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Abstract: We compute the genus one correction to the integrable hierarchy describing
coupling to gravity of a 2D topological field theory. The bihamiltonian structure of
the hierarchy is given by a classidd-algebra; we compute the central charge of this
algebra. We also express the generating function of elliptic Gromov-Witten invariants
via tau-function of the isomonodromy deformation problem arising in the theory of
WDVV equations of associativity.

1. Introduction

According to [5, 8, 31], the primary free energy of the matter sector of a 2D topolog-
ical field theory (TFT) withn primaries as a functiot’(t) of the coupling constants

t = (t1, ..., t") must satisfy WDVV equations of associativity. The problem of selection
of physical solutions among all the solutions to WDVV equations is still open. Refor-
mulating, the problem is to understand which part of the building of a 2D TFT can be
constructed taking an arbitrary solution of WDVV equations as the basement.

The first problem to be settled is coupling of a given matter sector to topological
gravity. In the full theory, besides the primarieg; = 1, ¢»,..., ¢, that we now
redenote ¢1, ..., ¢n0, there are infinite number of their gravitational descendents
d1ps--->Pnp, p=1,2,.... The generating function of their correlators is the full free
energy of the theory

F(T) = <eZ T ¢> . (1.1)

Here TP are the coupling constants correspondent to the figlds

(..) ::Z/Z e S dy] (1.2)
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(the sum over the fields living on the surface of genug S is the classical action).
According to the idea of Witten [32] this procedure of coupling to topological gravity
must be described by an integrable hierarchy of PDEs. The unknown functions of the
hierarchy are the particular two-point correlators

8,q 92 F(T)
Vg 1= <¢a,o ®1,0 2T ¢’3’q> = 370710’ (1.3)

TYP, ..., T™P are the times of the™ flow of the hierarchy, and the cosmological
constantX := 710 plays the role of the spatial variable of the hierarchy. The partition
function of the full theory is the-function of a particular symmetric solution of the
hierarchy. This idea works perfectly well for the case of pure gravity (the matter sector
is trivial, n = 1, F(t) = %t3). According to the theory of Witten - Kontsevich [26, 33]
the partition function of 2D gravity is a particularfunction of the KdV hierarchy.

For a 2D TFT with a nontrivial matter sector the correspondent integrable hierar-
chies are not known, although there are interesting conjectures about their structure for
topological minimal models [7], fof’ P* topological sigma-model [11, 14, 15, 16, 17].
However, the properties gknus expansioof a 2D TFT provide us with certain nontriv-
ial assumptions about the structure of the hypothetical hierarchy. Défydtee genus
g part of the free energy

.7:9 = <ez Ll ¢'0¢,p>g7 (14)
F=Y 7, (1.5)
g>0

Particularly, the primary free energy is obtained restrictifigonto thesmall phase
spacel®P>0 = Q,

F(t) = Folpeo=ta, ra.w>0=0. (1.6)
The procedure of genus expansion consists of the following two parts.
1) We introduce slow spatial and time variables rescaling

X —eX, TP s TP, 1.7
2) We change
Fr Y 2972 F, (1.8)
g=0

The indeterminate is calledstring coupling constantAs e — 0 one has a singular
limit of the tau-function(i.e., of the partition function) of the theory

7(T,e) = exp(e 2Fo+ Fi+e?Fo+...). (1.9)

Also all of the correlators become seriegirfParticularly, the series of the two-point
correlators (1.2) have the form

[e.e]
Vg = Zazgvg, (2.10)
=0
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where

2
g .— ZTﬁ’qQﬁﬁ,q — 0 ./q:g
08, = ( Ga0b10e >g St (1.12)
The genus zero (i.e., the tree-level) approximation of the theory corresponds to the
dispersionless approximation of the hierarchy. The solutign..., v2) to the hierarchy

T vn
is given by the genus zero two-point correlatefs= <¢a,0 ®1,0 e T ‘i’ﬁﬂ> as the

0
functions of the couplings. The solution is specified by the initial data on the small phase
space

V]| ra p>0z0 = UaﬁTﬂ’(), (1.12)
where the constant “metriaj, s is specified by the primary correlators of the form

Nag = <¢l,0¢a,0¢[5,0>0 | e, p>0=0. (1.13)

The construction of the would-be dispersionless approximation of the unknown inte-
grable hierarchy for an arbitrary solution to equations of associativity and of the needed
7-function of it was given in [9] in terms of the geometry of WDVV equations (see
also [11]). The bihamiltonian structure of the hierarchy was found in [10]. We briefly
recollect this construction in Sect. 2 below. (We also describe more accurately the quasi-
homogeneity property of the hierarchy and of th&unction formulated in [9] only for
a generic solution of WDVV equations.)

One can try to go beyond the tree-level approximation expanding the unknown hier-
archy in a series w.r.t?. The string coupling constaatplays the role of the dispersion
parameter. The reader can keep in mind the dispersion expansion

m=u%+1?¥%m (1.14)
of the KdV equation as an example of such a series. Particularly, for the one-loop (i.e.,
genus= 1) approximation of the theory, it is sufficient to retain the terms of the hierarchy
up to the=? order. Particular solutions of the one-loop approximation must have the form

Vo = V(T) + 2 VL (T) + O(?)
- <¢u,o $1,0 T ¢6'q> e <¢a,0 ®1,0 2T ¢M> +O(e*)
0 1
32
= HTa09TL0 (

So fore = 0 the one-loop approximation becomes the already known tree-level approx-
imation of the hierarchy. We will call the genus one approximation of the integrable
hierarchythe one-loop deformatioof the genus zero hierarchy.

Our result is that, under the assumption of semisimplicity (see below) the one-loop
deformation of the hierarchy exists for any solution of WDVV equations anditis uniquely
determined by the general properties of the genus one correlators proved by Dijkgraaf
and Witten [6] and by Getzler [21]. (For the solution of WDVV equations with one and
two primaries the one-loop approximation of the hierarchy was constructed in [6, 16]).
Recall that the genus one part of the free energy has the form

Fo(T) + & Fi(T)) + OE?). (1.15)

A1) = | 2 logdethMs(t, Dxt) + G(t) , (1.16)
24 t=v0(T)



314 B. Dubrovin, Y. Zhang

where the matrix\/, s has the form

]\/fa@(t,axt) = Caﬁ,y(t) Ixt?, (1.17)
Ca[gv(t) = aaa@ayF(t), (1.18)

and G(t) is a certain function specified by Getzler's equation [21] (see also Sect. 6
below). The first part of the formula becomes trivial on the small phase §ffaée= 0

for p > 0. The second part describes, in the topological sigma-models, the genus one
Gromov-Witten invariants of the target space. For this function we derive the following
formula

G = (1.19)

TI
log T2
(as above, semisimplicity of the solution of WDVV is assumed). Heiethe Jacobian
of the transform between canonical and flat coordinates (see Sect. 2 below). To explain
who is7; we recall that, in the semisimple case, WDVV can be reduced to equations of
isomonodromy deformations of a certain linear differential operator with rational coeffi-
cients [9]. Ourry is the tau-function of the solution of these equations of isomonodromy
deformations in the sense of [24]. According to [24, 30] the tau-function appears as the
Fredholm determinant of an appropriate Riemann—Hilbert boundary value problem (see
[12] for reduction of WDVV equations to a boundary value problem). Remarkably, the
formula makes sense for an arbitrary semisimple solution of WDVV equations. Using
explicit expressions (2.17), (2.19) fey one can derive from (1.19) the proof of main
conjectures of the recent paper of Givental [22].

As a byproduct of our computations, we obtained a nice formula for the generating
function of elliptic Gromov—-Witten invariants of complex projective plane. Namely, the
function

_ Q/)/// —27
P = 827+ 25 347 (1.20)
where
N(O)
Y= G (1.21)

k>1
N© = the number of rational curves of degree
on C'P? passing through generick3— 1 points

is the generating function for the numbév’él) of the elliptic curves of degreeon C P?
passing through generick3points:

w(z)——f > <1)(3k), ek, (1.22)
k>1

We prove also that the compatible pair of Poisson brackets describing the tree-
level hierarchy admits a unique deformation to give a bihamiltonian structure, modulo
O(e*), of the one-loop hierarchy. The deformed bihamiltonian structure turns out to be a
nonlinear extension of the Virasoro algebra (i.e., a clas$i¢algebra) with the central
charge
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2
= 1125 7 |2 2Z(qa— Loy (1.23)

Heree is the string coupling constantandq,, are the “dimension” and the “charges” of
the theory. In the case of quantum cohomologyofi.e., the topological sigma-model
with the target spac&’) d coincides with the complex dimension of the target space
X andgq, are the halfs of the degrees of the basic elementd"ifX). Remarkably,

this formula works not only in guantum cohomologies. It gives the correct value for the
central charge [20] of the classicél-algebras for the topological minimal models of

A - D - E type (see below Sect.8)!

We can continue this procedure trying to construct a higher genera approximation
of the unknown integrable hierarchy. Of course, it would be too optimistic to expect that
our procedure will go smoothly for any geng$or an arbitrary solution of equations of
associativity. Moreover, from [16] it follows that, constructing the integrable hierarchy,
probably for a generic solution of WDVV one cannot go beyond the genus one. However,
our results suggest that in an arbitrary physical 2D TFT coupling to gravity is given by
an integrable bihamiltonian hierarchy of 1 + 1 PDEs. Bihamiltonian structure of the
hierarchy is to be described by a classidalalgebra with the prescribed central charge
and the conformal dimensions of the primaries. So, we embed the problem of coupling
to topological gravity into the problem of classification of a certain class of classical
W -algebras.

We briefly discuss this project in the final section, postponing the study of the higher
genera corrections for a subsequent work.

The paper is organized as follows. In Sect. 2 we recall some important points of the
theory of WDVV equations of associativity (equivalently, the theory of Frobenius man-
ifolds) and the construction of coupling to gravity at tree-level. The main results of the
paper are formulated in Sect. 3. In Sect. 4 we derive some useful identities of the theory
of semisimple Frobenius manifolds used in the proof of the main results. The derivation
of the bihamiltonian structure of the hierarchy in the genus one approximation is given
in Sect. 5. In Sect. 6 we solve Getzler's equations for elliptic Gromov-Witten invariants
for any semisimple Frobenius manifold. The examples of the deformed bihamiltonian
hierarchies are given in Sect. 7. In the last Sect. 8 we discuss the programme of study
of higher genera corrections in the setting of classitahlgebras.

2. WDVV Equations of Associativity and the Structure of a 2D TFT at Genus
Zero

WDVV equations of associativity is the problem of finding a functidt{t)
F(t,...,t"), a constant symmetric nondegenerate matfi}, numbersqs, . . ., g,
r1,...,7n, dsuch that

D030\ F(t) ) 0,0,05 F () = 050500 F (t) 1™ 8,00 F (1) (2.1)
foranyo,8,v,0=1...,n

010005 F (1) = 11ap,  Where Gag) = (1*7) %, (2.2)

Z [(1— ga)t™ +ra] 0o F(t) = (83— d) F(t) + % Auptt? + B, t* +C (2.3)
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for some constantd, g, B, C. The numbers,, r,,d andA,s, B,, C must satisfy the
following normalization conditions (see [12]):

@ =0,7r, 70 onlyifg, =1,
Ao 70 onlyifgy +gs=d—1,
B, #0 onlyifg, =d—2,
C#0 onlyifd=3,

A1a = Nacre, B1=0. (2.4)
€

We will usually normalize the coordinaté$ reducingn,s to the antidiagonal form
Nap = Oo+B,n+1- (2.5)
This can always be done fdr# 0. Then
o+ Qn—a+1=d, g, =d. (2.6)

Any solution of WDVV equations provides the space of parametétss (¢, ..., ")
with a structure ofrobenius manifoldThat means that there exists a unique structure
of a Frobenius algebr@;, <, >) on the tangent plané§ M " such that

<6a . aﬁa a’y> = aaaﬂa’yF(t)a <aa7 8[3> = Nags- (2-7)
Explicitly
Oa - 03 = c';ﬁ(t) 0y Whereclﬁ(t) =n7° 00,03 F (t). (2.8)
The vector field
e=0 (2.9)

is the unity of the algebra. We introduce also the Euler vector fieldi/én

n

E(t)=E<(t)0. =Y _ [(1—q)t* +7] 0. (2.10)
e=1

This is the generator of the scaling transformations (2.3). All the equations (2.1)—(2.3)
can be easily reformulated in a covariant way (see [11]).

One of the main geometrical objects on a Frobenius manifold is a deformation of
the Levi—Civita connectiolV for <, >:

6uvzvuv+zu-v. (2.11)

Hereu, v are two vector fields od/™, z is the parameter of the deformation. The
connection (2.11) is flat for any. It can be extended to a flat connectionfaft x C*

1
\Y% v=8zv+E~v—;uv, (2.12)

da
dz

where
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1 . d
W= fVE+§(27d)=d|ag(u1,...,un), Ma=q(1*§, (2.13)
(pa,b) =—(a,nd). (2.14)

(Comparing with [11] we change the normalization of the compof%dgt doing an
elementary gauge transform.) The connectiorfifh x C* is still flat. ’

The Frobenius manifold is said to satishe semisimplicity conditiofor, briefly, it
is semisimple) if the algebras; are semisimple for generic On the open domain of
the points of semisimplicity one can introducanonical coordinates,, . .., u, such
that

o 0 0 —

an . aiuj = ij%, (2%} e e ey T, (215)

(We will use all lower indices working with the canonical coordinates. No summation
over the repeated indices will be assumed in this case.) In these coordinates WDVV
can be reduced to a commuting family of nonstationary Hamiltonian flows on the Lie
algebraso(n) with the standard Poisson bracket

Vv
8ui
(the definition of the matri¥” = (V;;), VT = =V € so(n) see below in Sect.4), the

canonical coordinates, . . . , u,, play the role of the times and the quadratic Hamiltonian
has the form

={V.H;(V;uw)},i=1...,n (2.16)

1 V2
H, == g 2.17
2 %; U — Uy ( )

These are the equations of isomonodromy deformations of the operator

d 1
— —U — =V, U=diag(u, ..., up) (2.18)
dz z

with rational coefficients [9]. The tau-functian of a solution in the theory of isomon-
odromy deformations is defined [24] by the quadrature

dlogr; = Hidu,. (2.19)

=1

(We denote this functiom; to avoid confusions with the tau-function (1.9) of the inte-
grable hierarchy.)

Another geometric object is a deformation of the flat metric > on M™ [9, 11].
We introduce théntersection form

(w1, w2)t =g (w1-wo), wi,wp €Ty M". (2.20)
The metric
() =A<, >y (2.21)

on T;* M™ does not degenerate for almost all §). It is flat for these X, t). In the
coordinateg®
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goP(t) == (dt™,dtP) = B° 2P = (d+1— qo — qp) F*P(t) + A*P,  (2.22)

where

L e O2F(D) o
Faﬂ(t) = Tl(m Uﬂﬂ ot 98’ Aaﬁ = 77(m 77[35 Aa'ﬁ/'

We give also the formula for the Levi—Civita connection for the flat (but not constant in
the coordinates® !) metric (, )

(2.23)

P70 = - OrL0 = (150 - ar) 70, (2.24)

where
c(;ﬁ(t) = oo 8’ Dor 00 F (t). (2.25)

The flat metric (2.22) is responsible not only for the second Poisson bracket of the
integrable hierarchy (see below), but also for the relation between Frobenius manifolds
and reflection groups [11].

The genus zero approximation of the needed integrable hierarchy will be an infinite
family of dynamical systems on the loop spatg//™). We supply the loop space with
a Poisson bracket

{02 (X), 0 (V)} O = 2P 5" (X — V), (2.26)

(to avoid confusions we redenot€¢ — v the coordinates on/™ when dealing with
the hierarchy; comparing with the above notations of the Introduction we omit the label
0, i.e.,v™ =n°¢Y). The second Poisson bracket on the same loop space has the form

{v2(X), v (M)} = g (0(X)) §'(X — V) + TSP (w(X)) v} 6(X — V). (2.27)
Particularly, ford # 1 the Poisson bracket of
2

T(X) = 1 v"(X) (2.28)

has the form
{T(X), TV} = [T(X) + T(Y)] §'(X - Y). (2.29)

This coincides with the Poisson bracket on the dual space to the Lie algebra of one-
dimensional vector fields. Therefore the full Poisson bracket (2.27) can be considered as
a nonlinear extension of this algebra (the classical W-algebra with zero central charge).
Observe that

2(1_QO¢)
1-d

[0 (X), T} = ( O (X) + Zra)a'(x Y)+ 03 6(X — V).

(2.30)

SoT'(X) plays the role of the stress-energy tensor, and the conformal dimensions of the
fieldsv® havingq, # 1 are

2(1 - Qa) )

A® =
1-d

(2.31)
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Wheng, = 1 the variables® := expv® has the Poisson bracket with the stress-energy
tensor of the form

{s°(X), TV} = %SO‘(X)(S’(X —Y)+s%8(X —Y). (2.32)

Soitis a primary field with the conformal dimension
2ry

Ay = . 2.33
14 (2.33)

The two Poisson brackets are compatible, i.e., any linear combination
ar{ 3 +az{, }9 (2.34)

with arbitrary constant coefficients, a, gives a Poisson bracket di{A/™) [11]. This
gives a possibility to construct a hierarchy of commuting flow€oi/ ") starting from
the Casimirs of the first Poisson bracket

Ha,fl - /’UQ(X) dX, o= ]_’ on (2.35)

using the standard bihamiltonian recursion procedure [29]
(- HOPYO = ko, { HOP~ 1D (2.36)

for appropriate constants, ,. These constants are to be chosen in a clever way to make
the hierarchy compatible with the genus zero recursion relations for the topological
correlators. For the genus zero approximation the needed normalization of the Hamilto-
nians is given by an alternative procedure [9] using the flat coordinates of the deformed
connectionV. _

The flat coordinates 0¥ are functions(¢, z) such that

Vdf=0. (2.37)

Let us forget for the moment about the last component (2.12) of the conn&ctibinen
the flat coordinate8 are specified by the equation

00050 = 2] 5 0,0. (2.38)
A basis of the solutioné, (¢, 2), . . ., 0, (¢, z) can be obtained as power series
04(t,2) =ty + > 05 p(t) 27, (2.39)
p>1

where the coefficient$, ,,(¢) are determined recursively from the equations

0005 0~ pr1(t) =} 5(1)0p0~,p,  0r0() =ty = 1y t°. (2.40)
One can normalize the deformed flat coordinates requiring
(VOu(t,2), VOs(t, —2)) = Nags- (2.41)

There still remains some freedom in the choice of the deformed flat coordinates
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0 (t, 2) — 0-(t, 2) G5,(2) (2.42)

with an arbitrary matrix-valued seri€(z) = (G2(z)),
G(z)=1+2G+22Go+..., (2.43)
G(2)nG(—2)" =n. (2.44)

Later we put also the Eq. (2.12) into the game. This will fix the deformed flat coordinates
almost uniquely.
The Hamiltonians of the genus zero hierarchy have the form

Hﬁ,p = /9@71)4.1(11()()) dX, p= 07 1, cee (245)

The hierarchy itself reads

ov
oTh»

(we treatoxv andOrs.»v as tangent vectors to the Frobenius manifold). Observe that
the coefficients in front oflx v are functions well-defined everywhere on the Frobenius
manifold.

The genus zero two-point functions

(1) = <¢<x,0 proeT"" ¢B,q> (2.47)

0

= KQ (v,vx) = {v, Hp ,}¥ = 0x V 05 p1(v) = V 05, (v) - Oxv, (2.46)

give a particular solution of the commutative hierarchy (2.46) specified by the following
symmetry reduction

<3T1,1 DA aTa.,p> w0 =0. (2.48)

a,p

(We identify7%° and X . So the variableX is supressed in the formulae). The solution
can be found in the form

O(T) =To+ > TPV 054(To)+ > T TPV 05 41(To) - V 0y 5(T0) + . ...
q>0 p,q>0 (2.49)

Thisis a power series ifi*-?>% with the coefficients depending @b := (1.0, - - - , Th.0),
Tw0 = 1agTPP. The series can be found as the fixed pointv° of the gradient map
M"™ — M™

t=V dp(t), (2.50)
where
Or(t) =Y T b ,(t). (2.51)

Defining the function$2,, ,.3,,(t) on the Frobenius manifold by the following gen-
erating function

(z+w)™?t ((V 0a(t, 2), V 05(t, w)) — Uaﬂ) = i Qo p:,qt) 2P W, (2.52)

p,q=0



Bihamiltonian Hierarchies in 2D Topological Field Theory 321

we complete the construction of the genus zero free energy of the TFT coupled to gravity
by setting

l ~ ~
I0g7 = Fo(T) = 5 D Qunyip g (WANTP T2, (2.53)

where

TP =T*" if (a,p) #(11),

T =71 g, (2.54)
The resulting functiorFy(7') satisfies the string equation

OFo(T)
oTLO

1
=Y T%POrar-1 Fo(T) + > 7la 70180, (2.55)

On the small phase spa@&»>° = 0 one has

Fo(T)| = F(1). (2.56)

7o, p>0_
Ta,Ozta

Also the derivatives of the functiafy(7") satisfy the genus zero recursion relations of
Dijkgraaf and Witten. Observe that

02Fo(T)
OTPIT P4

The proofs of all these results can be found in [9].
We now use the last componé?i%iz ofthe deformed connection tofix the densities of
the commuting Hamiltoniand,, ,,. Letus consider first theon-resonant casg, — s ¢

Z-ofor o 7 5. Then the system of deformed coordinaig@, z) of V can be constructed
in the form

= Qo pi5.q(@%(T)). (2.57)

falt,2) = Oalt, 2) 2 =) O p(t) 271, (2.58)
p=0

V 4 dia(t,2) = 0. (2.59)

The coefficientd,, ,(t) are now defined uniquely by (2.40) and by the quasihomogeneity
equation following from (2.59),

Lpbap(t) = (p + + ua> 00 p(2). (2.60)
The functions2,, ;.3 4(t) are also quasihomogeneous of the degree + 1+, + ps.
From this one easily derives the quasihomogeneity constraidfif¢see [9]).
Let us now consider the non-generic case. We describe first the fundamental matrix
solution of the linear system

Va dt = 0. (2.61)
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We rewrite this system for the gradient
(VD) =n*P 95t (2.62)
of the deformed flat coordinates. So the columns of the fundamental matrix are the

gradients of the deformed flat coordinate@, z), . . . , t,(t, z). The fundamental matrix
has the form

Y(t,z2) = (Vfl(t, 2), ..., Vin(t, z)) =(V0i(t, 2),...,V0,(t, 2) 2" 2%, (2.63)

where the constahtnatrix R = (R3) satisfies the following requirements:

1. R 70 onlyif ua — pp is a positive integer,
R% if Mo — BB = k

2. Let Ryjy = {O otherwise

We have
R=Ri+Ry+... (2.64)
(finite number of terms). Then we must have
(R a,b) +(=1)" (a,Ryb) =0, k=12,... (2.65)

for any two vectorsi, b.

The matrixR is determined uniquely up to the transformations
R— G 'RG, (2.66)

where the matrixG¢ = (G3) must satisfy the following conditions:

1. Gz #0onlyif 1o — pp is anon-negative integer.
2. Define the decomposition

G=Go+G1+... (2.67)
similar to (2.64). We must have
Go=1 (2.68)
and the matrixG must satisfy the following orthogonality condition
(G a,Gb) =< a,b >, (2.69)
for anya, b, where
Gt'=Go—-GT+Gf —GF +.. .. (2.70)

1 Constancy of the matriR is a manifestation of the general isomonodromicity property proved in the
theory of Frobenius manifolds [9, 11, 12].
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Proof can be found in [12]. The class of equivalence of the matnwodulo the trans-
formations (2.66) together with the matrixcompletely specifies the class of gauge

equivalence of the operatoﬁi modulo gauge transformations of the form (2.42)—

(2.44) near the singularity at= 0. Particularly, the coefficientd,s B, C in (2.3)
have the form

Aaﬁ = nae(Rl)%a (271)

Bo = me(R2)q, (2.72)
1

€=~ Zme(Ra);, (2.79)

Plugging the formula (2.63) into the equati&li = 0 we obtain the following

dz

quasihomogeneity constraint for the functign, (¢)

p
L0 () = <p $22 40 ua> 0 )+ 3 0o 1(1) (R + const. (2.74)
k=1

(Observe that the function, ,(¢) are defined up to an additive constant.) A more
involved computation shows that

p
‘CE Qoz,p;,@,q(t) = (p g+ 1 t o t :U/ﬁ)Qa,p;B,q(t) + Z (RT‘)Z Qa,pfr;ﬁ,q(t)
r=1

q
+> (R)5 Qapeqgrt) + (1) (Rprge1), nep- (2.75)
r=1

Using this and the explicit formula (2.53) we arrive at
Proposition 1. The genus zero partition functiansatisfies the following constraint

Lor =0, (2.76)

where
1 ~ =
Lo = Z (2 +k+ Mz\> T 0rae + E TN (Ry) O
1 ~ e
5 ST TP (Rypuga);, 15 (2.77)

Here T are defined by (2.54).

Example.For topological sigma-model8 coincides with the matrix of multiplication
by the first Chern class (X) in the classical conomologies of the target spacg 1].
Since deg;(X) = 1 we have

R=R;. (2.78)

The recursion relation (2.74) in this case coincide with the recursion relation of Hori
[23], and the particular case of (2.75) was obtained in [17]. We infer that the coefficients



324 B. Dubrovin, Y. Zhang

0. ,(t) of the expansion of the deformed flat coordinates coirfcidéh the two-point
functions<¢a,o¢170 ezaﬂ ¢ ¢‘*’°>O defined in terms of intersection theory on the moduli

spaces ofinstantor#® — X . The generalidentity (2.76) in this particular case coincides
with the Lg Virasoro constraint derived in [23].

Remark. Applying an appropriate recursion procedure to the opetiaiove can derive
a half-infinite sequence of the Virasoro constraints

Lyr=0, k>-1 (2.79)

generalizing the constraints of [18]. All the operatdss k& > —1 are given in terms
of the monodromy datay( R) at = = 0. We will present these results in a separate
publication.

We conclude this section with an explicit formula for the bihamiltonian structure of
genus zero hierarchy (2.46).

Proposition 2. Let(«, p) be a pair of indices such that

1
pHpat s 70 (2.80)
Then the equation
v
ey = (v Hap )Y (2.81)
of the hierarchy (2.46) is also a Hamiltonian flow w.r.t. the second Poisson bracket (2.27)
{0, Hap} 2 = {v, Ho p}9. (2.82)

The Hamiltonianf,, ,, has the form
He,lfl

N . .
Heyp = ;(—1) (Rpfl,k)a m7 (2.83)
where the matrice®y, ; are defined as follows
Roo=1, Rpo=0 for k>0Re;= » Ry..R; for 1>0.
i1+t =k (284)

Proof. We use the identity
~ 1) -~
G o029 = ¢ [ (0.2 52 ) oo, 20x00 e
valid for an arbitrary flat coordinateof v (see LemmaH.3in [11]). Inverting, we obtain

{- / (z% / w2 Lo (v(X), w)dw) dx}®={(., /ZQ(U(X), 2)dx 1.
(2.86)
Integrating the expansions in both sides of the equation and using
to(t,z) = Z 0 2P (ZR)Z (2.87)
we obtain the formula (2.82). Proposition is proved. [J

2 Our normalization of the correlators differs from that of Hori
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3. Formulation of the Main Results

We formulate now the main requirement to uniquely specify the one-loop correction to
the hierarchy (2.46). We want to find a hierarchy of equations of the form

ot
aTo»

such that the following property holds true (cf. [6, 16]):

= KO (t.tx)+e2 K (ttx,...) (3.1)

P

Main assumption. For any solutionv = »(T") of the hierarchy (2.46) the function
t(T) = (tl(T)a s 7t’rL(T))

H(T) := v(T) + 2 w(T), (3.2
where

o 1
wa(T) - W { |:24 IOg detMaB(tv tX) + G(t):| t:U(T)} (33)

satisfies (3.1) modulo terms of the ordér Here the matrix\/,5(¢, ¢ x) is defined by
(1.17), and=(t) is the G-function of the Frobenius manifold (see below).

We denotet = (t,...,t") the dependent variables of the hierarchy to emphasize
that they live on the Frobenius manifald™. So (3.1) is still a dynamical system on the
loop spaceC(M™).

It is clear that the correctionﬁ’% are determined uniquely. Indeed, the deformed
hierarchy (3.1) is obtained from the tree-level hierarchy (2.46) by the infinitesimal
Backlund transform

Vo = Vo + 2 We (0, VX, VX X, VXX X) = tas (3.4)

where the functions,, are defined by the formula (3.3). The functians are polyno-
mials invx x, vx x x but they areational functions invx . Remarkably, all the denom-
inators will disappearfrom the deformed hierarchy.

We will prove that the corrections are polynomials in ¢t x x, t x x x for the case of
semisimple Frobenius manifold (see the definition in Sect. 2 above). Observe that
is the matrix of multiplication by the vectérxt. So the determinant déf,, s vanishes
identically on the nilpotent part of the algeb#a.

First we observe that the correctidif;), can be subdivided into two parts

K, = K+ K5 (35)
where K; , is the contribution of the first term in the r.h.s. of (3.3), akid , is the
contribution of the second term respectively. The main difficulty is in the computation
of Kj .

Theorem 1. There exists a unique hierarchy of the form

ot .
aT8v KD (¢, tx) + &% [Kf (0 o x + Khyn O tax ty

* K o (D) e 5] (3.6)
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such that the functiot(T") = (t1(T), . .., t,(T)) satisfies (3.6) up to terms of ordet
for an arbitrary solutionv(T) of (2.46)

82

1ol1) = 0a(1)+ 25 s

[log detM (¢, tx)] (3.7

t=u(T) "

The coefficient&’;; ., ,, (), K .1, (), K} . (t) of the hierarchy are analytic functions
on the Frobenlus manlfold
The hierarchy (3.6) admits a representation

ot

m = {t(X)’Hﬁ7p+€2 (5]1%71)}/1+(9(g4)7 (3.8)

where the perturbation of the first Poisson bracket has the form
{t*(X), " ()} =
2
{17 QOO+ 55 (0 IE0) + 0 (YY) 87(X )

&2

— 54 " D% (e (X)) + ™ D (e (V)] 6'(X = V) +O(e%).  (3.9)

The operatior{ , }} is skew-symmetric and it satisfies the Jacobi identity mod).
The perturbations of the Hamiltonians have the form

5H£f,p = /Xﬂ7p+l:uu(t(X)) the t dX, (3.10)
Wherexﬁm;uv = X8,p;vu AI€ given by

Xo,0;uv = Ov
1 00., 1 o 004 p—1

= )Y [
Xawpstin = 54 W 53~ 4% Con gy

p>0. (3.11)

Heref,,_1 =0 andwfjl, are defined by

o L - S 11 e B | e % vooou
Wi, = Cup Chy — Y Cuup = 5 Gy T O Cog — O (g 1) (3.12)

The Hamiltonians 3 , + €* 6 Hj; , commute pairwise modul®(s*) w.r.t. the bracket
(3.9).

Hereand belows,,, ¢2,,,,, ¢%,,,.,, %0, 50, €505, are obtained by taking derivatives

of the functionF (¢4, . .., t"V) with respect to the coordinate . .., t" and by using
7" to raise the indices, for example,

59 0*F(t)
ot oth’ oty otr”

af — aa’

Cyu =M

(3.13)

Remark. The first theorem does not use the quasihomogeneity condition (2.3). The next
theorem does use it.
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Theorem 2. The following formulae give the perturbation of the second Poisson
bracket:

{t°(X), P ()} = {t2(X), P (V)Y
2 [P (X)) 8" (X = V) +r2P#(X) t 6"(X - Y)
+(FIP X)) e x + @SRt ty) /(X )
+ (B2P (H(X)) tk thy x +aSh, ()t ty t5 + PSP (X)) th x ) 6(X = Y)]

+O(e%), (3.14)
where
1 1
aff — v _af v af
h-u@w%wfmﬁ, (3.15)
1.1
af — - af ;u/
Py 12(2 KBy (3.16)
aﬁ — 11 ao
alh, = (f — pg) (1°7 (05 0y WP, + 95 0, wh,
+8 3ﬂww—2(‘3ﬂayww—28 0y w —20, vaw)
+7% Clovd Gwv +3cgl, Cg/w +3cguc gw
&
+30€CV ng + e ot el Con + CEuw cgv)) (3.17)
04,5 = 7(7 - :uﬁ) ( Ocd( 26 w;},o’ +8O'w»yu - 8}tw'yo
3 1
+77£C @3 cgg cgw + 2 C?CUV Cgu + 2 cggu cgv)) ’ (3.18)
3 1 /3 1/3
af = 2 a4 = (2 _ ov B _ 2 Br .ap
(o8 287h >4 <2 g ) Cun = 5z <2 ua> ey’ eplty  (3.19)
f‘lﬂ = Taﬁ +p0¢ﬁ +pﬂ0‘ _ 8 hO‘ﬁ (320)
1
o = > (b28 + b0y + = a rof+ a P — 9,0,h*F —
-3 au(pgﬁ +p3a). (3.21)

The Jacobi identity for a linear combination
al{a }?I.+a2{v},2 (322)

with arbitrary constant coefficients;, a; holds true modulad(c*). The equations of
the perturbed hierarchy for thog@, p) for which

1
p+uﬁ+§70 (3.23)

are Hamiltonian flows also w.r.t. the second Poisson bracket (3.14) with the Hamiltonian

E Hel 1+€ 5Hll 1
Hﬁ:p Z( 1) p lk B (p+ua+%)k:+l

(3.24)

Here R, ;. are defined in (2.84).
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The proofs will be given in Sect. 5. The deformations (3.9) and (3.14) of the Poisson
brackets are obtained by applying the same infinitesingakRind transform (3.7) to
the Poisson brackets (2.26) and (2.27) resp. We prove that after this transform each of
the deformed Poisson brackets is a combinatiof(&f— Y), ..., 6" (X —Y) with the
coefficients being polynomial ity , t x x , t x x x - Coefficients of these polynomials are
functions analytic on the Frobenius manifold (assuming the Frobenius manifold to be
analytic itself). Applying similar procedure to the Hamiltonians (2.45) we obtained the
deformed Hamiltonians (3.10). The structure (3.6) of the deformed hierarchy follows
from the formulae (3.8)—(3.11). Finally, the same infinitesimatBund transform gives
the deformation the linear pencil (2.34) of the Poisson brackets.

We describe now the effect of adding the second term in the formula (3.3). At the
moment we considef(t) as an arbitrary function on some domain in the Frobenius
manifold. We will compute this function in Theorem 3 below.

Proposition 3. Inserting an arbitrary functiorG(¢) in (3.3) we preserve the structure
of the hierarchy, of the Hamiltonian, and of the Poisson brackets. The Hamiltonians get
a corrections2 §H/, , with

00, 0G
— o& a,p
6H, , = /ng " o0 e thtldx. (3.25)

The deformations of the first and of the second Poisson brackets get the correction
e2{, M ande? {, }{ with

{t*(X),t° (")} =
AP (X)) 8"(X — Y) + b*P(¢(X)) §"(X — Y)
+EP (X)) d'(X —Y), (3.26)

{t*(X),t°(V)}5 =
a“B (X)) 8" (X —Y) +bB (X)) 8" (X —Y)

+ e (X)) 6'(X = Y) +0x (¢*° (X)) 6(X — V), (3.27)
where
aa,@ - zcaﬁp 8G(t)
otr
~ 3 0°G
B = 2 9y af + 07 o _ (07 e i
= N i (T =)
& = oxb™? — o%a”,
G(t)
af — ap 6
a " = ZC’Y} g7 et (3.28)
(€3 3 «@ ap 0 « 82G(t) L o 6G(t) "
0= S Oxa T (97— 97 s e o) 57 17 5

1 0°G 9*G oG
af — [ = _ ao Bp _ Bo pa 4 Y af po o
T (2 ”5) <8tff@tﬂcﬂ o = Gram e W T g on )tX b

e®P = q*F + P + 9x b — 9% a®P.
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The full Poisson brackets of the one-loop deformed hierarchy arp = { , }1 +
{,yand{, 2={, }2+{, }2.

For the case of quantum cohomology the funct@) must be the generating
function of the elliptic Gromov—Witten invariants of the target space. The recursion
relations for the elliptic Gromov-Witten invariants were found by Getzler [21]. He
proved that the generating functiéfft) must satisfy a complicated system of differential
equations (see (6.1) below). This system makes sense on an arbitrary Frobenius manifold.
Our next result is the solution of this system on an arbitrary semisimple Frobenius
manifold.

Theorem 3. For an arbitrary semisimple Frobenius manifold the system (6.1) has a
unique, up to an additive constant, solutiGh= G(t?, ..., t") satisfying the quasiho-
mogeneity condition

LrG=v (3.29)

with a constanty. This solution is given by the formula

=log— J1/24, (3.30)
wherer; is the isomonodromic tau-function (2.19) and
J= det(at ) (3.31)
out

is the Jacobian of the transform from the canonical coordinates to the flat ones. The
scaling anomalyy in (3.29) is given by the formula

1 , nd
= — — + — .
Y 4(%:1#& 28’ (3.32)
where
d
pa:qa—é,a:L...,n. (3.33)

Corollary 1. For d # 1 the variableT(X) = Z;t"(X) has the Virasoro Poisson
bracket

{T(X), T(Y)}2 = [T(X)+T(Y)] §'(X —Y)+¢&? 1£2 X -Y) (3.39)

with the central charge

2 (112561)2 [ Z ua] , (3.35)

So, the bihamiltonian structure of the conjectured integrable hierarchy at the one-
loop approximation looks like a classidaf-algebra with the central charge (3.35) and
the conformal weights (2.31).
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4. Some Formulas Related to the Canonical Coordinates of Frobenius Manifold

The canonical coordinates on a semisimple Frobenius manktldare denoted by
(u1, ..., uy). They satisfy the multiplication table

o 0 0

The invariant metric becomes diagonal in the canonical coordinatesgi.e.>=
Sy nii(u)du?. We assume that the unit vector field of the Frobenius manif@leti%%,
then therotation coefficientsy;;(u) are defined by

vij(u) = Opvmiy) _ 189,11 fori #j 4.2)
Y Vi) 2 /9 ta(w) 9; ta(u)’ ’ .

whereo; = %. They are symmetric with respect to their indices and satisfy the follow-
ing equations:

O%i = s yess i, ji k distinet 4.3)
5‘uk
N
3 ‘37” =0, (4.4)
=1 TUk
Define
8itoz(u)
¢ia(u) = . (45)
Vi (u)
The matrix ;) satisfies the following identities:
> Viatip = nag, Y Up Y] =0, (4.6)
=1 =1
whereys =1,y n"8. We list here the following useful identities: (see [11])
~ Yia Vi Vs
oy = 3 Lo Vi, @.7)
i=1 ?/111
ot® o Ou; Yia
us = 1/%‘1 wi ) ot = ¢'17 (48)
0 e . 0 1e"
8sz = Yik Vkas 17K, aqi == Yiktras (4.9)
C (] k
Mia XN: Yis _ Yig
=D it (- — =), (4.10)
oth - Yin Ya

Denote

o; = 1/11'& tg(. (411)
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Then we have

00 = :lez o (e L) (4.12)
Let's consider the matrix
A= W8] capy ), (4.13)
by using the identity (4.6) we have
detA = det(;™’) det(as, tk)- (4.14)

We see that the matrix, 3.t diagonalizes in the canonical coordinates. From (4.7) we
see that the following expression f&t(¢, t x) holds true:

FO(, 1) = 5 og detag, 1) + G()
1 1
= a3 S
24 log det(*”) + >4 log det(d) + G(t)

_ 1 o 1 a Vka Yrp Y
= — 5 logdet ) + 54 109 det(; vy Z %ﬁ’” %)+ G(t)
Iog(H Vi ) — Iog(H Yi) + G(t) — o Iog det(;?),

= 71 log H o, — Iog(H Yin) +G@t) — — Iog det*?). (4.15)
=1

This expression of the functiaA® is crucial in the proof of Theorems 1, 2.
Let’s denote

1
FQO =2 Iog detCag, t)

Iog H 0= o Iog(H Y1) — Iog det;*”). (4.16)

By a direct calculation we get also the following formulas:
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1 Wi
w_ 1 ia
5T 2 Z o (4.17)
1 - wioz wz
. -+ Via Yig
Fia, ™" 2a zl: o7 (4.18)
1 n . /wk(x 1;[}k d) 8
£ 24 J-Zkz:l Tj 7/%1 ¢j1
N S s s
Y. 8 (wﬁ - Jﬂ) : (4.19)
jk,fy—l J k1 j1
F = Z (ffa‘ (% _ %)  Yia +wa¢jl) | 220
Az uzl’yj o \¥ji1 Ya Vi W2 (4.20)
il & a . a o
T (e T S A O UL
! i1 Yin i Vi z
’l/)ju %u)
N " va ) 4.21
<¢j1 Vi (4.21)

All these formulae do not use the quasihomogeneity (2.3). In the quasihomogeneous
case the canonical coordinatg$t), . . ., u,,(t) are the roots of the characteristic equation

det®?(t) — un®?) = 0. (4.22)
Hereg“¥ is the intersection form. The matrix; in this case has the form
Yig = —(ui —uy) "t Vi, (4.23)
where
Vvij = Z Mo "/’ia 'L/);l (424)
a=1

The columns of the matrix¥v = (v;,) are the eigenvectors of the matix with the
eigenvalues.,. Particularlyy);1 is the eigenvector df with the eigenvalug, = —d/2.
It follows that

Zk(uj - Uk)%ﬂkj — Yij 7 (4.25)

Ovij = Vik Vg K F 4 J,  Oivig = e —
i T U

N
a'yij 'l/}ka j — Uk 1/J U; — U 1/]]04
= E ; s — + +
8ta £ (’sz ’yk; '(/)kl w; — ’Y’Lk 'ij wzl u; — ’yzk ’Vk] '(/)_7

_ Dy Yia Yy %). (4.26)

We also write down the following useful formulae:
iy 977 =i ], (4.27)

: . d
(= u'Yyij = D (da = 5) Yia U5 (4.28)



Bihamiltonian Hierarchies in 2D Topological Field Theory 333

5. Proofs of Theorem 1 and 2

We begin with the proof of Theorem 1. So we assume here(@a in the formulae
(3.2), (3.3). Doing the infinitesimal&klund tranform (3.2) (witli7(¢) = 0) we obtain

{t2(X), t° ()}, =P §'(X — V)

WP (Y (104 (104
v K a(m( 2 a(t;( Do+ 8t(}((X D

B @ o
w a%) N S(X —Y) + <8w a(ffX)) " awa(éiX» Ox
ow*(t(X)) Ow™ (t( X)) ,
IO A ) e Y)] + O, (5.1)

wherew®(t) = w*(t, tx) is the function obtained from*(v, vx) by replacingv* and
their X -derivatives by* and by the correspondeht-derivatives ot“. Recall thatw (t)
depends not only otf*, but also ort$;, t% ., t% x x - More explicitly, we have

w(t) = F%) Caﬁ ey y + (Ft(wl) 5 gﬁ + F(l) Cocﬁ + 3F(l) co‘B)t

Ft(;) Pty thox + Ffél,()t; 0%3 0 th thex + F%) Pk

1 1 1 1
+ <F5ﬁ’tu S+ ED SRt + (R, 57 + FR S B . (5.2)

whereF®d) = FA)(¢, t ) is defined in (4.16). Whenever there is no risk of confusion we
will omit the arguments of a function henceforth.

In the Poisson brackdt*(X), t°(Y)}, the coefficient o£2 §*(X — Y) is equal
to zero, so it can be written as

{20, 70N}, = 72 51X = V) +e? (A 5O(X - )
FBE(X —Y)+ fP8(X —Y)+p*P o(X — Y)) , (5.3)
whereh? 7B foB 5B gre functions of#(X) and theirX -derivatives.
We have the following two lemmas on the coefficiehts and,®#:

Lemma 1. The coefficientd? have the expression

A 1
af — v a,@
Rl = S e (5.4)

Lemma 2. The coefficient8®” are symmetric w.r.tw and 3, i.e.,
pol = oo, (5.5)
The proofs of Lemma 1 and Lemma 2 are similar to those of Lemma 5 and Lemma 6

which will be given below, however, the computation is much more simple, so we omit
the proofs here.
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Lemma 3. For the HamiltoniansH,, , defined in (2.45) the following identity holds
true:

H,,= / O pr1(v(X))dX = / Oap1(t(X))dX +e?6H,, , +O(*), (5.6)

whered H,, , are defined by (3.10) and (3.11).

Proof. By using (2.40) we have

Ha,p :/ea,p*'l(U(X)) ax

:/ea,ml(t(X))dX—Ez /Mff()(»w“ dX+O(E4)

ot
0 pr1(t(X)) ,, OFDUX), tx(X))
= [ Op pra(t(X)) dX + &2 id 4 ’ dX +O(e*
[ ey vt [ ERmBED p S O
00 i ,
= / O pra(t(X)) dX + €2 / c, aﬂ”’ % (Fﬁ) ot +F§;(> ot th 1
+ B et ) dX + O, (5.7)

Now formulas (4.7), (4.17), (4.20) and (4.21) amount to

30,1@ (1) p (1) .o gp 1€
G el by (FR e th + PR T 1515 )

1 aea p 2 Z/}’Y Q/le 2 ’L/);/ 2 wV
= — v = | 207 = + 0% + 0% U
24’73 oty ( fl J q//z'l 71’]21 ! 711121 ¢j1

.
—30"0"LZJZ —J'U'iwj
195 73 105 75 )
il ilel

and

90, (1)
/c”’ b % Fi gl the x dX

mY ot
=L [ Oayp ) Yinliv ) bio YTV e
24 oty Vi1 X o k1 XX

_ L [ 00ap U] VinTi tie VT VE Yip 0
24 | ot Y1 oy VYr1 XX

1 [ 000, ¥ Vio , 1 [0 [00ap ¥ Yo
== op L X=-— | — =22 Pt dX.
24 | ot w2 Bexd 24 / ot \ o 4 by d

So the Hamiltoniang/ *? can be expressed in the form (5.6), (3.10) with
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oo = Y Do (2 b U7 ga | Vin Vi V) by g O]
GPTRIY 24 Oty ?1 i1 7/}]21 77[}121 Y1
. 37pi/t "/)jl/ 1/)7 . 317/1w %p 1[}7 . /(/)75# ¢j” ,(/};Y
2% 2% 298 ¢jn
Vi i)\ 10 [ 00ap ) Vin\ 1 0 [ 00ap V) Yiv
293 i 48 otv \ ot yE 48 otm \ ot %
1 00 1 3oy,
= = ap _ ~ v o ¢ a,p-1 >
24" g 24« on gy 0 P=h

wheref,, 2 = 0,,—1 = 0 andwy;, are defined in (3.12). Lemma is proved. [J

Proof of Theorem 1We first prove the formula (3.9) for the first Poisson bracket. From
Lemma 1 and Lemma 2 we already know the expression of the coeffi¢igfitsnd the
anti-symmetric part of the coefficients” in the formula (5.3). Now from the fact that
the Casimirs of the first Poisson bracket”(X) dX have the expression

/ V(X)) dX = / (X)) dX +O@Eh (5.8)
we see that
P =0 (5.9)

in the formula (5.3). So the anti-symmetry condition of the first Poisson bracket gives
us the following relations:

FOB 4 PP = 395 P, (5.10)
Foo — foB 4 295708 = 392 1P, (5.11)
O 0 + 03 hoB _ g2 708 = 0 (5.12)

Identity (5.10) together with (5.5) gives us the expressiondr while from the identity
(5.12) it follows that

fob = g aB _ g2 fas (5.13)

there is no integration constant becagfg‘é* must depend on} or t . So we get

the expression for the coeﬁicien}%‘f’ and complete the proof of formula (3.9). The
remaining part of the Theorem follows from Lemma 3. Theorem is proved]

We now proceed to prove Theorem 2. So we still assume herezthat0 in the
formulae (3.2), (3.3). Doing the same infinitesimaldBlund tranform (3.2) (witld=(¢) =
0) we obtain
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{t(X), 7 (V)}5 = g*7(1(X)) 8'(X — V) + TP (H(X)) t% 6(X — V)
af al—waﬁ X
997 (1X)) BSEY(X D ux) sx - v)+ 77651( D e 18X - 1)
+ TP (H(X) (Ox w (H(X)) (X — Y))
(V) | dw’(t(Y)) dw’(t(Y)) dw’ (t(Y))
M oty O+ Aty Oy + NMyy
X (g77(HX)) 8" (X — Y) + 7 (X))t 6(X — 1))

ay)

ow(H(X))  dw*(t(X)) dw*(H(X)) dw(H(X))
et ot Ox * Ot O+ My x 0%)
x(g"P(#(X)) 8" (X — YV) + TP (X)) ty 5(X — V) + O] . (5.14)

In the Poisson brackdt®(X), t°(Y)}5, the coefficient o2 §®(X — Y is equal to
_ dwP (X)) pRL dw*(¢(X)) g0 =

F(l) uﬂ g F(l) c’;a g'yﬂ =0,

My xx My xx (5.15)
the last equality above is due to the associativity equation
cﬁﬁ eyt = AP, (5.16)

and the definition (2.22) of the intersection form.
The coefficient o£2 §®)(X — Y) is equal to

Bl = 2F(1) CW 75 + 3F(1) s gﬁfy tf F(&) cgg goz’y _ 2F(l) C(m g"/ﬂ tf
+ Ft(“]’-)t“ (ca“ V8 4 Cﬁu g7 fg + Ft(&)ﬂ (CV§ g’Yﬂ + CZ? q9%) tg( t§<
dg”
1 g7? 1 1
+3 F( Jeon 9 o 5 F() O TV S, + Ft(g() TPt + S, (5.17)

where

_ 1 ) 8 1
Sozﬁ (Ft(u)t ﬁ;t (x'y + Ft(ﬂ) (X;L gﬁ'y + Ft(;)t;’( cguga’y + F( )ﬂ/ C?N gﬁ"/

_ 4F(i)t§( Cgu g°") tE(X
(Ft(&)t" c?” g7 + Ft(g}()ﬂ ?u By F(l) n cﬂ/t oy F(l)tX ot g°") ti{x
(5.18)
Lemma4. S“¥=0
Proof. By using (2.22), (4.7) and (4.18) we have the identity
F(l})tW cﬁu ay = F(l) g{u 9677 (5.19)
since both sides of the above identity are equal to

E§ 1!]& 7/) 1/%1/ 7/}7.5
24 o242

The lemma follows from the above |dentity immediately. Lemma is proved[]
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Lemma 5. The coefficients®” defined in (5.17) have the expression

1 1
Rl = = (3(; (9" %) + 5 el c;jﬁ> . (5.20)

Proof. Let's rewrite 24h*° as the sum ofA*® and B*?, where

A(xﬂ =24 (ZFt(ﬂ-)C’(;YILg’Yﬂ + SF%)C:? gﬁ’Y tf F(l) ay t?x — ZFE&) a/t g’Yﬂ tf

vﬁg

1 1
+ Ft(})t“ (cg” g+ c?“ g7’ t?x + F( )t” (che g7+ c‘;g g7t t?x) )
and
BB = o4 <3 Ft(,}) o 351; Ff&) 51 PeT £+ Ft(/}) an 0 )

By using the formulas given in Sect. 4 we have

af —  VijOj o o a a
AP = T (3, 42 00 = By ) 7 by U5 7 = gy 0] 977

0 Vi1 Vi1
PO e L ST NP ) A RS
! Y 1'21 1'21 121
Qg LB
+¢z Viy ijlg ) (5.21)
i1

For B®P, by using the formulas given in Sect. 4 and the following formulas

FWﬁ:( 2 qﬁ) <’ ot =I5’ +r7, (5.22)

we obtain

Ba5—24Ft(,}) ((3+3d 4%)00‘# 6 — 3¢, o cgﬁ+q cﬁ“ ’ya) tg
(2 ¢ L9 qwbwib

zl 0; wzl"/}jl
wwﬁ

zl

. d
+ % ((Uj — ;)i * ) it (wa v - 31/}]@ 1/’?)

'l/]a % + U] (uj 7,) Yij
zl i "/)zl %1

= (3+3d - 4q5) (w507 - 307 ve)

=(3+3d—4q¢3) 5+

= (3+2d— 4qp) (vgwl — 30 vr), (6.29)

above we have used formula (4.28). From formula (4.27) it follows that
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Y2 iy g7 U5 iy g7

mmw:Aw+BW:2%j<

Vi1 Y1 2
B L R A wjlgw>
2 ¢ 3
11 7l
a B
+(@+2d—4g) U (5.24)
djzl

On the other hand, for the right-hand side of (5.20) we have
n (0B) 4 i o8
at” (9 )tcp
0
= —2— (g™ Y +4—
otv (9 ) otv
= —2(Q+d—qu—q)c” Zﬂ+4(l+d—qu — q,g)c’,jﬁc:j”
+ cz&ﬁ _ zguv aﬁ + 49#[5 335

(guﬁ ow) +c e aﬁ

Yy wﬁ g
= (3+2d—4 — Dy (g — ) Y
B+ ) — 5 wﬂ Vi (wi — ug) bir s
P L L L L
qul 1;[}31 2-21 1/}2 1‘31
B Q/J;X Wv . 1/)30‘ wi’Y ¢“ 1/’]7 w ww %1) B
+4%j (Wlel 77[’1'21 121 * 11
= o, (Y0 A R
Y Yi1 Pj1 V2
o U8 i g LU 9 g wjlgw>
2 2 3
71 71 721
b wﬁ

+ (3+2d 4Qﬁ)

11
= 24h°8, (5.25)
Lemmais proved. O

Knowing h%(t) we can compute the symmetrized coefficient in front{fX — V")
using the skew-symmetry condition

roB () +rf(t) = 30,h*°. (5.26)
The antisymmetrization of the same coefficients is given by the following:

Lemma 6. Let’s denotg™? the coefficients beforg 6" (X — Y) in the second Poisson
bracket{t*(X), t°(Y)}, of (5.14), then the following identity holds true:

Fos — ”5a——(d+3 2qp) SV ety — (d+3 2q0) &7 Sl

(5.27)
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Proof. From the expression (5.14) we have

Ow® wb owP ow’
~af — B _ +3g7¢ — 679 [ —
=g G s ox () ook ()

8t}(XX
ow® ow® owP
+3p'yﬁ t + 2787 o+ ey tH
nootkx X Mooty XM Otk
B 2 B a Y06 11 a
_arorgy (20 ) 43 Oxg” 0w +36(F“ %) ow (5.28)
w OX oy X 0X?2 ot] 0X  OHhrr
tXXX tXXX tXXX

By using the formulas given in Sect. 2 we get, through a long calculation, the following:

ow® ow™ ow®
Fof _ gba = 9 B — 3789 +6978 52
T T e (at}x) R
dw*™ ow* ow®

+3r7° th + 157 th +3T7 g [ =—— ) th

. at}(x X . ‘%}X X w X at}(XX X
92g7F  uw™ 3 9 (Fzﬁ tMX) Hw®

0X? Oty 0X  Othyx
— (the precedent sum with and /3 changeyl

o orF® o orF® ow®
=247898 = +278 [ — — 3789
g ox (at} aTa,()) g (aﬂ aTa,o> 97X\ oy
+6970 52 ow® 1\ | 38 w® o TBY dw* 4
* at’YXXX . at}(X X . at’yXX X
a 2 7B a VB pH «
+3097 9, ow t§+3ag Ow +38(Fu th) ow
s M xx 0X? Oty x X
— (the precedent sum with and 3 exchangep

+3

at’)y(XX

=2¢"" (Ft(,})ﬂ Ot + P otk th + FO) | con gy X)

th t7 Tvp th tr v
VB (1) QL 4V (1) QL gV 4O
-9 8X (Ft#t"’x CVNtX+Ft‘)‘(t’)Y{ Cwl;tXtX

+g7° Oy (Ft(gl() Utk +3FD | conyy +3FW | con gy

Rl ¢ ap v
v Cy e Ft/;(t;( 6 txx

_Ft(&) ci‘“) +2¢7° (Ft(ul) c;"; t% + FO on t% th + Ft(;) C,%‘ tl)’(X>

th “vpy
ow® ow® ow®
+3r7° the + TP th + 3797 9x ( ) the
. at’)Y(X a at}(X : at’yXXX
N L ('O Ll
X2 Oty x 0X Oty

— (the precedent sum with and s exchangejl
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1 1 (s w Yiv
=2g" (F(l’ O+ FSD ot i 15 ) u;yij <+ ) t4
tHhtY X t“ tY Coo lx lx 12 J 1t o O,iz 1/%1 1/)]1 XX
B8 o ,.B
1 i Vi Yy (Ch
+—0x | 2u;y J +(ug +ui) v —a-
24 ( 7 g gj %1 Vi1 ' 7 %‘21
+ (axg ) (Ft(i-)t’Y SH tX Ft(/%)t’y Coo tX tX)
~FQ Cw) ( FD et ty + F(l) Cupy UX tp + F(l) tXX)
ow™ ow® ow
+317° th +T87 77:“ +3I7 0x () the
"ot "oty M xx
2 ~3 o F’Yﬁ t o
+3 09 3w ‘3 ( L X) ow

0X2? Oty 0X Mexx
— (the precedent sum with and 3 exchangeq

=247 (Fw L COREY + Fﬁ)m OPY tX>

Pl A
X 5o Uj Yij — o5 Uil i T Uj) Vij 1'21

—2¢, (Ft(él’()ﬂ U By tﬂ % t% +F(1) e ﬁ'y tp t”)

vo Cp ety

t vo Cp

+ {(3 (1 +d) — 4q5) (F(i)tw cote el 18t 15+ FD, e ot tg>

+q3 Ft(‘})t” ’Oyé# B t% t% — 3qp F(i-) 6’0;5 g’y % t5 — 3q5 (1) 04# 5’7 Y%ty

~2q5 Fi 2t )P tg(} — (the precedent sum with and3 exchange)j

_1 vf ] Yg g
Y {(Uj — Uk) Vik Vkj Ok izlw; + 3 (ur — uj) vij Vi1 o 1/%172
Y W] g
+ 2 (ui — ug) g Vit 0 711 — (i +uy) vig Yir 0~ 3
e ] o2 g3 )
+ (uy — k) Yik Yoy 08 —5 + 2 (wj — w)vij Vi == — L
i1 i Y5
a )P o gl a g8
+d Vi ok 1/;22 i +2d~ ¢ Y d'}’ijO’i%
1‘1¢k1 %11? il
B a,,B a,,B
Tij Y’ ¢j (0 ¢j (o ¢j
+—=<3qp0; —=— + -3 +d) |0, +0i
w5 ) up w Vi1 e )
+(5q5 — 6(1+d)) 0; —— —4ggo; Y2044 !
%‘1% zl 7/%1%1

2 e g
—2q3 % %;ﬁ]} — (the precedent sum with and 3 exchangep
71

i
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1 (d ] vf ) e gl
= ( —%) <’ng +37ij 0i S —Z%‘J‘Uz‘%

- = g
24\ 2 T Y2 h Pi P2 i
OO L SN . P wawﬂ
P)/'Lj 7 1/}3 ’Y’Lj 7 ?1 '72] o ]1
a8 a,,B
L d Ve v B A
24 {ﬁsz Ok 2-21 1/%1 + 2 77[}2 Yij Oi i31
o B o B o B
Vij (& wj v ¢j (05 ¢j
+— ¢ 3qgo; —5— + —3(1+d o; +0;
24 { 10 =3+ (49 =3 +d) ( T vd B
5 ) v v 3 o
+(5¢5 — 6(1+d)) o; —4qpo; ———= —2qp0
(59 -t ) T P
o2 oy _
—2qp —~ —25 } — (the precedent sum with and3 exchangeyl
i j1
o B o ,,B a .8 o, B
1 (2(][3 _d— 3) Yij O wi dj /(/) w 7/% 7/% T/le o 1/11 ’l/)i
" 24 v\ a %1 i) p Vi v
— (the precedent sum witt andﬁ exchangel
(d+3 2qp) & ekt ——(d+3 2qa) B gl t. (5.29)

Lemmais proved. O

Proof of Theorem 2.et’s denote

~ 1 0?F
H‘;’O:—/ St dX, FP=gfP
24 X ots o’

wherew?, are defined in (3.12), then from Lemma 3 we see that the equations in (3.8)
with p = 0 can be written as

7189
ot

ot
6T570

- 1 -
= O(1) 1), +e2 0x (nav +h0 R + Soxh ox Ff)

= P01 + e (BP0 1 e + A0, (0t 1+

PP e xx) + (9(54), (5.30)

where the coefﬂment& (t), a8, (1), p3P(t) have the expression
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N 1
piﬁ - Caﬁ MV

12 pv Ty
~Q —_— 1 oo
W5y = 25 (17 (95 0y wh, + 05 Oy w)i,
+ 0, 8uww 20,0, w - — 20, 0, w —20, (%ww)
+n% (6cgl owv 3C£Cv ouv 3C£Cu oyv
B G B 6}
328, Copp + e Cou ¥ €600 Cop ™t CE8u Cor)) » (5.31)
AQ 1 oo
b0 = 15 (177 (=205 wi, + 0wl — 9y wl,)
3 1
ao aoc 3 aoc B
0 (3 Ce¢ Cg"/u * 2 Cecry Cop * 2 Cecu Cav)) ) (5.32)

with w¢_ defined by (3.12), ané*? are defined in (5.4). On the other hand, from the
bihamiltinian relation (2.82) we have

1+d ot®
(7 - qB)

= {t*, / t9(X)dX }, + O, (5.33)

which together with (5.30) leads to the expression for the coefﬂcmﬁa) awu(t)
b28(¢) in the formula (3.14)

)= (5 00) 520, ash0= (5 m) a5k,
bI(t) = (2 — MB) b8 (). (5.34)

The expression (3.15) of the coefficient¥’ follows from Lemma 5, formulas (3.19)—
(3.21) are obtained by using Lemma 6 and the anti-symmetry condition of the second
P0|sson bracket. In fact, if we denot&?; f5 andp™” the coefficients before? 6 (X —

Y),e?6'(X — Y) and26(X — Y) in the second Poisson brackgt®(X), t%(Y)},
respectively, then the antisymmetry condition of the second Poisson bracket gives us

7P 4 7B = 39 B, (5.35)
O Fo? + 8 — 0470 = 9 + . (5:30)

Formula (3.19) follows immediately from (5.35) and Lemma 6. From (5.30) it follows
that

~Q 1+d sy 6H 0 « %
P = (2 —qg) Ox (n 50 +h* 05X FY + 6Xh 78XF5>

(5.37)
So from (5.36) and the above expressiop®f e obtain

faﬁ — 62 hozﬁ + 8X ~a3

+ 5,0
+ (12d —q[;) (n 3 SHPO o 2 FP + ath” aXF5> . (5.38)

oty
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which leads to formula (3.20) and (3.21). We have thus verified the formula (3.14). The
remaining part of the theorem follows from (2.82). Theorem is proved[]

Proof of Proposition 3For the correction of the expression of the first Possion bracket,
let’s replace the functions® by ax aT in the identity (5.1), then a direct calculation

aided by the anti-symmetry condltlon of the Poisson bracket gives the expression for
aof b8 g8 For the correction of the expressmn of the second Poisson bracket, from

the identity (5.14) withw® replaced bym we can easily get the expression for

the coefficientsi*” andb™?, however, it's not easy to get the simplified expression for
the coefficientg®? ande®? in this way. We use instead the relation

.

with Hg 1 = [vs(X)dX, Hgo= [ LD dX and the infinitesimal Beklund trans-
form

d + qg) {UQ(X),HQ,()}]_ = {’UO‘()()7 H@7_1}2 (539)

2
t = v +¢? ﬁio, (5.40)

to get the expression for the coefficigft’, then by using the anti-symmetry condition of
the Poisson bracket we get the expression for the coeffieiéntProposition is proved.
O

6. Genus One Gromov-Witten Invariants and G-Function of a Frobenius
Manifold

In the paper [21] Getzler studied recursion relations for the genus one Gromov—-Witten
invariants of smooth projective varieties. He derived a remarkable system of linear

differential equations for a generating functiGh= G(¢?, ... ,t") of these invariants.
The system can be written in the following form:
0°G " y 0°G
Z RagRazRaz?ag SCalaz a3 G - 4ca1a2 Casp Oteadty
1<ay,a2,a3,4<n
- cgaaz Zczomu 06 +2 ge ara CZ 06 + }cﬂ Co
8#’ 10203 a4k 8t” 6 Q1o0Q3 Ty
1 1
+ﬂcg1aza3a4 C;l:u - 4Cg1azu 023(14”) =0. (61)

The l.h.s. mustbe equalto zeroidenticallgin. . ., z,,. The notations for the coefficients
G c*P79 are defined in (3.13). Now we solve this system for an arbitrary semisimple
Frobenius manifold.

Proof of Theorem 3Let us rewrite the system (6.1) in the canonical coordinates. At this
end we first do a linear change of the indeterminates

2o Wi = Z iﬁ (6.2)
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Instead of the partial derivatives 6f(t) and of F'(t) we substitute in (6.1) the corre-
sponding covariant derivatives. For example,

&G
aoam ViV

— V,V,;ViV'F,

5
Capy

etc. HereV is the Levi—Civita flat connection for the metric , > written in the
curvilinear coordinates;. Recall that the metric becomes diagonal in the canonical
coordinates

n
<, >=> Yhdus. (6.3)
=1
The only nontrivial Christoffel coefficients of the connection are

Y

ré. = Yi F =—
Y “ 1/)1 g %

17 g, (6.4)

Wl 6.5)

ki
From the definition of the canonical coordinates we have
ViV,;VFF =56k, (6.6)

This simplifies the computation. Finally we obtain for the polynomial (6.19in . . , w
the following structure:

1) The coefficient in front ofu# is equal to

2
,aiG + P“
Ou;?

2) The coefficient in front ofu3w; for i < j is equal to

0°G
—4 +4P;;.
8ui8uj *

3) The coefficient in front ofv?w? for i < j is equal to

0°G

Gﬁulau]

4) All other coefficients of the polynomial (6.1) vanish. Hétg = P;; is a complicated
expreSSion iy, ..., Up, ¢11, ce 37/]7117 Y125+ -+ 5 Yn—1n-
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From the above structure of the coefficients we immediately derive the uniqueness part
of Theorem 4. Indeed, the general solution of the corresponding linear homogeneous
system
0°G
8U18U7 -

G= E c;u; + ¢o
i

for arbitrary constant coefficients. The quasihomogeneity equation (3.29) in the canon-
ical coordinates reads

" oG

Hencec; = ... = ¢, = 0 andG = const.
To find the first derivatives off we differentiate (6.7) w.r.tu;. This gives

i=1..,n.

oG G
=-2

= U —————
8ui J aulau] ’

So

oG
J
After tedious calculations we obtain the following formula

oG _ vaj(uj—Ui)[ i — 100292 +yh]

24
auv 7/)1'217/13'1
(7/1 321) 1
+> v Vi Vj
Z j S P k%; k1 — i kz;/; iKWkl
%1 %1)
+Z <¢11 i)’ (6-:8)

J

where, we recallV;; = (u; — u;) ;5. Using thaty;; is an eigenvector of” we rewrite
the formula in the following way:

Vi Y
auz 2 uz - U] z;’%k (’L/)kl a ’L/)il) . (69)

Using (2.19) and (4.9) we recognize in the r.h.s. the derivative

1
9 [Iogn - 24|Og(¢11--~¢n1)] :

It remains to observe that

(0%

et% = Y1101
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up to an inessential constant. One can easily check that
oG
2 5, "0
ou;

oG
ott

{0
=0.

The formula (3.30) is proved.
Let us derive the formula (3.32) for the constaniVe have

n 1 1 n
;u,&- logr; = Ezu —uj = ZVZ = fTraceVZ— —Z;ufy.

Jj7i z<J

The second term in the formula f6f gives

3wk lognsvi) = Y 05 Zuz Oithja.
=1 J=1

But
otn
Vi1 = 87%
and .
> wioit" = (1 —d)t" ford # 1,
=1
Z w;0;t" =r, ford=1
=1
(the Euler identity). So

= d
Zuiaiw,il = —51/131
=1
This proves the formula (3.32). Theorem is proved. [

Definition. The function (3.30) is calle@-function of the Frobenius manifold.

We begin our examples with the case 2. In the 2-dimensional case, we write the
free energyF' in the form

1
F = E(tl)z 2+ f(t2).
Getzler’'s equations (6.1) are reduced to
0°G
ot2ot?
(cf. [25]). For the free energy

481 -2 f<4> —f®= (6.10)

F= %(tl)Z t2 + C(tz)h+1,
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wherec is an arbitrary non-zero constant, tiefunction is

_1@e-nE-H

G=-% h

log(t?).

Particularly, theG-function vanishes for thel, topological minimal model (the case
h = 3). The constanty equals
_d(1-34d)
R

sinced =1 — % For the free energy of thé P* model

F= %( 242 4 ot

the G-function reads

1,
= -t
¢ 24
The constant is
_—
RS

Observe that thé&-function is analytic everywhere on the Frobenius manifold only for
d = 3 (the A topological minimal model) and fof = 1, i.e., for theC P* topological
sigma model.

Let us consider now examples with = 3. We will take the list of examples of
Frobenius manifolds with good analytic properties from [11].

1) Forthe polynomial free energy relatedA4e,
1123 112212232135
== + = + = + — .
F = S5+ St (07 + 3 (0 (1% + 55t (6.11)

we haveG =0, v =0;
2) For the polynomial free energy relatedRg,

_1123 11 2\2 1233 122 3\3 1 3\7
F = S22+ S0P+ S0P+ 07 (O + (),

we have
1

V= 7
3) For the polynomial free energy related to the symmetry group of icosahedron,

__i 2 3y2
G= 18 log(2t© — 3 (t°)°),

1123 11 2\2 123 3)2 1 2\2 (4315 1 3)11
== + = + = + — +
F = (B8 S0 (2 + S0P @ + 25097 (P + 55 (™,

we have

_ 1 2,33 __ 3
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4) For the free energy of th&@ P? model,

F= o268+ (22 + > ONO (P2 e (6.12)
2 2 ] F@k—11 7

whereN? are the number of rational curves of degkegn C P2 which meet 3 — 1
generic points, for examplé{fo) = Néo) =1 Néo) =12 Nﬁo) = 620. The&-function
has the form

2 )3k .
= — + N(l) kt
“ % LER TR
k>1
oG " — 27 3
ot - =— 1
02| e, ey BRT+20/ —307) 8 (6.13)

whereg is defined by (1.21), anN,il) are the number of elliptic plane curves of degree
k which meet 3: generic points, for example/®™ = NP = 0, N{V = 1, NV = 225,
5) For the free energy

F = % (tl)2 B3+ % L (t2)2 + (t2)4 ¢(t3 _or |Og(t2)) (6.14)

(hered = 1,r > 0) we obtain a solution of WDVV with good analytic properties only
forr = g, 1 or% [11]. These solutions correspond to extended affine Weyl groups of

type Az, Cs, G, respectively [13]. For all of them = —1/16. Particularly, forA,,
¢()-—i+z (6.15)
VR .

thenG = — 4 3. For(;

1 a?
gzb(z):—4—8+aez+5622’7 (6.16)

whereq is an arbitrary non-zero constant, tfyefunction is

_ 15 1 2 122
G= 24t 18 log(16ae (t9)9).
Finally, for G,
— 1 2 z 3 2z 9 4z
o(z) = 72+36 +26 +166 , (6.17)

the G-function is

1 3 1 3
G > t 5 og(12¢e" —t9)
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6) We now take the free energy

1 1 1
F= 5 (23 + > 1 (t?)? — 1 (t2)* o (£%), (6.18)

whereg(z) satisfies the Chazy equation

¢" =60¢" —9 (¢), (6.19)
(hered = 1,r = r3 = 0). Then th&Z function can be obtained from the equations

oG _ 1 9G_ 1

—_ _— = = 3
ot? 82" O3 4 o), (6.20)

’Y:—E-

Particularly, for the case
3y — . 3y — d 3
o(t°) =8mi Er(t°) = 47dt3 logn(t>), (6.21)

wheren(7) is the Dedekind functionk,(7) is the second Eisenstein series (see [11])
we obtain

G =—log [n(ﬁ) (tz)%} . (6.22)

We see that, for, = 3, only on the Frobenius manifold (6.11) (the free energy of
the A5 topological minimal model), and on the Frobenius manifold (6.15) related to the
extended affine Weyl groug, the G-function are manifestly analytic everywhere. For
the C' P? sigma model th&'-function is regular on the open subset where

27+2¢ —3¢" #0. (6.23)

From equations of associativity for the function (6.12) it can be seen (see [4]) that in the
pointszo where

3¢"(x0) —2¢'(x0) —27=0 (6.24)

the series (6.13) diverges. Analytic properties of@h&inction (6.13) deserve a separate
investigation.

Remark.In the cases3s, Hs, B,, G- the G-function has logarithmic branching on the

part of the nilpotent locus of the Frobenius manifold, where w; for somei 7 j. The
coefficients of our hierarchy will have singularities in these points. Probably, appearance
of these singularities suggests not to select these Frobenius manifolds for a construction
of a physically consistent model of 2D TFT.
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7. Some Examples

We now compare the dispersion expansions of some well known examples of bi-
Hamiltonian integrable systems with those given in Theorem 1 and Theorem 2.

Example 1.Let’s start with the detailed consideration of the simplest example of KdV
hierarchy. We take the Lax operator in the form

= %(s dx)? + u(X). (7.1)

Then the two compatible Poisson brackets related to this operator is given by
{u(X),u(Y)}1 =0 (X —Y), (7.2)
{u(X), u(YV)}2 = u(X) ' (X —Y) + % ux(X)d(X —Y)+ % (X - Y).(7.3)

(They are derived from the formulae (7.15) and (7.16) in Example 2.) Starting from the
Casimir

H_,= / w(X)dX (7.4)

of the first Poisson bracket we can construct a hierarchy of commuting Hamiltonians
H),, by using the following recursion relation

(). Hy-s)a = (3 +0) (000 Hy 75)
ie.,
<u(X)aX N ux(X) + > 0Hy—1 (1 + p) ax@. (7.6)
ou 2 ou

Note that the facto( +p) does not appear in the usual recursion relation for the
KdV hierarchy, we use thls factor here to meet the topological recursion relation of the
A; topological minimal model. Let’s list the first four Hamiltonians

H_ ;= / w(X)dX, Hp= / }u(X)de,

le/( u(X)3—2—145 uX(X))

H, = / < w(X)* — 1 S R0 ux (X% + LI uXX(X)Z) dX. (1.7)

480

The KdV hierarchy is then given recursively as

ou

oo =

ou 2

71 Suux +T26 UX XX

ou 1 . (1 _ 1 ou

575 = (5 +p)7t <2uX8X1 +u+ 8528§<> o1 (7.8)
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Let's note that each flow of the KdV hierarchy can be written as a polynomial.in
The parametet can be introduced to the usual KdV hierarchy through the rescaling
X — e X, T? — ¢ T?. We write down explicitly the:® ande? terms in the hierarchy

ou
oro ~ "%
Ou oL
orty  "MNTpt MXXX
ou
o = LX), H + 2 {u(X), HP} + O, (7.9)
where
U X p+2
HO = (z(7+)2)' (7.10)
and
HY =H® =0,
1\ w(Xx)r—1
HO = / <_24> (]()_) oy 1 (XX, (7.12)
We now take the free energy to be
— 1 143
F=Z(@Y, (7.12)

6

in this case th& -functionG = 0. Plugging this free energy into Theorem 1 and Theo-
rem 2, and identify®, TP, Hy ;,, 6Hj  with u, 77, H®, HV respectively, we obtain,
moduloO(c*), the above described KdV hierarchy and its bihamiltonian structure.

Example 2.More generally, let's consider the differential operators

L=V +unyX) ()N 1+ +uy(X), (7.13)
whereo = %. For any pseudo-differential operatgrof the form
Z2=(E80) 21+ () % Zy+---+(0) N2y, (7.14)

define the following two Hamiltonian mappings [2]:

X
Hy: Z—[Z L, Hy: Z+ L(ZL)s — (LZ).L + ﬁ[L,/ Res[Z, L] dX],

(7.15)
and the corresponding Poisson brackets
F o of 99 .
{f’g}l - /ReS(HZ(éL (5L)dx, 1= 1a 2) (716)

for the functionals

F= [ ras 5= [ oo

where
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5f _ & Y —i 99
E_;(ea) P E—;(a‘@) S (7.17)

In the case ofV = 2, if we define

1 1
tt=uy — éau’z, t? = 32 (7.18)
then the first Poisson bracket is given as follows:
{tHX), 1 ()} =0, {tH(X), 13 (¥)}1 =8 (X - V), (7.19)
{t3(X), *(V)}1 = 0, (7.20)

and the second Poisson bracket is given as
{t"(X), t1(Y)}2 = =6 (t7)(X)? 0'(X — Y) — 6£%(X) (t?) (X) 6(X — Y)

- (A 080+ )X - )

. th(X)(s@)(X - Y)+%(t1)(3)(X)6(X - Y)) - iga<5>(x “v),
{th(X), P (V)} = tHX) &' (X - Y) + % (' (X)6(X - V),
(200, A1)z = 2 0T (X = ¥) + 2 (Y (X)5(X ~ V)

2% 3

+ 559X - 1), (7.21)

The integrable hierarchy has the form
s = 0, Hs (7.22)

where the Hamiltonian&lg ,, are recursively defined by

[°(X), Hyp1}2 = ( ip qﬂ) [(X), Hy b (7.23)

with Hs 1 = [t3(X)dX. Up to thee? terms, the above Poisson brackets and the
integrable hierarchy coincide with the Poisson brackets and the integrable hierarchy
given in Theorem 1 and Theorem 2 with the free energy defined by

1 3
F=3 (Y2 ¢? — s (t?)*, (7.24)

and with theG-functionG = 0. This is the primary free energy of th& topological
minimal model of [7].
In the case ofV = 3, if we define

2
€ €
- u/2+1—2ug, t?=up —cuy, t=us, (7.25)
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then the Poisson brackets defined by (7.15), (7.16) and the integrable system given in
the form of (7.22) and (7.23) coincide, moduiy with the Poisson brackets and the
integrable system given in Theorem 1 and Theorem 2 with the free energy defined by

11 2\2 1 142 43 1 2\2 (432 1 3\5
== + = N + )
F= gt @R+ 5 (P8 — o (PP O + 5 (O, (7.26)

and with theG-function G = 0. This is the primary free energy of thi; topological
minimal model [bid]. Formulae in (7.25) coincide with formulae in (4.38) of [6].

Example 3.The explicit bihamiltonian structure related to the Lie algebra of (#pés
given, for example, in [1] in the following form:

{ur(X), us(Y)}1 = 2ua(X) 6'(X — V) + uh(X) 6(X — Y) — 266X — V),
{us(X), ua(¥Y)}1 = 26'(X —Y),
{ua(X), ur(Y)}1 = 26'(X - Y),
{ua(X), u2(Y)}1 = 0; (7.27)
{ua(X), ur(Y)}2 = 2ua(X) ug(X) 8'(X — Y) + uh(X) ur(X) 6(X — Y)
+up(X) uf(X)6(X —Y) — &2 [g up(X)?8'(X - Y)

+B6ux(X) up(X) 8" (X —Y) + gu'l(X) "X -Y)
+4up(X) uy (X)0'(X —Y) + % up(X) us (X)5(X —Y)

+ g u (X) 6" (X — V) + 2up(X)? (X — )
+ug(X) 00X — Y) +ua(X) u$(X) 6(X — Y)
+ % u(X) 5(X — V)] + e [8uf (X) 6O(X — Y)

+ 7u(X) 8"(X — V) + 5uh(X) §D(X — V)
+3ul(X)8' (X — Y) + 2ux(X)6O(X — V)

+ % u(X)5(X - V)] - %56 sN(X - V),

{ur(X), ua(Y)}2 = 2u(X) /(X —Y) + % uj(X)6(X —Y)
— 22 (up(X) 8"(X — V) + 2up(X) 69X — Y)) +&*6O(X - V),
{u2(X), ur(Y)}2 = 2ua (X)0'(X = Y) + g up(X)6(X —Y) — 2 [u(X)3(X - Y)

+5ub(X) 6" (X — V) + 2un(X) (X — Y) + 4uf(X) §'(X — V)]
+e0O(X V),

{0, 1Y )2 = ua X5 (X V) + (X)X ~¥)— 220X ), (7.28)

here we note that the above coordinates:, should be the coordinatesg, ug respec-
tively in [1], and there is a sign difference between the above first Poisson bracket and
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that of [1]. We now compare the above Poisson brackets with the Poisson brackets given
by Theorem 1 and Theorem 2 with the free energy relatdgytd-or this, let

1 142 42 1 2\5
= - + — .
=5 )71+ 2 (), (7.29)
then theG-function is given byG = 7%8 log(t?), and the first and second Poisson

brackets of Theorem 1 and Theorem 2 are given by

{t1(X), 1 (V) }1 = {A(X), 2(Y) }1 = O(Y),
{t{(X), *()}1 =6 (X - Y)
2 ()~
242(z) ( () °

X-Y)-0"(X - Y)) +O(EY; (7.30)

(14(X), 1Y) )2 = 263(X) 0/ (X — V) + 383(X) (13 (X) 6(X — V)
.2 <<t1>/(X>2 F(X-Y) (Y (#)(X)HX - Y)

32¢2(X)? 3212(X)*
, 29 ) (X)?8'(X — Y) , 138%(X) (3 (X) 6"(X — )
24 4
+ ) (X) (tY)"(X) 6(X - Y) N 25¢%(X) (t7)"(X) §'(X —Y)
3212(X)* 12
L 5EY(X) (A)"(X) (X —Y) _ 138%(X)° 0(X — V)
8 12
(X)) (A)¥(X) 6(X — Y))
+ > ,

{t1(X), £2(V)}o = tH(X) 0'(X — V) + () (X)6(X —Y)

4
e < (@Y(X)0"(X — ) | 00 (7Y () "(X —Y)
2412(X) 2412(X)?
t1(X) 6O(X - Y)
O 242(X) ) ’

2 ! _ 2\/ B
(#2(X), 2(V)}o = (X)‘s;X Y) , (((X) Z(X Y)

16 (7.31)

Now if we relate the variables,, u, to the variableg!, t* by the following relation:

1 7 uhus uy 1
1o, 2,2 0, Wl U 2_ 1+ 732
Prum—guzte (24“2 12u2 12uz>’ F=pue (7.32)

then the above first Poisson brackets coincide, moetjlovith the Poisson brackets
given in (7.27). While for the second Poisson brackets, they coincide with the Poisson
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brackets given in (7.28) only up &, and starting from the? terms, the two second
Poisson brackets no longer coincide. This result is in accordance with the result of [16],
where it was shown, by imposing the commutativity of the flows, that the integrable
s%/stem (the tree-level one) related to the free energy (7.29) can not be extended beyond
e* terms.

Remark.In this section, the free energies corresponding to the Lie algebras of the types
Ay, Az, B, are different from those given in Sect. 6, they are related by a rescaling.

Example 4.Consider the Toda lattice equation with open boundary

Ou,
= Un — Un-1,
ot !
8 n
gt =eimt—e'n nelZ. (7.33)

If we introduce the slow variable§ = te, X = ne, and the new dependent variables
w(X) = u,, 9(X) =v,, then the Toda lattice equations lead to

o= 200 (X ),
ai; = g (eTXH) _ (X)) (7.34)
This system has the bi-Hamiltonian structure
on _ .. ~
T {a(X), Hotr = {(X), H-1}2,
O = (50). Hopa = (3(X). Hoalo (7.39

where the Poisson brackets are defined by
{a(X), @(Y)} = {5(X), 5(¥)}1 =0,
{i(X),5(Y)}1 = % (X -Y)—8(X —Y —¢)), (7.36)
(0.2 = 008 Y 48— 6(X — Y — ).
(B0, 30} = (08 — Y +2) = 5(X = ¥)) 7(X),
{3(X),5(Y)}2 = % ("X S(X —Y +e) — " XX -V —¢)), (7.37)

and the Hamiltonians are given by

H_,= / H(X)dX, Ho= / <;5(X)2+eﬁ(x)> dXx. (7.38)
We construct the hierarchy of integrable systems
ot . 0 ~
= U(X), Hpt1, s ={0(X), Hpha (7.39)

oTr arr
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with the Hamiltoniang,, recursively defined by

{a(X), Hp-1}2 = (p+ D{U(X), Hp}r,  {8(X), Hp-1}2 = (p+ I{0(X), Hp(}71-40)

We identify 7° with T
Let's define again the following new variables:

2

(X)) = (X)) — = ”“(X) +O(eh, (7.41)
t?(X) = 4(X) + 5 ﬂ’(X) + 2%@”()() — %38 (X)) + O, (7.42)

and expand the above Poisson brackets in Taylor serigsaia obtain
{t1(X), ' ()} = Www%%r
{t{(X), PN} =6(X - Y) — Tz 5<3>(X —Y)+ 0O, (7.43)
{tH(X), £1(V)}2 = 2€8°) 6’(X —Y)+et' X (tz(X))’ 5(X -Y)
+e ( OX —Y)+= (tZ(X)) §"(X -Y) 5 ((tZ(X)) 2 o(X —Y)

# 2EEO) 80X - )+ 5 () () (K - Y)
+ 2 (PO S(X - Y)) 00+ O,
{t{(X), 2 ()} = t}(X) §'(X = Y) — €2 (112 (X)X — )

3 (HO0) (X - 7)) + O
{t3(X), 2 () }2 = 26" (X — Y) + O(). (7.44)

We also expand the Hamiltonians (7.40) and the integrable system (7.39) in Taylor series
in e. The Hamiltoniand?_1 and Hy have the form

H_,= / tH(X)dX + O(Y),

Ho = / (;(tl(X))2+et2(X)> dx

2

_ %2 (;’ (t}(X))2+et2(X) (tE((X))Z) dX +O(Y).  (7.45)

Now if we put theC P free energy
F= %(tl)2 el (7.46)

into Theorem 1-Theorem 3, and withfunctionG = — 2%1t2, we getthe Poisson brackets
which coincide with those given in (7.44) modutt and the Hamiltonian#l, , we get
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also coincide withfH,, modulos*. This suggests that the Toda lattice hierarchy is the
appropriate hierarchy of integrable systems behind’tié model, as it was suggested
in [16] from the point of view of commuting flows.

8. Discussion

We formulate here the conjectural shape of the integrable hierarchy to be considered
starting from a Frobenius manifold and of its bihamiltonian structure in the form of
genus expansion. The hierarchy must have the form

ot

o - KOt tx)+> " KW (t,tx txx,...) = {{X), Hap}1, (8.1)

k>1

where the Hamiltonians and the first Poisson bracket must have the expansions

p= HO, + Y 2P HY), (8.2)
k>1
{t(X), P (M)} = {2(X), P+ Y 2R (x), P, (8.3)
E>1
where
Hgf;:/ng;(t;tx,txx,...)dx, (8.4)
2k+1

{t2X), PP = 3 APt txx . et SO(X —Y). (8.5)

The densitiesP(")(t; tx, txx,...) and the coefficientsﬁlgf(t;tX,tXX,...) of the
Poisson bracket are quasihomogeneous polynomialg.itiy x, . . . of the degrees
degPM (titx txx,...) = 2k, (8.6)
degAy P (titx, txx,...) =2k +1—s, (8.7)
where we assign the degrees
degdyt = (8.8)

foranym = 1,2,.... The coefficientsk (", (¢; tx, tx x, . . .) of the hierarchy are also
polynomials in the same variables of the degree
degKk™®™ (t:itx,txx,...)=2k+1, k=0,1,.... (8.9)

o,p
All the Hamiltonians must commute.

Remark.The dispersion expansions of the known integrable hierarchies obtained by
simultaneous rescaling — ez, t — et for any time variablet contain also odd
powers ofz. However, doing an appropriatedependent change of dependent variables
we can reduce the hierarchy and their Poisson brackets to the form postulated in this
section. (See examples above in Sect. 7).
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We expect that the quasihomogeneity (2.3) will not be involved in the construction of
the hierarchy. If, however, it takes place then the coefficients of the first Poisson bracket
must satisfy another quasihomogeneity condition. Let us introduce the extended Euler
vector field

E=E+> > (1—m—qa) 0%t a(amw) (8.10)

m>1 «

where the Euler vector field has the form (2.10). Then the coefficients of the first
Poisson bracket (8.3) must satisfy the quasihomogeneity conditions

Le Ay (titx txx,...) = (k(d—3)+d+s—1—qo —qg) AR (titx, txx,...).
(8.11)

Moreover, there exists another Poisson bracket with the structure similar to (8.3), (8.5)

{t(X), 7 (V)}o = {°(X), P (VI + D 2R (X)), ()}, (8.12)

k>1
2k+1
(X)W = > Bl it txxs - e 09X - V), (8.13)
s=0

whereB;‘f(t; tx,txx,...)arepolynomialsinx,txx,... of the same degreei2+
1 — sin the sense of (8.8). The quasihomogeneity conditions for the coefficients of the
second Poisson bracket have the form

LeBY(titx txx,...) = (k(d—3)+d+s — qo — q5) BRA(ti tx, txx, - . .)-
(8.14)

The Poisson brackefs, }; and{, }, must be compatible, i.e., any linear combination
of them with arbitrary constant coefficients must be again a Poisson bracket. Besides

9 nop_ 4o 9 sap _
i Bhs = Aks 5 des =0 (8.15)
All the equations of the hierarchy (8.1) with the numbergy) such that

Lt 70 (8.16)

are Hamiltonian flows also w.r.t. the second Poisson bracket.
Additional conjecture about the bihamiltonian structure (8.3), (8.12) is that #at,

{t"(x),t"(¥)}P =0 fork >0,
{"(X), " (Y} =0 fork > 1 (8.17)

Here the invariant definition of the coordindteis t" := ny. t¢. This conjecture means
that the Virasoro algebra with the central charge (3.35) foundifgr1 in Corollary

1 above does not get deformations coming from the gehefa In other words, our
bihamiltonian structure is a classiddl-algebra with the conformal dimensions (2.31)
and the central charge (3.35).
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We recall that a Frobenius manifold™ is said to have good analytic properties if
the primary free energ¥'(¢) has the form

F(t) = cubic terms + analytic perturbation (8.18)

near some pointy € M™. (See [11].) For example, the poity is the origin in the
topological minimal models and it is the point of classical limit in the topological sigma-
models. For Frobenius manifolds with good analytic properties we expect that all the
coefficients of the polynomiald;’ (t; tx, txx,...), Bpi(titx.txx,...)are ana-

lytic in ¢ near the pointy. For the casé, =0, d < 1, i.e., the charges satisfy

0<qo<d<1, (8.19)

the analyticity implies finiteness of all of the expansions of the Poisson bracket. Indeed,
from (8.5) and (8.11) we obtain that

k(d—3)+d+s—1—qo —qs < k(d — 1) +d. (8.20)

This number is nonnegative only if
E< —. (8.21)

But all the degrees of the variables are 1— ¢, > 0. So all the termg , }{*) must
vanish fork > ﬁ‘ld. Similarly, the terms in the expansion of the second Poisson bracket

must vanish fork > %. All the examples of 1 + 1 integrable hierarchies labeled by
A-D-E Dynkin graphs are of this type. All the coefficients of the genus expansions are
polynomials.

Recall, that a polynomial Frobenius manifold can be constructed for an arbitrary
finite Coxeter group [11]. For this case

2 me +1
=1— — =1
d n o n

whereh is the Coxeter number and,, are the exponents of the Coxeter group. How-
ever, the bihamiltonian hierarchy (8.1) can be constructed for only simply-laced Dynkin
graphs. Indeed, our formula (3.35) for the central charge coincides with the formula [20]

ce? = 12:2)? (8.22)

of the central charge of the classi¢&lalgebras with the same Dynkin diagraxactly

for the simply-laced case! Hereis one half of the sum of positive roots. Oaris
equal toix of [20]. Recall, that for the simply-laced Coxeter groups our polynomial
Frobenius manifolds correspond to the topological minimal models [7]. The constant
in (3.29) equals 0. So th&-function is identically equal to 0 for the A—-D—E polynomial
Frobenius manifolds.

Ford > 1 the expansions probably are infinite. The Jacobi identity for the Poisson
brackets, commutativity of the Hamiltonians etc. are understood as identities for the
formal power series in?. In the paper we have constructed the first terms of the expan-
sions and showed that they are in agreement with the assumptions we formulate in this
section.
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To proceed to the next ordél(c*) we are to compute the Poisson brackets

(HO), HOID + (70, HOND + (7O, HDLO = Qe (8.29)

a,p?

Then the corrections to the Hamiltonians and to the Poisson brackets are to be determined
from the linear equations

2 0 0 —
(HO, B0+ (D, HO YO+ (10, HOO = Qs (©24

We do notexpect that the deformed hierarchy and the Poisson brackets can be con-
structed for an arbitrary Frobenius manifold (cf. [16]). However, solvability of the linear
system (8.24) together with the bihamiltonian property could give a clue to the problem
of selection of “physical” solutions of WDVV equations of associativity. We plan to
investigate this solvability in subsequent publications.

We do not discuss in this paper the relations between the one-loop deformations of
the hierarchy and the Virasoro algebra of [18, 19]. This is to be done in a subsequent
publication. Another interesting problem is a relation between the hierarchy we construct
and the recursion relations of [28].
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