ w

β
γσ)

+ηξζ (3cασξζ c
β
σγµ +

3
2
cασξζγ c

β
σµ +

1
2
cασξζµ c

β
σγ)

)
, (3.18)

rαβγ =
3
2
∂γh

αβ +
1
24

(
3
2

− µβ

)
cανγ cβµνµ − 1

24

(
3
2

− µα

)
cβνγ cαµνµ , (3.19)

fαβγ = rαβγ + pαβγ + pβαγ − ∂γh
αβ , (3.20)

qαβγµ =
1
2

(bαβµγ + bβαµγ ) +
1
2
∂γr

αβ
µ +

1
2
∂µr

αβ
γ − ∂µ∂γh

αβ −

− 1
2
∂µ(pαβγ + pβαγ ). (3.21)

The Jacobi identity for a linear combination

a1 { , }′
1 + a2 { , }′

2 (3.22)

with arbitrary constant coefficientsa1, a2 holds true moduloO(ε4). The equations of
the perturbed hierarchy for those(β, p) for which

p + µβ +
1
2

6= 0 (3.23)

are Hamiltonian flows also w.r.t. the second Poisson bracket (3.14) with the Hamiltonian

Ĥ ′
β,p =

∑
k,l

(−1)k
(
Rp−l,k

)ε
β

Hε,l−1 + ε2 δH ′
ε,l−1

(p + µα + 1
2)k+1

. (3.24)

HereRl,k are defined in (2.84).
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The proofs will be given in Sect. 5. The deformations (3.9) and (3.14) of the Poisson
brackets are obtained by applying the same infinitesimal Bäcklund transform (3.7) to
the Poisson brackets (2.26) and (2.27) resp. We prove that after this transform each of
the deformed Poisson brackets is a combination ofδ(X − Y ), . . . , δ′′′(X − Y ) with the
coefficients being polynomial intX , tXX , tXXX . Coefficients of these polynomials are
functions analytic on the Frobenius manifold (assuming the Frobenius manifold to be
analytic itself). Applying similar procedure to the Hamiltonians (2.45) we obtained the
deformed Hamiltonians (3.10). The structure (3.6) of the deformed hierarchy follows
from the formulae (3.8)–(3.11). Finally, the same infinitesimal Bäcklund transform gives
the deformation the linear pencil (2.34) of the Poisson brackets.

We describe now the effect of adding the second term in the formula (3.3). At the
moment we considerG(t) as an arbitrary function on some domain in the Frobenius
manifold. We will compute this function in Theorem 3 below.

Proposition 3. Inserting an arbitrary functionG(t) in (3.3) we preserve the structure
of the hierarchy, of the Hamiltonian, and of the Poisson brackets. The Hamiltonians get
a correctionε2 δH ′′

α,p with

δH ′′
α,p =

∫
cγξν c

σξ
µ

∂θα,p
∂tγ

∂G

∂tσ
tµxt

γ
xdx. (3.25)

The deformations of the first and of the second Poisson brackets get the correction
ε2 { , }′′

1 andε2 { , }′′
1 with

{tα(X), tβ(Y )}′′
1 =

ãαβ(t(X)) δ′′′(X − Y ) + b̃αβ(t(X)) δ′′(X − Y )

+ ẽαβ(t(X)) δ′(X − Y ), (3.26)

{tα(X), tβ(Y )}′′
2 =

aαβ(t(X)) δ′′′(X − Y ) + bαβ(t(X)) δ′′(X − Y )

+ eαβ(t(X)) δ′(X − Y ) + ∂X (qαβ(t(X))) δ(X − Y ), (3.27)

where

ãαβ = 2cαβµ
∂G(t)
∂tµ

,

b̃αβ =
3
2
∂X ã

αβ +
∂2G

∂tσ∂tρ
(
cασµ ηβρ − cβσµ ηαρ

)
tµX ,

ẽαβ = ∂X b̃
αβ − ∂2

X ã
αβ ,

aαβ = 2cαµγ gγβ
∂G(t)
∂tµ

, (3.28)

bαβ =
3
2
∂Xa

αβ +
(
cαρµ gγβ − cβρµ gγα

) ∂2G(t)
∂tγ ∂tρ

tµX + (µα − µβ) cαργ cγβµ
∂G(t)
∂tρ

tµX ,

qαβ =

(
1
2

− µβ

)(
∂2G

∂tσ∂tρ
cασµ cβρν − ∂2G

∂tσ∂tν
cβσρ cραµ +

∂G

∂tσ
cαβρµ c

ρσ
ν

)
tµX t

ν
X ,

eαβ = qαβ + qβα + ∂Xb
αβ − ∂2

Xa
αβ .
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The full Poisson brackets of the one-loop deformed hierarchy are{ , }1 = { , }′
1 +

{ , }′′
1 and{ , }2 = { , }′

2 + { , }′′
2 .

For the case of quantum cohomology the functionG(t) must be the generating
function of the elliptic Gromov–Witten invariants of the target space. The recursion
relations for the elliptic Gromov–Witten invariants were found by Getzler [21]. He
proved that the generating functionG(t) must satisfy a complicated system of differential
equations (see (6.1) below). This system makes sense on an arbitrary Frobenius manifold.
Our next result is the solution of this system on an arbitrary semisimple Frobenius
manifold.

Theorem 3. For an arbitrary semisimple Frobenius manifold the system (6.1) has a
unique, up to an additive constant, solutionG = G(t2, . . . , tn) satisfying the quasiho-
mogeneity condition

LE G = γ (3.29)

with a constantγ. This solution is given by the formula

G = log
τI
J1/24

, (3.30)

whereτI is the isomonodromic tau-function (2.19) and

J = det

(
∂tα

∂ui

)
(3.31)

is the Jacobian of the transform from the canonical coordinates to the flat ones. The
scaling anomalyγ in (3.29) is given by the formula

γ = −1
4

n∑
α=1

µ2
α +

nd

48
, (3.32)

where

µα = qα − d

2
, α = 1, . . . , n. (3.33)

Corollary 1. For d 6= 1 the variableT (X) = 2
1−d t

n(X) has the Virasoro Poisson
bracket

{T (X), T (Y )}2 = [T (X) + T (Y )] δ′(X − Y ) + ε2 c

12
δ′′′(X − Y ) (3.34)

with the central charge

c ε2 =
12ε2

(1 − d)2

[
1
2
n− 2

n∑
α=1

µ2
α

]
. (3.35)

So, the bihamiltonian structure of the conjectured integrable hierarchy at the one-
loop approximation looks like a classicalW -algebra with the central charge (3.35) and
the conformal weights (2.31).
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4. Some Formulas Related to the Canonical Coordinates of Frobenius Manifold

The canonical coordinates on a semisimple Frobenius manifoldMn are denoted by
(u1, . . . , un). They satisfy the multiplication table

∂

∂ui
· ∂

∂uj
= δij

∂

∂ui
. (4.1)

The invariant metric becomes diagonal in the canonical coordinates, i.e.< , >=∑n
i=1 ηii(u)du2

i . We assume that the unit vector field of the Frobenius manifold ise = ∂
∂t1 ,

then therotation coefficientsγij(u) are defined by

γij(u) =
∂j

√
ηii(u)√
ηjj(u)

=
1
2

∂i ∂j t1(u)√
∂i t1(u) ∂j t1(u)

, for i 6= j, (4.2)

where∂i = ∂
∂ui

. They are symmetric with respect to their indices and satisfy the follow-
ing equations:

∂γij
∂uk

= γik γkj , i, j, k distinct, (4.3)

N∑
k=1

∂γij
∂uk

= 0. (4.4)

Define

ψiα(u) =
∂itα(u)√
ηii(u)

. (4.5)

The matrix (ψiα) satisfies the following identities:

n∑
l=1

ψlα ψlβ = ηαβ ,
n∑
l=1

ψαl ψ
β
l = ηαβ , (4.6)

whereψαj = ψjγ ηγβ . We list here the following useful identities: (see [11])

cαβγ =
n∑
i=1

ψiα ψiβ ψiγ
ψi1

, (4.7)

∂tα

∂ui
= ψi1ψ

α
i ,

∂ui
∂tα

=
ψiα
ψi1

, (4.8)

∂ψiα
∂uk

= γik ψkα, i 6= k, ∂ψiα
∂ui

= −
∑
k

γikψkα, (4.9)

∂ψiα
∂tβ

=
N∑
l=1

γil ψlα (
ψlβ
ψl1

− ψiβ
ψi1

), (4.10)

Denote

σi = ψiα t
α
X . (4.11)
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Then we have

∂σi
∂tα

=
n∑
l=1

γil σl (
ψlα
ψl1

− ψiα
ψi1

). (4.12)

Let’s consider the matrix

A = (ψαi ψ
β
j cαβγ t

γ
X ), (4.13)

by using the identity (4.6) we have

detA = det(ηαβ) det(cαβγ t
γ
X ). (4.14)

We see that the matrixcαβγt
γ
X diagonalizes in the canonical coordinates. From (4.7) we

see that the following expression forF (1)(t, tX ) holds true:

F (1)(t, tX ) =
1
24

log det(cαβγ t
γ
X ) +G(t)

= − 1
24

log det(ηαβ) +
1
24

log det(A) +G(t)

= − 1
24

log det(ηαβ) +
1
24

log det(ψαi ψ
β
j

∑
k

ψkα ψkβ ψkγ
ψk1

tγX ) +G(t)

=
1
24

log(
n∏
l=1

ψlγ t
γ
X ) − 1

24
log(

n∏
l=1

ψl1) +G(t) − 1
24

log det(ηαβ),

=
1
24

log
n∏
l=1

σl − 1
24

log(
n∏
l=1

ψl1) +G(t) − 1
24

log det(ηαβ). (4.15)

This expression of the functionF (1) is crucial in the proof of Theorems 1, 2.
Let’s denote

F (1) :=
1
24

log det(cαβγ t
γ
X )

=
1
24

log
n∏
l=1

σl − 1
24

log(
n∏
l=1

ψl1) − 1
24

log det(ηαβ). (4.16)

By a direct calculation we get also the following formulas:
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F (1)
tα
X

=
1
24

n∑
i=1

ψiα
σi

, (4.17)

F (1)
tα
X
tβ
X

= − 1
24

n∑
i=1

ψiα ψiβ
σ2
i

, (4.18)

F (1)
tα
X
tβ

=
1
24

n∑
j,k=1

γjk ψkα
σj

(
ψkβ
ψk1

− ψjβ
ψj1

)

− 1
24

N∑
j,k,γ=1

γjk σk ψjα
σ2
j

(
ψkβ
ψk1

− ψjβ
ψj1

)
, (4.19)

F (1)
tα =

1
24

N∑
i,j=1

γij

(
σj
σi

(
ψjα
ψj1

− ψiα
ψi1

)
− ψjα
ψi1

+
ψiα ψj1
ψ2
i1

)
, (4.20)

cαγβµ =
N∑
i,j=1

γij

(
ψαi ψiβ ψ

γ
j

ψi1
+
ψαi ψ

γ
i ψjβ
ψi1

+
ψγi ψiβ ψ

α
j

ψi1
− ψγi ψ

α
i ψiβ ψj1
ψ2
i1

)

×
(
ψjµ
ψj1

− ψiµ
ψi1

)
. (4.21)

All these formulae do not use the quasihomogeneity (2.3). In the quasihomogeneous
case the canonical coordinatesu1(t), . . . , un(t) are the roots of the characteristic equation

det(gαβ(t) − u ηαβ) = 0. (4.22)

Heregαβ is the intersection form. The matrixγij in this case has the form

γij = −(ui − uj)
−1 Vij , (4.23)

where

Vij =
n∑
α=1

µα ψiα ψ
α
j . (4.24)

The columns of the matrix9 = (ψiα) are the eigenvectors of the matrixV with the
eigenvaluesµα. Particularly,ψi1 is the eigenvector ofV with the eigenvalueµ1 = −d/2.
It follows that

∂kγij = γikγkj , k 6= i, j, ∂iγij =

∑
k(uj − uk)γikγkj − γij

ui − uj
, (4.25)

∂γij
∂tα

=
N∑
k=1

(γik γkj
ψkα
ψk1

+
uj − uk
ui − uj

γik γkj
ψiα
ψi1

+
ui − uk
uj − ui

γik γkj
ψjα
ψj1

− γij
ui − uj

ψiα
ψi1

− γij
uj − ui

ψjα
ψj1

). (4.26)

We also write down the following useful formulae:

ψiγ g
γβ = ui ψ

β
i , (4.27)

(uj − ui)γij =
∑
α

(qα − d

2
)ψiα ψ

α
j . (4.28)
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5. Proofs of Theorem 1 and 2

We begin with the proof of Theorem 1. So we assume here thatG = 0 in the formulae
(3.2), (3.3). Doing the infinitesimal B̈acklund tranform (3.2) (withG(t) = 0) we obtain

{tα(X), tβ(Y )}′
1 = ηαβ δ′(X − Y )

+ ε2

[(
∂wβ(t(Y ))

∂tγ
+
∂wβ(t(Y ))

∂tγY
∂Y +

∂wβ(t(Y ))
∂tγXX

∂2
X

+
∂wβ(t(Y ))
∂tγY Y Y

∂3
Y

)
ηαγ δ′(X − Y ) +

(
∂wα(t(X))

∂tγ
+
∂wα(t(X))

∂tγX
∂X

+
∂wα(t(X))
∂tγXX

∂2
X +

∂wα(t(X))
∂tγXXX

∂3
X

)
ηγβ δ′(X − Y )

]
+ O(ε4), (5.1)

wherewα(t) = wα(t, tX ) is the function obtained fromwα(v, vX ) by replacingvµ and
theirX-derivatives bytµ and by the correspondentX-derivatives oftµ. Recall thatwα(t)
depends not only ontα, but also ontαX , t

α
XX , t

α
XXX . More explicitly, we have

wα(t) = F (1)
tβ
X

cαβγ tγXXX + (F (1)
tγ
X
tβ
cαβµ + F (1)

tβ
X
tµ
cαβγ + 3F (1)

tβ
X

cαβγµ ) tγXX t
µ
X

+ F (1)
tβ
X
tµ
X

cαβγ tγXX t
µ
XX + F (1)

tβ
X
tν
X

cαβγµ t
γ
X t

µ
X t

ν
XX + F (1)

tβ
cαβγ tγXX

+ (F (1)
tβ
X
tν
cαβγµ + F (1)

tβ
X

cαβγµν) tγX t
µ
X t

ν
X + (F (1)

tβtµ
cαβγ + F (1)

tβ
cαβγµ ) tγX t

µ
X , (5.2)

whereF (1) = F (1)(t, tX ) is defined in (4.16). Whenever there is no risk of confusion we
will omit the arguments of a function henceforth.

In the Poisson bracket{tα(X), tβ(Y )}′
1, the coefficient ofε2 δ(4)(X − Y ) is equal

to zero, so it can be written as

{tα(X), tβ(Y )}′
1 = ηαβ δ′(X − Y ) + ε2

(
ĥαβ δ(3)(X − Y )

+ r̂αβ δ′′(X − Y ) + f̂αβ δ′(X − Y ) + p̂αβ δ(X − Y )
)
, (5.3)

whereĥαβ , r̂αβ , f̂αβ , p̂αβ are functions oftµ(X) and theirX-derivatives.
We have the following two lemmas on the coefficientsĥαβ andr̂αβ :

Lemma 1. The coefficientŝhαβ have the expression

ĥαβ =
1
12
ηµν cαβµν . (5.4)

Lemma 2. The coefficientŝrαβ are symmetric w.r.t.α andβ, i.e.,

r̂αβ = r̂βα. (5.5)

The proofs of Lemma 1 and Lemma 2 are similar to those of Lemma 5 and Lemma 6
which will be given below, however, the computation is much more simple, so we omit
the proofs here.
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Lemma 3. For the HamiltoniansHα,p defined in (2.45) the following identity holds
true:

Hα,p =
∫
θα,p+1(v(X))dX =

∫
θα,p+1(t(X))dX + ε2 δH ′

α,p + O(ε4), (5.6)

whereδH ′
α,p are defined by (3.10) and (3.11).

Proof. By using (2.40) we have

Hα,p =
∫
θα,p+1(v(X)) dX

=
∫
θα,p+1(t(X)) dX − ε2

∫
∂θα,p+1(t(X))

∂tµ
wµ dX + O(ε4)

=
∫
θα,p+1(t(X)) dX + ε2

∫
∂2θα,p+1(t(X))

∂tµ ∂tν
tνX

∂F (1)(t(X), tX (X))
∂Tµ,0

dX + O(ε4)

=
∫
θα,p+1(t(X)) dX + ε2

∫
cγµν

∂θα,p
∂tγ

tνX

(
F (1)
tσ cσµρ tρX + F (1)

tσ
X
cσµρξ t

ρ
X t

ξ
X

+ F (1)
tσ
X
cσµρ tρXX

)
dX + O(ε4). (5.7)

Now formulas (4.7), (4.17), (4.20) and (4.21) amount to

cγµν
∂θα,p
∂tγ

tνX

(
F (1)
tσ cσµρ tρX + F (1)

tσ
X
cσµρξ t

ρ
X t

ξ
X

)
=

1
24
γij

∂θα,p
∂tγ

(
2σ2

i

ψγi ψj1
ψ4
i1

+ σ2
j

ψγj
ψi1ψ2

j1

+ σ2
j

ψγi
ψ2
i1ψj1

− 3σi σj
ψγi
ψ3
i1

− σi σj
ψγj

ψ2
i1ψj1

)
,

and∫
cγµν

∂θα,p
∂tγ

tνX F
(1)
tσ
X
cσµρ tρXX dX

=
1
24

∫
∂θα,p
∂tγ

ψγj ψjµ ψjν

ψj1
tνX

ψiσ
σi

ψσk ψ
µ
k ψkρ
ψk1

tρXX

=
1
24

∫
∂θα,p
∂tγ

ψγj ψjµ σj

ψj1

ψiσ
σi

ψσk ψ
µ
k ψkρ
ψk1

tρXX

=
1
24

∫
∂θα,p
∂tγ

ψγj ψjρ

ψ2
j1

tρXX dX = − 1
24

∫
∂

∂tν

(
∂θα,p
∂tγ

ψγj ψjρ

ψ2
j1

)
tρX t

ν
X dX.

So the HamiltoniansHα,p can be expressed in the form (5.6), (3.10) with
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χα,p+1;µν =
γij
24

∂θα,p
∂tγ

(
2ψiµ ψiν ψ

γ
i ψj1

ψ4
i1

+
ψjµ ψjν ψ

γ
j

ψi1ψ2
j1

+
ψjµ ψjν ψ

γ
i

ψ2
i1ψj1

− 3ψiµ ψjν ψ
γ
i

2ψ3
i1

− 3ψiν ψjµ ψ
γ
i

2ψ3
i1

− ψiµ ψjν ψ
γ
j

2ψ2
i1ψj1

−ψiν ψjµ ψ
γ
j

2ψ2
i1ψj1

)
− 1

48
∂

∂tν

(
∂θα,p
∂tγ

ψγj ψjµ

ψ2
j1

)
− 1

48
∂

∂tµ

(
∂θα,p
∂tγ

ψγj ψjν

ψ2
j1

)

=
1
24
wγµν

∂θα,p
∂tγ

− 1
24
cγξζ c

ξσ
ν cζσµ

∂θα,p−1

∂tγ
, p ≥ −1,

whereθα,−2 = θα,−1 = 0 andwαµν are defined in (3.12). Lemma is proved. �

Proof of Theorem 1.We first prove the formula (3.9) for the first Poisson bracket. From
Lemma 1 and Lemma 2 we already know the expression of the coefficientsĥαβ and the
anti-symmetric part of the coefficients ˆrαβ in the formula (5.3). Now from the fact that
the Casimirs of the first Poisson bracket

∫
vγ(X) dX have the expression

∫
vγ(X) dX =

∫
tγ(X) dX + O(ε4) (5.8)

we see that

p̂αβ = 0 (5.9)

in the formula (5.3). So the anti-symmetry condition of the first Poisson bracket gives
us the following relations:

r̂αβ + r̂βα = 3∂X ĥ
αβ , (5.10)

f̂βα − f̂αβ + 2∂X r̂
αβ = 3∂2

X ĥ
αβ , (5.11)

∂X f̂
αβ + ∂3

X ĥ
αβ − ∂2

X r̂
αβ = 0. (5.12)

Identity (5.10) together with (5.5) gives us the expression for ˆrαβ , while from the identity
(5.12) it follows that

f̂αβ = ∂X r̂
αβ − ∂2

X ĥ
αβ , (5.13)

there is no integration constant becausef̂αβ must depend ontγX or tγXX . So we get
the expression for the coefficientŝfαβ and complete the proof of formula (3.9). The
remaining part of the Theorem follows from Lemma 3. Theorem is proved�

We now proceed to prove Theorem 2. So we still assume here thatG = 0 in the
formulae (3.2), (3.3). Doing the same infinitesimal Bäcklund tranform (3.2) (withG(t) =
0) we obtain
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{tα(X), tβ(Y )}′
2 = gαβ(t(X)) δ′(X − Y ) + 0αβγ (t(X)) tγX δ(X − Y )

− ε2

[
∂gαβ(t(X))

∂tγ
wγ(t(X)) δ′(X − Y ) +

∂0αβγ (t(X))

∂tµ
wµ(t(X)) tγX δ(X − Y )

+ 0αβγ (t(X)) (∂Xw
γ(t(X)) δ(X − Y ))

+ (
∂wβ(t(Y ))

∂tγ
+
∂wβ(t(Y ))

∂tγY
∂Y +

∂wβ(t(Y ))
∂tγY Y

∂2
Y +

∂wβ(t(Y ))
∂tγY Y Y

∂3
Y )

× (gαγ(t(X)) δ′(X − Y ) + 0αγµ (t(X)) tµX δ(X − Y ))

+ (
∂wα(t(X))

∂tγ
+
∂wα(t(X))

∂tγX
∂X +

∂wα(t(X))
∂tγXX

∂2
X +

∂wα(t(X))
∂tγXXX

∂3
X )

×(gγβ(t(X)) δ′(X − Y ) + 0γβµ (t(X)) tµX δ(X − Y )) + O(ε4)
]
. (5.14)

In the Poisson bracket{tα(X), tβ(Y )}′
2, the coefficient ofε2 δ(4)(X − Y ) is equal to

− ∂wβ(t(X))
∂tγXXX

gγα +
∂wα(t(X))
∂tγXXX

gγβ = −F (1)
tµ
X

cµβγ gγα + F (1)
tµ
X

cµαγ gγβ = 0,
(5.15)

the last equality above is due to the associativity equation

cµβγ cγαν = cµαγ cγβν , (5.16)

and the definition (2.22) of the intersection form.
The coefficient ofε2 δ(3)(X − Y ) is equal to

hαβ = 2F (1)
tµ cαµγ gγβ + 3F (1)

tµ
X

cµαγξ g
βγ tξX − F (1)

tµ
X

cβµγξ g
αγ tξX − 2F (1)

tµ
X
tξ
cαµγ gγβ tξX

+ F (1)
tγ
X
tµ

(cαµξ gγβ + cβµξ gγα) tξX + F (1)
tµ
X
tγ
X

(cµανξ g
γβ + cµβνξ g

γα) tνX t
ξ
X

+ 3F (1)
tµ
X

cαµγ
∂gγβ

∂tξ
tξX − F (1)

tµ
X

cβµγ 0
αγ
ξ tξX + F (1)

tµ
X

cαµγ 0
γβ
ξ tξX + Sαβ , (5.17)

where

Sαβ = (F (1)
tµ
X
tξ
X

cβµγ gαγ + F (1)
tµ
X
tξ
X

cαµγ gβγ + F (1)
tµ
X
tγ
X

cβµξ gαγ + F (1)
tµ
X
tγ
X

cαµξ gβγ

− 4F (1)
tµ
X
tξ
X

cβµγ gαγ) tξXX

= (F (1)
tµ
X
tγ
X

cβµξ gαγ + F (1)
tµ
X
tγ
X

cαµξ gβγ − F (1)
tµ
X
tξ
X

cβµγ gαγ − F (1)
tµ
X
tξ
X

cαµγ gβγ) tξXX .

(5.18)

Lemma 4. Sαβ = 0.

Proof. By using (2.22), (4.7) and (4.18) we have the identity

F (1)
tµ
X
tγ
X

cβµν gαγ = F (1)
tµ
X
tν
X

cαµγ gβγ , (5.19)

since both sides of the above identity are equal to

− 1
24

∑
i

Eξ ψαi ψ
β
i ψiν ψiξ

σ2
i ψ

2
i1

.

The lemma follows from the above identity immediately. Lemma is proved.�
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Lemma 5. The coefficientshαβ defined in (5.17) have the expression

hαβ =
1
12

(
∂

∂tν
(gµν cαβµ ) +

1
2
cµνν cαβµ

)
. (5.20)

Proof. Let’s rewrite 24hαβ as the sum ofAαβ andBαβ , where

Aαβ = 24
(

2F (1)
tµ c

αµ
γ gγβ + 3F (1)

tµ
X

cµαγξ g
βγ tξX − F (1)

tµ
X

cβµγξ g
αγ tξX − 2F (1)

tµ
X
tξ
cαµγ gγβ tξX

+ F (1)
tγ
X
tµ

(cαµξ gγβ + cβµξ gγα) tξX + F (1)
tµ
X
tγ
X

(cµανξ g
γβ + cµβνξ g

γα) tνX t
ξ
X

)
,

and

Bαβ = 24

(
3F (1)

tµ
X

cαµγ
∂gγβ

∂tξ
tξX − F (1)

tµ
X

cβµγ 0
αγ
ξ tξX + F (1)

tµ
X

cαµγ 0
γβ
ξ tξX

)
.

By using the formulas given in Sect. 4 we have

Aαβ =
γij σj

σi ψi1ψj1

(
3ψjγ ψ

α
i g

γβ − 3ψiγ ψ
β
j g

γα + ψiγ ψ
α
j g

γβ − ψjγ ψ
β
i g

γα
)

+ 2γij

(
ψαi ψiγ g

γβ

ψi1ψj1
− ψαj ψiγ g

γβ

ψ2
i1

− 2
ψαi ψjγ g

γβ

ψ2
i1

+
ψβj ψiγ g

γα

ψ2
i1

+
ψαi ψiγ ψj1 g

γβ

ψ3
i1

)
. (5.21)

ForBαβ , by using the formulas given in Sect. 4 and the following formulas

0αβγ =

(
1 +d

2
− qβ

)
cαβγ ,

∂gαβ

∂tγ
= 0αβγ + 0βαγ , (5.22)

we obtain

Bαβ = 24F (1)
tµ
X

(
(3 + 3d− 4qβ) cαµγ cγβξ − 3qγ c

αµ
γ cγβξ + qγ c

βµ
γ cγαξ

)
tξX

= (3 + 3d− 4qβ)
ψαi ψ

β
i

ψ2
i1

+
σj
σi

qγ ψiγ ψ
γ
j

ψi1ψj1

(
ψαj ψ

β
i − 3ψβj ψ

α
i

)
= (3 + 3d− 4qβ)

ψαi ψ
β
i

ψ2
i1

+
σj
σi

(
(uj − ui) γij +

d

2
δij

)
1

ψi1ψj1

(
ψαj ψ

β
i − 3ψβj ψ

α
i

)
= (3 + 2d− 4qβ)

ψαi ψ
β
i

ψ2
i1

+
σj
σi

(uj − ui) γij
ψi1ψj1

(
ψαj ψ

β
i − 3ψβj ψ

α
i

)
, (5.23)

above we have used formula (4.28). From formula (4.27) it follows that
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24hαβ = Aαβ +Bαβ = 2γij

(
ψαi ψiγ g

γβ

ψi1ψj1
− ψαj ψiγ g

γβ

ψ2
i1

−2
ψαi ψjγ g

γβ

ψ2
i1

+
ψβj ψiγ g

γα

ψ2
i1

+
ψαi ψiγ ψj1 g

γβ

ψ3
i1

)

+ (3 + 2d− 4qβ)
ψαi ψ

β
i

ψ2
i1

. (5.24)

On the other hand, for the right-hand side of (5.20) we have

2
∂

∂tν
(gµν cαβµ ) + cµνν cαβµ

= − 2
∂

∂tν
(gµν cαβµ ) + 4

∂

∂tν
(gµβ cανµ ) + cµνν cαβµ

= − 2 (1 +d− qµ − qν) cµνν cαβµ + 4 (1 +d− qµ − qβ) cµβν cανµ

+ cµνν cαβµ − 2gµν cαβµν + 4gµβ cανµν

= (3 + 2d− 4qβ)
ψαi ψ

β
i

ψ2
i1

− 2γij (ui − uj)
ψαi ψ

β
i

ψi1ψj1

− 2γij

(
uj ψ

α
i ψ

β
i

ψi1ψj1
− ui ψ

β
i ψ

α
j

ψ2
i1

− ui ψ
α
i ψ

β
j

ψ2
i1

+
ui ψ

α
i ψ

β
i ψj1

ψ3
i1

)

+ 4γij

(
ψαi ψiγ
ψi1ψj1

− ψαj ψiγ

ψ2
i1

− ψαi ψjγ
ψ2
i1

+
ψαi ψiγ ψj1

ψ3
i1

)
gγβ

= 2γij

(
ψαi ψiγ g

γβ

ψi1ψj1
− ψαj ψiγ g

γβ

ψ2
i1

− 2
ψαi ψjγ g

γβ

ψ2
i1

+
ψβj ψiγ g

γα

ψ2
i1

+
ψαi ψiγ ψj1 g

γβ

ψ3
i1

)

+ (3 + 2d− 4qβ)
ψαi ψ

β
i

ψ2
i1

= 24hαβ . (5.25)

Lemma is proved. �

Knowinghαβ(t) we can compute the symmetrized coefficient in front ofδ′′(X−Y )
using the skew-symmetry condition

rαβγ (t) + rβαγ (t) = 3∂γh
αβ . (5.26)

The antisymmetrization of the same coefficients is given by the following:

Lemma 6. Let’s denotẽrαβ the coefficients beforeε2 δ′′(X−Y ) in the second Poisson
bracket{tα(X), tβ(Y )}′

2 of (5.14), then the following identity holds true:

r̃αβ − r̃βα =
1
24

(d + 3− 2qβ) cανγ cβµνµ t
γ
X − 1

24
(d + 3− 2qα) cβνγ cαµνµ t

γ
X .

(5.27)
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Proof. From the expression (5.14) we have

r̃αβ = gγβ
∂wα

∂tγX
− gγα

∂wβ

∂tγX
+ 3gγα ∂X

(
∂wβ

∂tγXX

)
− 6gγα ∂2

X

(
∂wβ

∂tγXXX

)
+ 30γβµ

∂wα

∂tγXX
tµX + 20βγµ

∂wα

∂tγXX
tµX + 0αγµ

∂wβ

∂tγXX
tµX

− 30αγµ ∂X

(
∂wβ

∂tγXXX

)
tµX + 3

∂2
Xg

γβ

∂X2

∂wα

∂tγXXX
+ 3

∂
(
0γβµ tµX

)
∂X

∂wα

∂tγXXX
. (5.28)

By using the formulas given in Sect. 2 we get, through a long calculation, the following:

r̃αβ − r̃βα = 2gγβ
∂wα

∂tγX
− 3gγβ ∂X

(
∂wα

∂tγXX

)
+ 6gγβ ∂2

X

(
∂wα

∂tγXXX

)
+ 30γβµ

∂wα

∂tγXX
tµX + 0βγµ

∂wα

∂tγXX
tµX + 30βγµ ∂X

(
∂wα

∂tγXXX

)
tµX

+ 3
∂2gγβ

∂X2

∂wα

∂tγXXX
+ 3

∂
(
0γβµ tµX

)
∂X

∂wα

∂tγXXX
− (the precedent sum withα andβ changed)

= 2gγβ ∂X

(
∂

∂tγX

∂F (1)

∂Tα,0

)
+ 2gγβ

(
∂

∂tγ
∂F (1)

∂Tα,0

)
− 3gγβ ∂X

(
∂wα

∂tγXX

)
+ 6gγβ ∂2

X

(
∂wα

∂tγXXX

)
+ 30γβµ

∂wα

∂tγXX
tµX + 0βγµ

∂wα

∂tγXX
tµX

+ 30βγµ ∂X

(
∂wα

∂tγXXX

)
tµX + 3

∂2gγβ

∂X2

∂wα

∂tγXXX
+ 3

∂
(
0γβµ tµX

)
∂X

∂wα

∂tγXXX
− (the precedent sum withα andβ exchanged)

= 2gγβ
(
F (1)
tµtγ c

αµ
ν tνX + F (1)

tµ
X
tγ
cαµνρ t

ν
X t

ρ
X + F (1)

tµ
X
tγ
cαµν tνXX

)
− gγβ ∂X

(
F (1)
tµ tγ

X

cαµν tνX + F (1)
tµ
X
tγ
X

cαµνσ t
ν
X t

σ
X

)
+ gγβ ∂X

(
F (1)
tµ
X

cαµγν t
ν
X + 3F (1)

tµ
X
tν
cαµγ tνX + 3F (1)

tµ
X
tν
X

cαµγ tνXX − F (1)
tµ
X
tγ
X

cαµν tνXX

−F (1)
tµ cαµγ

)
+ 2gγβ

(
F (1)
tµ cαµγν t

ν
X + F (1)

tµ
X

cαµνργ t
ν
X t

ρ
X + F (1)

tµ
X

cαµνγ t
ν
XX

)
+ 30γβµ

∂wα

∂tγXX
tµX + 0βγµ

∂wα

∂tγXX
tµX + 30βγµ ∂X

(
∂wα

∂tγXXX

)
tµX

+ 3
∂2gγβ

∂X2

∂wα

∂tγXXX
+ 3

∂
(
0γβµ tµX

)
∂X

∂wα

∂tγXXX
− (the precedent sum withα andβ exchanged)
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= 2gγβ
(
F (1)
tµ tγ c

αµ
ν tνX + F (1)

tµ
X
tγ
cαµνσ t

ν
X t

σ
X

)
− 1

12
ujγij

(
1
σj

+
σj
σ2
i

)
ψαi ψ

β
j ψiν

ψi1ψj1
tνXX

+
1
24
∂X

(
2uj γij

σi
σj

ψαi ψ
β
j

ψi1ψj1
+ (ui + uj) γij

ψαi ψ
β
j

ψ2
i1

)
+
(
∂Xg

γβ
) (
F (1)
tµ tγ

X

cαµν tνX + F (1)
tµ
X
tγ
X

cαµνσ t
ν
X t

σ
X

)
+ gγβ ∂X

(
F (1)
tµ
X

cαµγν t
ν
X + 3F (1)

tµ
X
tν
cαµγ tνX + 3F (1)

tµ
X
tν
X

cαµγ tνXX − F (1)
tµ
X
tγ
X

cαµν tνXX

−F (1)
tµ cαµγ

)
+ 2gγβ

(
F (1)
tµ cαµγν t

ν
X + F (1)

tµ
X

cαµνργ t
ν
X t

ρ
X + F (1)

tµ
X

cαµνγ t
ν
XX

)
+ 30γβµ

∂wα

∂tγXX
tµX + 0βγµ

∂wα

∂tγXX
tµX + 30βγµ ∂X

(
∂wα

∂tγXXX

)
tµX

+ 3
∂2gγβ

∂X2

∂wα

∂tγXXX
+ 3

∂
(
0γβµ tµX

)
∂X

∂wα

∂tγXXX
− (the precedent sum withα andβ exchanged)

= 2gγβ
(
F (1)
tµ tγ c

αµ
ν tνX + F (1)

tµ
X
tγ
cαµνσ t

ν
X t

σ
X

)
+

1
24
tσX

∂

∂tσ

(
2uj γij

σi
σj

ψαi ψ
β
j

ψi1ψj1
+ (ui + uj) γij

ψαi ψ
β
j

ψ2
i1

)
− 2qγ

(
F (1)
tµ
X
tγ
X

cαµνσ c
βγ
ρ tρX t

ν
X t

σ
X + F (1)

tµ tγ
X

cαµσ cβγρ tρX t
σ
X

)
+
{(

3 (1 +d) − 4qβ
) (
F (1)
tµ
X
tγ
X

cαµνσ c
βγ
ρ tρX t

ν
X t

σ
X + F (1)

tµ tγ
X

cαµσ cβγρ tρX t
σ
X

)
+qβ F

(1)
tµ
X
tν
cαµγ cβγσ tσX t

ν
X − 3qβ F

(1)
tµ
X

cαµγν c
βγ
σ tσX t

ν
X − 3qβ F

(1)
tµ
X

cαµγ cβγσν t
σ
X t

ν
X

−2qβ F
(1)
tµ cαµγ cγβσ tσX

}
− (the precedent sum withα andβ exchanged)

=
1
24

{
(uj − uk) γik γkj σk

ψαi ψ
β
j

ψ2
i1ψk1

+ 3 (ul − uj) γij γjl σi
ψαi ψ

β
l

ψi1ψ2
j1

+ 2 (ui − uj) γij γil σi
ψαi ψ

β
j ψl1

ψ4
i1

− (ui + uj) γij γil σi
ψβj ψ

α
l

ψ3
i1

+ (uj − uk) γik γkj σi
ψαi ψ

β
j

ψ3
i1

+ 2 (uj − ul) γij γjl
σ2
j

σi

ψαj ψ
β
l

ψ3
j1

+d γik σk
ψαi ψ

β
k

ψ2
i1ψk1

+ 2d γij σi
ψαi ψ

β
j

ψi1ψ2
j1

− d γij σi
ψαj ψ

β
i

ψ3
i1

}

+
γij
24

{
3qβ σi

ψαi ψ
β
j

ψ3
i1

+
(
qβ − 3 (1 +d)

)(
σj

ψαi ψ
β
j

ψj1ψ2
i1

+ σi
ψαi ψ

β
j

ψ3
i1

)

+
(
5qβ − 6 (1 +d)

)
σj

ψαj ψ
β
i

ψj1ψ2
i1

− 4qβ σi
ψαi ψ

β
i ψj1
ψ4
i1

− 2qβ σj
ψαj ψ

β
j

ψi1ψ2
j1

−2qβ
σ2
j

σi

ψαj ψ
β
j

ψ3
j1

}
− (the precedent sum withα andβ exchanged)
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=
1
24

(
d

2
− qβ

) (
γij σj

ψαi ψ
β
j

ψ2
i1ψj1

+ 3γij σi
ψαi ψ

β
j

ψi1ψ2
j1

− 2γij σi
ψαi ψ

β
i ψj1
ψ4
i1

+γij σi
ψαi ψ

β
j

ψ3
i1

+ γij σi
ψαi ψ

β
j

ψ3
i1

− 2γij
σ2
j

σi

ψαj ψ
β
j

ψ3
j1

)

+
d

24

{
γik σk

ψαi ψ
β
k

ψ2
i1ψk1

+ 2γij σi
ψαi ψ

β
j

ψi1ψ2
j1

− γij σi
ψαj ψ

β
i

ψ3
i1

}

+
γij
24

{
3qβ σi

ψαi ψ
β
j

ψ3
i1

+
(
qβ − 3 (1 +d)

)(
σj

ψαi ψ
β
j

ψj1ψ2
i1

+ σi
ψαi ψ

β
j

ψ3
i1

)

+
(
5qβ − 6 (1 +d)

)
σj

ψαj ψ
β
i

ψj1ψ2
i1

− 4qβ σi
ψαi ψ

β
i ψj1
ψ4
i1

− 2qβ σj
ψαj ψ

β
j

ψi1ψ2
j1

−2qβ
σ2
j

σi

ψαj ψ
β
j

ψ3
j1

}
− (the precedent sum withα andβ exchanged)

=
1
24

(
2qβ − d− 3

)
γij σi

(
ψαi ψ

β
j

ψi1ψ2
j1

+
ψαi ψ

β
j

ψ3
i1

− ψαi ψ
β
i ψj1
ψ4
i1

− ψαi ψ
β
i

ψ2
i1ψj1

)
− (the precedent sum withα andβ exchanged)

=
1
24

(d + 3− 2qβ) cανγ cβµνµ t
γ
X − 1

24
(d + 3− 2qα) cβνγ cαµνµ t

γ
X . (5.29)

Lemma is proved. �

Proof of Theorem 2.Let’s denote

H̃β,0 =
1
24

∫
wβµν t

µ
X t

ν
X dX, F βγ = ηββ

′ ∂2F

∂tβ′ ∂tγ
,

wherewβµν are defined in (3.12), then from Lemma 3 we see that the equations in (3.8)
with p = 0 can be written as

∂tα

∂Tβ,0
= cαβγ (t) tγX + ε2 ∂X

(
ηαγ

δH̃β,0

δtγ
+ ĥαγ ∂2

XF
β
γ +

1
2
∂X ĥ

αγ ∂XF
β
γ

)
= cαβγ (t) tγX + ε2

(
b̂αβγµ (t) tγX t

µ
XX + âαβγµν(t) tγX t

µ
X t

ν
X+

+ p̂αβγ (t) tγXXX
)

+ O(ε4), (5.30)

where the coefficientŝbαβγµ (t), âαβγµν(t), p̂αβγ (t) have the expression
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p̂αβγ =
1
12
cαβµν c

µν
γ ,

âαβγµν =
1
72

(
ηασ (∂σ ∂ν w

β
γµ + ∂σ ∂γ w

β
µν

+ ∂σ ∂µ w
β
γν − 2∂µ ∂ν w

β
γσ − 2∂µ ∂γ w

β
νσ − 2∂ν ∂γ w

β
µσ)

+ ηξζ (6cασξζ c
β
σγµν + 3cασξζγ c

β
σµν + 3cασξζµ c

β
σγν

+3cασξζν c
β
σγµ + cασξζγµ c

β
σν + cασξζγν c

β
σµ + cασξζµν c

β
σγ)
)
, (5.31)

b̂αβγµ =
1
12

(
ηασ (−2∂γ w

β
µσ + ∂σ w

β
γµ − ∂µ w

β
γσ)

+ηξζ (3cασξζ c
β
σγµ +

3
2
cασξζγ c

β
σµ +

1
2
cασξζµ c

β
σγ)

)
, (5.32)

with wαβγ defined by (3.12), and̂hαβ are defined in (5.4). On the other hand, from the
bihamiltinian relation (2.82) we have

(
1 +d

2
− qβ)

∂tα

∂Tβ,0
= {tα,

∫
tβ(X) dX}′

2 + O(ε4), (5.33)

which together with (5.30) leads to the expression for the coefficientspαβγ (t), aαβγµν(t),
bαβγµ (t) in the formula (3.14)

pαβγ (t) =

(
1
2

− µβ

)
p̂αβγ (t), aαβγµν(t) =

(
1
2

− µβ

)
âαβγµν ,

bαβγµ (t) =

(
1
2

− µβ

)
b̂αβγµ (t). (5.34)

The expression (3.15) of the coefficientshαβ follows from Lemma 5, formulas (3.19)–
(3.21) are obtained by using Lemma 6 and the anti-symmetry condition of the second
Poisson bracket. In fact, if we denote ˜rαβ , f̃αβ andp̃αβ the coefficients beforeε2 δ′′(X−
Y ), ε2 δ′(X − Y ) and ε2 δ(X − Y ) in the second Poisson bracket{tα(X), tβ(Y )}′

2
respectively, then the antisymmetry condition of the second Poisson bracket gives us

r̃αβ + r̃βα = 3∂Xh
αβ , (5.35)

∂X f̃
αβ + ∂3

Xh
αβ − ∂2

X r̃
αβ = p̃αβ + p̃βα. (5.36)

Formula (3.19) follows immediately from (5.35) and Lemma 6. From (5.30) it follows
that

p̃αβ =

(
1 +d

2
− qβ

)
∂X

(
ηαγ

δH̃β,0

δtγ
+ hαγ ∂2

XF
β
γ +

1
2
∂Xh

αγ ∂XF
β
γ

)
.

(5.37)

So from (5.36) and the above expression of ˜pαβ we obtain

f̃αβ = −∂2
Xh

αβ + ∂X r̃
αβ

+

(
1 +d

2
− qβ

)(
ηαγ

δH̃β,0

δtγ
+ hαγ ∂2

XF
β
γ +

1
2
∂Xh

αγ ∂XF
β
γ

)
. (5.38)
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which leads to formula (3.20) and (3.21). We have thus verified the formula (3.14). The
remaining part of the theorem follows from (2.82). Theorem is proved.�

Proof of Proposition 3.For the correction of the expression of the first Possion bracket,
let’s replace the functionswα by ∂2G

∂X ∂Tα,0
in the identity (5.1), then a direct calculation

aided by the anti-symmetry condition of the Poisson bracket gives the expression for
ãαβ , b̃αβ , ẽαβ . For the correction of the expression of the second Poisson bracket, from
the identity (5.14) withwα replaced by ∂2G

∂X ∂Tα,0
we can easily get the expression for

the coefficientsaαβ andbαβ , however, it’s not easy to get the simplified expression for
the coefficientsqαβ andeαβ in this way. We use instead the relation(

1 − d

2
+ qβ

)
{vα(X), Hβ,0}1 = {vα(X), Hβ,−1}2 (5.39)

withHβ,−1 =
∫
vβ(X)dX, Hβ,0 =

∫
∂F (v(X))
∂vβ (X) dX and the infinitesimal B̈acklund trans-

form

tα = vα + ε2 ∂2G

∂X ∂Tα,0
, (5.40)

to get the expression for the coefficientqαβ , then by using the anti-symmetry condition of
the Poisson bracket we get the expression for the coefficienteαβ . Proposition is proved.
�

6. Genus One Gromov–Witten Invariants and G-Function of a Frobenius
Manifold

In the paper [21] Getzler studied recursion relations for the genus one Gromov–Witten
invariants of smooth projective varieties. He derived a remarkable system of linear
differential equations for a generating functionG = G(t2, . . . , tn) of these invariants.
The system can be written in the following form:∑

1≤α1,α2,α3,α4≤n
zα1zα2zα3zα4

(
3cµα1α2

cνα3α4

∂2G

∂tµ∂tν
− 4cµα1α2

cνα3µ

∂2G

∂tα4∂tν

− cµα1α2
cνα3α4µ

∂G

∂tν
+ 2cµα1α2α3

cνα4µ

∂G

∂tν
+

1
6
cµα1α2α3

cνα4µν

+
1
24
cµα1α2α3α4

cνµν − 1
4
cµα1α2ν c

ν
α3α4µ

)
= 0. (6.1)

The l.h.s. must be equal to zero identically inz1, . . . , zn. The notations for the coefficients
cαβδ, c

αβγδ are defined in (3.13). Now we solve this system for an arbitrary semisimple
Frobenius manifold.

Proof of Theorem 3..Let us rewrite the system (6.1) in the canonical coordinates. At this
end we first do a linear change of the indeterminates

zα 7→ wi :=
n∑
α=1

ψiα
ψi1

zα. (6.2)
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Instead of the partial derivatives ofG(t) and ofF (t) we substitute in (6.1) the corre-
sponding covariant derivatives. For example,

∂2G

∂tλ∂tµ
→ ∇i∇jG,

cδαβγ → ∇i∇j∇k∇lF,

etc. Here∇ is the Levi–Civita flat connection for the metric< , > written in the
curvilinear coordinatesui. Recall that the metric becomes diagonal in the canonical
coordinates

< , >=
n∑
i=1

ψ2
i1d ui

2. (6.3)

The only nontrivial Christoffel coefficients of the connection are

0iij = γij
ψj1
ψi1

, 0
j
ii = −γij ψi1

ψj1
, i 6= j, (6.4)

0iii = −
∑
k 6=i

γik
ψk1

ψi1
. (6.5)

From the definition of the canonical coordinates we have

∇i∇j∇kF = δki δ
k
j . (6.6)

This simplifies the computation. Finally we obtain for the polynomial (6.1) inw1, . . . , wn
the following structure:

1) The coefficient in front ofw4
i is equal to

− ∂2G

∂ui
2 + Pii.

2) The coefficient in front ofw3
iwj for i < j is equal to

−4
∂2G

∂ui∂uj
+ 4Pij .

3) The coefficient in front ofw2
iw

2
j for i < j is equal to

6
∂2G

∂ui∂uj
− 6Pij .

4) All other coefficients of the polynomial (6.1) vanish. HerePij = Pji is a complicated
expression inu1, . . . , un, ψ11, . . . , ψn1, γ12, . . . , γn−1n.
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From the above structure of the coefficients we immediately derive the uniqueness part
of Theorem 4. Indeed, the general solution of the corresponding linear homogeneous
system

∂2G

∂ui∂uj
= 0

is
G =

∑
i

ciui + c0

for arbitrary constant coefficients. The quasihomogeneity equation (3.29) in the canon-
ical coordinates reads

n∑
j=1

uj
∂G

∂uj
= γ. (6.7)

Hencec1 = ... = cn = 0 andG = const.
To find the first derivatives ofG we differentiate (6.7) w.r.t.ui. This gives

∂G

∂ui
= −

∑
j

uj
∂2G

∂ui∂uj
, i = 1, ..., n.

So
∂G

∂ui
= −

∑
j

ujPij .

After tedious calculations we obtain the following formula

24
∂G

∂ui
=
∑
j

γ2
ij(uj − ui)

[
ψ4
i1 − 10ψ2

i1ψ
2
j1 + ψ4

j1

]
ψ2
i1ψ

2
j1

+
∑
j

γij
(ψ2
i1 + ψ2

j1)

ψi1ψj1

 1
ψi1

∑
k 6=j

Vikψk1 − 1
ψj1

∑
k 6=i

Vjkψk1


+
∑
j

γij

(
ψj1
ψi1

− ψi1
ψj1

)
, (6.8)

where, we recall,Vij = (uj − ui) γij . Using thatψi1 is an eigenvector ofV we rewrite
the formula in the following way:

∂G

∂ui
=

1
2

∑
j 6=i

V 2
ij

ui − uj
− 1

24

∑
k 6=i

γik

(
ψi1
ψk1

− ψk1

ψi1

)
. (6.9)

Using (2.19) and (4.9) we recognize in the r.h.s. the derivative

∂

∂ui

[
logτI − 1

24
log(ψ11...ψn1)

]
.

It remains to observe that

det
∂tα

∂ui
= ψ11...ψn1
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up to an inessential constant. One can easily check that∑
i

∂G

∂ui
= 0,

so
∂G

∂t1
= 0.

The formula (3.30) is proved.
Let us derive the formula (3.32) for the constantγ. We have

n∑
i=1

ui∂i logτI =
1
2

∑
j 6=i

ui V
2
ij

ui − uj
=

1
2

∑
i<j

V 2
ij = −1

4
TraceV 2 = −1

4

n∑
α=1

µ2
α.

The second term in the formula forG gives

n∑
i=1

ui∂i log(ψ11...ψn1) =
n∑
j=1

ψ−1
j1

n∑
i=1

ui∂iψj1.

But

ψj1 =

√
∂tn

∂uj

and
n∑
i=1

ui∂it
n = (1− d)tn for d 6= 1,

n∑
i=1

ui∂it
n = rn for d = 1

(the Euler identity). So
n∑
i=1

ui∂iψj1 = −d

2
ψj1.

This proves the formula (3.32). Theorem is proved. �

Definition. The function (3.30) is calledG-function of the Frobenius manifold.

We begin our examples with the casen = 2. In the 2-dimensional case, we write the
free energyF in the form

F =
1
2

(t1)2 t2 + f (t2).

Getzler’s equations (6.1) are reduced to

48f (3) ∂2G

∂t2∂t2
− 24f (4) ∂G

∂t2
− f (5) = 0 (6.10)

(cf. [25]). For the free energy

F =
1
2

(t1)2 t2 + c (t2)h+1,
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wherec is an arbitrary non-zero constant, theG-function is

G = − 1
24

(2 − h)(3 − h)
h

log(t2).

Particularly, theG-function vanishes for theA2 topological minimal model (the case
h = 3). The constantγ equals

γ =
d (1 − 3d)

24

sinced = 1− 2
h . For the free energy of theCP 1 model

F =
1
2

(t1)2 t2 + et
2

theG-function reads

G = − 1
24
t2.

The constant is

γ = − 1
12
.

Observe that theG-function is analytic everywhere on the Frobenius manifold only for
d = 1

3 (theA2 topological minimal model) and ford = 1, i.e., for theCP 1 topological
sigma model.

Let us consider now examples withn = 3. We will take the list of examples of
Frobenius manifolds with good analytic properties from [11].

1) For the polynomial free energy related toA3,

F =
1
2

(t1)2 t3 +
1
2
t1 (t2)2 +

1
4

(t2)2 (t3)2 +
1
60

(t3)5, (6.11)

we haveG = 0, γ = 0;
2) For the polynomial free energy related toB3,

F =
1
2

(t1)2 t3 +
1
2
t1 (t2)2 +

1
6

(t2)3 t3 +
1
6

(t2)2 (t3)3 +
1

210
(t3)7,

we have

G = − 1
48

log(2t2 − 3 (t3)2), γ = − 1
72
.

3) For the polynomial free energy related to the symmetry group of icosahedron,

F =
1
2

(t1)2 t3 +
1
2
t1 (t2)2 +

1
6

(t2)3 (t3)2 +
1
20

(t2)2 (t3)5 +
1

3960
(t3)11,

we have

G = − 1
20

log(t2 − (t3)3), γ = − 3
100

.
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4) For the free energy of theCP 2 model,

F =
1
2

(t1)2 t3 +
1
2
t1 (t2)2 +

∑
k≥1

N (0)
k

(t3)3k−1

(3k − 1)!
ekt

2

, (6.12)

whereN (0)
k are the number of rational curves of degreek onCP 2 which meet 3k−1

generic points, for example,N (0)
1 = N (0)

2 = 1, N (0)
3 = 12, N (0)

4 = 620. TheG-function
has the form

G = − t2

8
+
∑
k≥1

N (1)
k

(t3)3k

(3k)!
ekt

2

,

∂G

∂t2

∣∣∣∣
t2=z,t3=1

=
φ′′′ − 27

8(27 + 2φ′ − 3φ′′)
, γ = −3

8
, (6.13)

whereφ is defined by (1.21), andN (1)
k are the number of elliptic plane curves of degree

kwhich meet 3k generic points, for example,N (1)
1 = N (1)

2 = 0, N (1)
3 = 1, N (1)

4 = 225.
5) For the free energy

F =
1
2

(t1)2 t3 +
1
2
t1 (t2)2 + (t2)4 φ(t3 − 2r log(t2)) (6.14)

(hered = 1,r > 0) we obtain a solution of WDVV with good analytic properties only
for r = 3

2 , 1 or 1
2 [11]. These solutions correspond to extended affine Weyl groups of

typeÃ2, C̃2, G̃2 respectively [13]. For all of themγ = −1/16. Particularly, forÃ2,

φ(z) = − 1
24

+ ez, (6.15)

thenG = − 1
24 t

3. For C̃2

φ(z) = − 1
48

+ a ez +
a2

2
e2z, (6.16)

wherea is an arbitrary non-zero constant, theG-function is

G = − 1
24
t3 − 1

48
log(16a et

3 − (t2)2).

Finally, for G̃2

φ(z) = − 1
72

+
2
3
ez +

3
2
e2z +

9
16
e4z, (6.17)

theG-function is

G = − 1
24
t3 − 1

12
log(12et

3 − t2).
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6) We now take the free energy

F =
1
2

(t1)2 t3 +
1
2
t1 (t2)2 − 1

16
(t2)4 φ(t3), (6.18)

whereφ(z) satisfies the Chazy equation

φ′′′ = 6φφ′′ − 9 (φ′)2, (6.19)

(hered = 1, r = r3 = 0). Then theG function can be obtained from the equations

∂G

∂t2
= − 1

8 t2
,

∂G

∂t3
= −1

4
φ(t3), γ = − 1

16
. (6.20)

Particularly, for the case

φ(t3) = 8π iE2(t3) = 4
d

dt3
logη(t3), (6.21)

whereη(τ ) is the Dedekind function,E2(τ ) is the second Eisenstein series (see [11])
we obtain

G = − log
[
η(t3) (t2)

1
8

]
. (6.22)

We see that, forn = 3, only on the Frobenius manifold (6.11) (the free energy of
theA3 topological minimal model), and on the Frobenius manifold (6.15) related to the
extended affine Weyl group̃A2 theG-function are manifestly analytic everywhere. For
theCP 2 sigma model theG-function is regular on the open subset where

27 + 2φ′ − 3φ′′ 6= 0. (6.23)

From equations of associativity for the function (6.12) it can be seen (see [4]) that in the
pointsx0 where

3φ′′(x0) − 2φ′(x0) − 27 = 0 (6.24)

the series (6.13) diverges. Analytic properties of theG-function (6.13) deserve a separate
investigation.

Remark.In the casesB3,H3, B̃2, G̃2 theG-function has logarithmic branching on the
part of the nilpotent locus of the Frobenius manifold, whereui = uj for somei 6= j. The
coefficients of our hierarchy will have singularities in these points. Probably, appearance
of these singularities suggests not to select these Frobenius manifolds for a construction
of a physically consistent model of 2D TFT.
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7. Some Examples

We now compare the dispersion expansions of some well known examples of bi-
Hamiltonian integrable systems with those given in Theorem 1 and Theorem 2.

Example 1.Let’s start with the detailed consideration of the simplest example of KdV
hierarchy. We take the Lax operator in the form

L =
1
2

(ε ∂X )2 + u(X). (7.1)

Then the two compatible Poisson brackets related to this operator is given by

{u(X), u(Y )}1 = δ′(X − Y ), (7.2)

{u(X), u(Y )}2 = u(X) δ′(X − Y ) +
1
2
uX (X) δ(X − Y ) +

ε2

8
δ′′′(X − Y ).(7.3)

(They are derived from the formulae (7.15) and (7.16) in Example 2.) Starting from the
Casimir

H−1 =
∫
u(X)dX (7.4)

of the first Poisson bracket we can construct a hierarchy of commuting Hamiltonians
Hp by using the following recursion relation

{u(X), Hp−1}2 =

(
1
2

+ p

)
{u(X), Hp}1, (7.5)

i.e., (
u(X)∂X +

1
2
uX (X) +

ε2

8
∂3
X

)
δHp−1

δu
=

(
1
2

+ p

)
∂X

δHp

δu
. (7.6)

Note that the factor
(

1
2 + p

)
does not appear in the usual recursion relation for the

KdV hierarchy, we use this factor here to meet the topological recursion relation of the
A1 topological minimal model. Let’s list the first four Hamiltonians

H−1 =
∫
u(X)dX, H0 =

∫
1
2
u(X)2dX,

H1 =
∫ (

1
6
u(X)3 − 1

24
ε2 uX (X)2

)
dX,

H2 =
∫ (

1
24
u(X)4 − 1

24
ε2 u(X)uX (X)2 +

1
480

ε4 uXX (X)2

)
dX. (7.7)

The KdV hierarchy is then given recursively as

∂u

∂T 0
= uX ,

∂u

∂T 1
= uuX +

1
12
ε2 uXXX ,

∂u

∂T p
= (

1
2

+ p)−1

(
1
2
uX∂

−1
X + u +

1
8
ε2∂2

X

)
∂u

∂T p−1
. (7.8)
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Let’s note that each flow of the KdV hierarchy can be written as a polynomial inε2.
The parameterε can be introduced to the usual KdV hierarchy through the rescaling
X 7→ εX, T p 7→ ε T p. We write down explicitly theε0 andε2 terms in the hierarchy

∂u

∂T 0
= uX ,

∂u

∂T 1 1
= uuX +

1
12
ε2 uXXX ,

∂u

∂T p
= {u(X), H (0)

p }1 + ε2 {u(X), H (1)
p }1 + O(ε4), (7.9)

where

H (0)
p =

∫
u(X)p+2

(p + 2)!
dX (7.10)

and

H (1)
−1 = H (1)

0 = 0,

H (1)
p =

∫ (
− 1

24

)
u(X)p−1

(p− 1)!
uX (X)2dX. (7.11)

We now take the free energy to be

F =
1
6

(t1)3, (7.12)

in this case theG-functionG = 0. Plugging this free energy into Theorem 1 and Theo-
rem 2, and identifyt1, T p,1, H1,p, δH

′
1,p with u, T p, H (0)

p , H (1)
p respectively, we obtain,

moduloO(ε4), the above described KdV hierarchy and its bihamiltonian structure.

Example 2.More generally, let’s consider the differential operators

L = (ε ∂)N+1 + uN (X)(ε ∂)N−1 + · · · + u1(X), (7.13)

where∂ = ∂
∂X . For any pseudo-differential operatorZ of the form

Z = (ε ∂)−1Z1 + (ε ∂)−2Z2 + · · · + (ε ∂)−NZN , (7.14)

define the following two Hamiltonian mappings [2]:

H1 : Z 7→ [Z,L]+, H2 : Z 7→ L(ZL)+ − (LZ)+L +
1

N + 1
[L,
∫ X

Res[Z,L] dX],
(7.15)

and the corresponding Poisson brackets

{f̃ , g̃}i =
∫
Res(Hi(

δf

δL
)
δg

δL
)dx, i = 1, 2, (7.16)

for the functionals

f̃ =
∫
fdx, g̃ =

∫
gdx,

where
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δf

δL
=

N∑
i=1

(ε ∂)−i
δf

δui
,

δg

δL
=

N∑
i=1

(ε ∂)−i
δg

δui
. (7.17)

In the case ofN = 2, if we define

t1 = u1 − 1
2
ε u′

2, t2 =
1
3
u2, (7.18)

then the first Poisson bracket is given as follows:

{t1(X), t1(Y )}1 = 0, {t1(X), t2(Y )}1 = δ′(X − Y ), (7.19)

{t2(X), t2(Y )}1 = 0, (7.20)

and the second Poisson bracket is given as

{t1(X), t1(Y )}2 = −6 (t2)(X)2 δ′(X − Y ) − 6 t2(X) (t2)′(X) δ(X − Y )

− ε2

(
15
4

(t2)′(X) δ′′(X − Y ) +
9
4

(t2)′′(X) δ′(X − Y )

+
5
2
t2(X)δ(3)(X − Y )+

1
2

(t1)(3)(X)δ(X − Y )

)
− ε4

6
δ(5)(X − Y ),

{t1(X), t2(Y )}2 = t1(X) δ′(X − Y ) +
1
3

(t1)′(X) δ(X − Y ),

{t2(X), t2(Y )}2 =
2
3
t2(X) δ′(X − Y ) +

1
3

(t2)′(X) δ(X − Y )

+
2ε2

9
δ(3)(X − Y ). (7.21)

The integrable hierarchy has the form

∂tα

∂T β,p
= {tα(X), Hβ,p}1, (7.22)

where the HamiltoniansHβ,p are recursively defined by

{tα(X), Hβ,p−1}2 =

(
1 − d

2
+ p + qβ

)
{tα(X), Hβ,p}1 (7.23)

with Hβ,−1 =
∫
tβ(X)dX. Up to theε2 terms, the above Poisson brackets and the

integrable hierarchy coincide with the Poisson brackets and the integrable hierarchy
given in Theorem 1 and Theorem 2 with the free energy defined by

F =
1
2

(t1)2 t2 − 3
8

(t2)4, (7.24)

and with theG-functionG = 0. This is the primary free energy of theA2 topological
minimal model of [7].

In the case ofN = 3, if we define

t1 = u1 − 1
8
u2

3 − ε

2
u′

2 +
ε2

12
u′′

3 , t2 = u2 − ε u′
3, t3 = u3, (7.25)
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then the Poisson brackets defined by (7.15), (7.16) and the integrable system given in
the form of (7.22) and (7.23) coincide, moduloε4, with the Poisson brackets and the
integrable system given in Theorem 1 and Theorem 2 with the free energy defined by

F =
1
8
t1 (t2)2 +

1
8

(t1)2 t3 − 1
64

(t2)2 (t3)2 +
1

3840
(t3)5, (7.26)

and with theG-functionG = 0. This is the primary free energy of theA3 topological
minimal model [ibid]. Formulae in (7.25) coincide with formulae in (4.38) of [6].

Example 3.The explicit bihamiltonian structure related to the Lie algebra of typeB2 is
given, for example, in [1] in the following form:

{u1(X), u1(Y )}1 = 2u2(X) δ′(X − Y ) + u′
2(X) δ(X − Y ) − ε2 δ(3)(X − Y ),

{u1(X), u2(Y )}1 = 2δ′(X − Y ),

{u2(X), u1(Y )}1 = 2δ′(X − Y ),

{u2(X), u2(Y )}1 = 0; (7.27)

{u1(X), u1(Y )}2 = 2u2(X)u1(X) δ′(X − Y ) + u′
2(X)u1(X) δ(X − Y )

+ u2(X)u′
1(X) δ(X − Y ) − ε2 [

3
2
u′

2(X)2 δ′(X − Y )

+ 6u2(X)u′
2(X) δ′′(X − Y ) +

3
2
u′

1(X) δ′′(X − Y )

+ 4u2(X)u′′
2 (X) δ′(X − Y ) +

1
2
u′

2(X)u′′
2 (X) δ(X − Y )

+
3
2
u′′

1 (X) δ′(X − Y ) + 2u2(X)2 δ(3)(X − Y )

+ u1(X) δ(3)(X − Y ) + u2(X)u(3)
2 (X) δ(X − Y )

+
1
2
u(3)

1 (X) δ(X − Y )] + ε4[8u′′
2 (X) δ(3)(X − Y )

+ 7u(3)
2 (X) δ′′(X − Y ) + 5u′

2(X) δ(4)(X − Y )

+ 3u(4)
2 (X)δ′(X − Y ) + 2u2(X)δ(5)(X − Y )

+
1
2
u(5)

2 (X) δ(X − Y )] − 1
2
ε6 δ(7)(X − Y ),

{u1(X), u2(Y )}2 = 2u1(X) δ′(X − Y ) +
1
2
u′

1(X) δ(X − Y )

− ε2
(
u′

2(X) δ′′(X − Y ) + 2u2(X) δ(3)(X − Y )
)

+ ε4 δ(5)(X − Y ),

{u2(X), u1(Y )}2 = 2u1(X)δ′(X − Y ) +
3
2
u′

1(X)δ(X − Y ) − ε2 [u(3)
2 (X)δ(X − Y )

+ 5u′
2(X) δ′′(X − Y ) + 2u2(X) δ(3)(X − Y ) + 4u′′

2 (X) δ′(X − Y )]

+ ε4 δ(5)(X − Y ),

{u2(X), u2(Y )}2 = u2(X)δ′(X−Y ) +
1
2
u′

2(X)δ(X−Y )− 5
2
ε2δ(3)(X−Y ), (7.28)

here we note that the above coordinatesu1, u2 should be the coordinatesu1, u0 respec-
tively in [1], and there is a sign difference between the above first Poisson bracket and
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that of [1]. We now compare the above Poisson brackets with the Poisson brackets given
by Theorem 1 and Theorem 2 with the free energy related toB2. For this, let

F =
1
2

(t1)2 t2 +
1
15

(t2)5, (7.29)

then theG-function is given byG = − 1
48 log(t2), and the first and second Poisson

brackets of Theorem 1 and Theorem 2 are given by

{t1(X), t1(Y )}1 = {t2(X), t2(Y )}1 = O(ε4),

{t1(X), t2(Y )}1 = δ′(X − Y )

+
ε2

24t2(x)

(
(t2)′(x)
t2(x)

δ
′′
(X − Y ) − δ

′′′
(X − Y )

)
+ O(ε4); (7.30)

{t1(X), t1(Y )}2 = 2t2(X)
3
δ′(X − Y ) + 3t2(X)

2
(t2)′(X) δ(X − Y )

+ ε2

(
(t1)′(X)

2
δ′(X − Y )

32t2(X)2 − (t1)′(X)
2

(t2)′(X) δ(X − Y )

32t2(X)3

+
29 (t2)′(X)

2
δ′(X − Y )

24
+

13t2(X) (t2)′(X) δ′′(X − Y )
4

+
(t1)′(X) (t1)′′(X) δ(X − Y )

32t2(X)2 +
25t2(X) (t2)′′(X) δ′(X − Y )

12

+
5 (t2)′(X) (t2)′′(X) δ(X − Y )

8
+

13t2(X)
2
δ(3)(X − Y )
12

+
t2(X) (t2)(3)(X) δ(X − Y )

2

)
,

{t1(X), t2(Y )}2 = t1(X) δ′(X − Y ) +
(t1)′(X) δ(X − Y )

4

+ ε2

(
− ((t1)′(X) δ′′(X − Y )

)
24t2(X)

+
t1(X) (t2)′(X) δ′′(X − Y )

24t2(X)2

− t1(X) δ(3)(X − Y )
24t2(X)

)
,

{t2(X), t2(Y )}2 =
t2(X) δ′(X − Y )

2
+

(t2)′(X) δ(X − Y )
4

+
3ε2 δ(3)(X − Y )

16
. (7.31)

Now if we relate the variablesu1, u2 to the variablest1, t2 by the following relation:

t1 = u1 − 1
4
u2

2 + ε2

(
7
24
u′′

2 +
u′

1u
′
2

12u2
2

− u′′
1

12u2

)
, t2 =

1
2
u2, (7.32)

then the above first Poisson brackets coincide, moduloε4, with the Poisson brackets
given in (7.27). While for the second Poisson brackets, they coincide with the Poisson
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brackets given in (7.28) only up toε0, and starting from theε2 terms, the two second
Poisson brackets no longer coincide. This result is in accordance with the result of [16],
where it was shown, by imposing the commutativity of the flows, that the integrable
system (the tree-level one) related to the free energy (7.29) can not be extended beyond
ε2 terms.

Remark.In this section, the free energies corresponding to the Lie algebras of the types
A2, A3, B2 are different from those given in Sect. 6, they are related by a rescaling.

Example 4.Consider the Toda lattice equation with open boundary

∂un
∂t

= vn − vn−1,

∂vn
∂t

= eun+1 − eun , n ∈ Z. (7.33)

If we introduce the slow variablesT = t ε, X = n ε, and the new dependent variables
ũ(X) = un, ṽ(X) = vn, then the Toda lattice equations lead to

∂ũ

∂T
=

1
ε

(ṽ(X) − ṽ(X − ε)) ,

∂ṽ

∂T
=

1
ε

(
eũ(X+ε) − eũ(X)

)
. (7.34)

This system has the bi-Hamiltonian structure

∂ũ

∂T
= {ũ(X), H0}1 = {ũ(X), H−1}2,

∂ṽ

∂T
= {ṽ(X), H0}1 = {ṽ(X), H−1}2, (7.35)

where the Poisson brackets are defined by

{ũ(X), ũ(Y )}1 = {ṽ(X), ṽ(Y )}1 = 0,

{ũ(X), ṽ(Y )}1 =
1
ε

(δ(X − Y ) − δ(X − Y − ε)) , (7.36)

{ũ(X), ũ(Y )}2 =
1
ε

(δ(X − Y + ε) − δ(X − Y − ε)) ,

{ṽ(X), ũ(Y )}2 =
1
ε

(δ(X − Y + ε) − δ(X − Y )) ṽ(X),

{ṽ(X), ṽ(Y )}2 =
1
ε

(
eũ(X+ε)δ(X − Y + ε) − eũ(X)δ(X − Y − ε)

)
, (7.37)

and the Hamiltonians are given by

H−1 =
∫
ṽ(X)dX, H0 =

∫ (
1
2
ṽ(X)2 + eũ(X)

)
dX. (7.38)

We construct the hierarchy of integrable systems

∂ũ

∂T p
= {ũ(X), Hp}1,

∂ṽ

∂T p
= {ṽ(X), Hp}1 (7.39)
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with the HamiltoniansHp recursively defined by

{ũ(X), Hp−1}2 = (p + 1){ũ(X), Hp}1, {ṽ(X), Hp−1}2 = (p + 1){ṽ(X), Hp}1.
(7.40)

We identifyT 0 with T .
Let’s define again the following new variables:

t1(X) = ṽ(X) − ε2

24
ṽ′′(X) + O(ε4), (7.41)

t2(X) = ũ(X) +
ε

2
ũ′(X) +

ε2

24
ũ′′(X) − ε3

48
ũ′′′(X) + O(ε4), (7.42)

and expand the above Poisson brackets in Taylor series inε, we obtain

{t1(X), t1(Y )}1 = {t2(X), t2(Y )}1 = 0,

{t1(X), t2(Y )}1 = δ′(X − Y ) − ε2

12
δ(3)(X − Y ) + O(ε4), (7.43)

{t1(X), t1(Y )}2 = 2et
2(X) δ′(X − Y ) + et

2(X) (t2(X))′ δ(X − Y )

+ ε2

(
1
6
δ(3)(X − Y ) +

1
4

(t2(X))′ δ′′(X − Y ) +
1
12

((t2(X))′)2 δ′(X − Y )

+
1
4

(t2(X))′′ δ′(X − Y ) +
1
12

(t2(X))′ (t2(X))′′ δ(X − Y )

+
1
12

(t2(X))(3) δ(X − Y )

)
et

2(X) + O(ε4),

{t1(X), t2(Y )}2 = t1(X) δ′(X − Y ) − ε2

(
1
12
t1(X) δ(3)(X − Y )

+
1
12

(t1(X))′ δ′′(X − Y )

)
+ O(ε4),

{t2(X), t2(Y )}2 = 2δ′(X − Y ) + O(ε4). (7.44)

We also expand the Hamiltonians (7.40) and the integrable system (7.39) in Taylor series
in ε. The HamiltoniansH−1 andH0 have the form

H−1 =
∫
t1(X)dX + O(ε4),

H0 =
∫ (

1
2

(t1(X))2 + et
2(X)

)
dX

− ε2

12

∫ (
1
2

(
t1X (X)

)2
+ et

2(X)
(
t2X (X)

)2
)
dX + O(ε4). (7.45)

Now if we put theCP 1 free energy

F =
1
2

(t1)2 t2 + et
2

(7.46)

into Theorem 1–Theorem 3, and withG-functionG = − 1
24t

2, we get the Poisson brackets
which coincide with those given in (7.44) moduloε4, and the HamiltoniansH2,p we get
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also coincide withHp moduloε4. This suggests that the Toda lattice hierarchy is the
appropriate hierarchy of integrable systems behind theCP 1 model, as it was suggested
in [16] from the point of view of commuting flows.

8. Discussion

We formulate here the conjectural shape of the integrable hierarchy to be considered
starting from a Frobenius manifold and of its bihamiltonian structure in the form of
genus expansion. The hierarchy must have the form

∂t

∂Tα,p
= K (0)

α,p(t, tX ) +
∑
k≥1

ε2kK (k)
α,p(t, tX , tXX , . . . ) = {t(X), Hα,p}1, (8.1)

where the Hamiltonians and the first Poisson bracket must have the expansions

Hα,p = H (0)
α,p +

∑
k≥1

ε2kH (k)
α,p, (8.2)

{tα(X), tβ(Y )}1 = {tα(X), tβ(Y )}(0)
1 +

∑
k≥1

ε2k {tα(X), tβ(Y )}(k)
1 , (8.3)

where

H (k)
α,p =

∫
P (k)
α,p(t; tX , tXX , . . . )dX, (8.4)

{tα(X), tβ(Y )}(k)
1 =

2k+1∑
s=0

Aα,βk,s (t; tX , tXX , . . . )|t=t(X) δ
(s)(X − Y ). (8.5)

The densitiesP (k)
α,p(t; tX , tXX , . . . ) and the coefficientsAα,βk,s (t; tX , tXX , . . . ) of the

Poisson bracket are quasihomogeneous polynomials intX , tXX , . . . of the degrees

degP (k)
α,p(t; tX , tXX , . . . ) = 2k, (8.6)

degAα,βk,s (t; tX , tXX , . . . ) = 2k + 1− s, (8.7)

where we assign the degrees

deg∂mX t = m (8.8)

for anym = 1, 2, . . . . The coefficientsK (k)
α,p(t; tX , tXX , . . . ) of the hierarchy are also

polynomials in the same variables of the degree

degK (k)
α,p(t; tX , tXX , . . . ) = 2k + 1, k = 0, 1, . . . . (8.9)

All the Hamiltonians must commute.

Remark.The dispersion expansions of the known integrable hierarchies obtained by
simultaneous rescalingx 7→ ε x, t 7→ ε t for any time variablet contain also odd
powers ofε. However, doing an appropriateε-dependent change of dependent variables
we can reduce the hierarchy and their Poisson brackets to the form postulated in this
section. (See examples above in Sect. 7).
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We expect that the quasihomogeneity (2.3) will not be involved in the construction of
the hierarchy. If, however, it takes place then the coefficients of the first Poisson bracket
must satisfy another quasihomogeneity condition. Let us introduce the extended Euler
vector field

E := E +
∑
m≥1

∑
α

(1 −m− qα) ∂mX t
α ∂

∂(∂mX t
α)
, (8.10)

where the Euler vector fieldE has the form (2.10). Then the coefficients of the first
Poisson bracket (8.3) must satisfy the quasihomogeneity conditions

LEA
αβ
k,s(t; tX , tXX , . . . ) = (k(d− 3) +d + s− 1 − qα − qβ)Aαβk,s(t; tX , tXX , . . . ).

(8.11)

Moreover, there exists another Poisson bracket with the structure similar to (8.3), (8.5)

{tα(X), tβ(Y )}2 = {tα(X), tβ(Y )}(0)
2 +

∑
k≥1

ε2k {tα(X), tβ(Y )}(k)
2 , (8.12)

{tα(X), tβ(Y )}(k)
2 =

2k+1∑
s=0

Bα,βk,s (t; tX , tXX , . . . )|t=t(X) δ
(s)(X − Y ), (8.13)

whereBα,βk,s (t; tX , tXX , . . . ) are polynomials intX , tXX , . . . of the same degree 2k +
1 − s in the sense of (8.8). The quasihomogeneity conditions for the coefficients of the
second Poisson bracket have the form

LEB
αβ
k,s(t; tX , tXX , . . . ) = (k(d− 3) +d + s− qα − qβ)Bαβk,s(t; tX , tXX , . . . ).

(8.14)

The Poisson brackets{ , }1 and{ , }2 must be compatible, i.e., any linear combination
of them with arbitrary constant coefficients must be again a Poisson bracket. Besides

∂

∂t1
Bαβk,s = Aαβk,s,

∂

∂t1
Aαβk,s = 0. (8.15)

All the equations of the hierarchy (8.1) with the numbers (α, p) such that

1
2

+ µα + p 6= 0 (8.16)

are Hamiltonian flows also w.r.t. the second Poisson bracket.
Additional conjecture about the bihamiltonian structure (8.3), (8.12) is that, ford 6= 1,

{tn(X), tn(Y )}(k)
1 = 0 for k > 0,

{tn(X), tn(Y )}(k)
2 = 0 for k > 1. (8.17)

Here the invariant definition of the coordinatetn is tn := η1ε t
ε. This conjecture means

that the Virasoro algebra with the central charge (3.35) found ford 6= 1 in Corollary
1 above does not get deformations coming from the genera≥ 2. In other words, our
bihamiltonian structure is a classicalW -algebra with the conformal dimensions (2.31)
and the central charge (3.35).
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We recall that a Frobenius manifoldMn is said to have good analytic properties if
the primary free energyF (t) has the form

F (t) = cubic terms + analytic perturbation (8.18)

near some pointt0 ∈ Mn. (See [11].) For example, the pointt0 is the origin in the
topological minimal models and it is the point of classical limit in the topological sigma-
models. For Frobenius manifolds with good analytic properties we expect that all the
coefficients of the polynomialsAαβk,s(t; tX , tXX , . . . ), Bαβk,s(t; tX , tXX , . . . ) are ana-
lytic in t near the pointt0. For the caset0 = 0, d < 1, i.e., the charges satisfy

0 ≤ qα ≤ d < 1, (8.19)

the analyticity implies finiteness of all of the expansions of the Poisson bracket. Indeed,
from (8.5) and (8.11) we obtain that

k(d− 3) +d + s− 1 − qα − qβ ≤ k(d− 1) +d. (8.20)

This number is nonnegative only if

k ≤ d

1 − d
. (8.21)

But all the degrees of the variablestα are 1− qα > 0. So all the terms{ , }(k)
1 must

vanish fork > d
1−d . Similarly, the terms in the expansion of the second Poisson bracket

must vanish fork > 1+d
1−d . All the examples of 1 + 1 integrable hierarchies labeled by

A-D-E Dynkin graphs are of this type. All the coefficients of the genus expansions are
polynomials.

Recall, that a polynomial Frobenius manifold can be constructed for an arbitrary
finite Coxeter group [11]. For this case

d = 1− 2
h
, qα = 1− mα + 1

h
,

whereh is the Coxeter number andmα are the exponents of the Coxeter group. How-
ever, the bihamiltonian hierarchy (8.1) can be constructed for only simply-laced Dynkin
graphs. Indeed, our formula (3.35) for the central charge coincides with the formula [20]

cε2 = 12ε2ρ2 (8.22)

of the central charge of the classicalW -algebras with the same Dynkin diagramexactly
for the simply-laced case! Hereρ is one half of the sum of positive roots. Ourε is
equal toiα of [20]. Recall, that for the simply-laced Coxeter groups our polynomial
Frobenius manifolds correspond to the topological minimal models [7]. The constantγ
in (3.29) equals 0. So theG-function is identically equal to 0 for the A–D–E polynomial
Frobenius manifolds.

Ford ≥ 1 the expansions probably are infinite. The Jacobi identity for the Poisson
brackets, commutativity of the Hamiltonians etc. are understood as identities for the
formal power series inε2. In the paper we have constructed the first terms of the expan-
sions and showed that they are in agreement with the assumptions we formulate in this
section.
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To proceed to the next orderO(ε4) we are to compute the Poisson brackets

{H (0)
α,p, H

(1)
β,q}(1) + {H (1)

α,p, H
(0)
β,q}(1) + {H (1)

α,p, H
(1)
β,q}(0) := Qα,p;β,q. (8.23)

Then the corrections to the Hamiltonians and to the Poisson brackets are to be determined
from the linear equations

{H (0)
α,p, H

(2)
β,q}(0) + {H (2)

α,p, H
(0)
β,q}(0) + {H (0)

α,p, H
(0)
β,q}(2) = −Qα,p;β,q. (8.24)

We do notexpect that the deformed hierarchy and the Poisson brackets can be con-
structed for an arbitrary Frobenius manifold (cf. [16]). However, solvability of the linear
system (8.24) together with the bihamiltonian property could give a clue to the problem
of selection of “physical” solutions of WDVV equations of associativity. We plan to
investigate this solvability in subsequent publications.

We do not discuss in this paper the relations between the one-loop deformations of
the hierarchy and the Virasoro algebra of [18, 19]. This is to be done in a subsequent
publication. Another interesting problem is a relation between the hierarchy we construct
and the recursion relations of [28].
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