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THE EXTENDED TODA HIERARCHY

GUIDO CARLET, BORIS DUBROVIN, AND YOUJIN ZHANG

Abstract. Using construction of logarithm of a difference operator, we
present the Lax pair formalism for certain extension of the continuous
version of the classical Toda lattice hierarchy, provide a well defined
notion of tau function for its solutions, and give an explicit formulation
of the relationship between the CP 1 topological sigma model and the
extended Toda hierarchy. We also establish an equivalence of the latter
with certain extension of the nonlinear Schrödinger hierarchy.
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1. Introduction

The Toda lattice equation [28]

q̈n = eqn−1−qn − eqn−qn+1 , −∞ < n <∞, (1.1)

is one of the prototypical integrable systems that plays significant role in classical
and quantum field theory. The Toda lattice hierarchy consists of infinitely many
evolutionary differential-difference equations commuting with (1.1). In this paper
we study this hierarchy from the point of view of 2D topological field theory. One
of the first lessons of this approach [4], [31] is that, one is to replace the discrete
variable n by a continuous one. The result of such “interpolation” is the following
equation for the function q = q(x, t)

ε2qtt = eq(x−ε)−q(x) − eq(x)−q(x+ε). (1.2)

In this equation the cosmological constant plays the role of the independent variable
x, the formal small parameter ε is called the string coupling constant. Similar
interpolation can be applied to the whole Toda lattice hierarchy. It is conjectured
that the partition function of the CP 1 topological sigma model as the function of the
coupling constants of the theory is the tau function of a particular solution of certain
extension of the interpolated Toda lattice hierarchy. Under such identification the
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coupling constant corresponding to the identity primary field φ1 ∈ H0(CP 1) serves
as the spatial variable and that of the remaining primary φ2 ∈ H2(CP 1) and of the
gravitational descendent fields correspond to the time variables of the hierarchy.
Such an extension of the Toda lattice hierarchy is formulated independently in [16],
[33], and the above conjecture is known to be true up to genus one approximation
[5], [9], [12]–[14], [33]. The extended Toda lattice hierarchy is formulated in [16], [33]
by using the bihamiltonian structure of the original Toda lattice hierarchy, and is
defined by the bihamiltonian recursion relation. We call this hierarchy the extended
Toda hierarchy in this paper.

To an expert in the theory of integrable systems that might be less motivated by
the eventual applications of the Toda hierarchy to the theory of Gromov–Witten
invariants, the importance of considering the extended Toda hierarchy can also be
explained by means of the following argument. The flows of the usual Toda hier-
archy form a complete family, i. e., they span the space of vector fields commuting
with (1.1). This fails to be true for the interpolated Toda lattice hierarchy. In-
deed, already the spatial translations x 7→ x+ c do not belong to the linear span of
the Toda lattice flows. One can show, using the technique of [7] that the flows of
extended Toda lattice hierarchy form a complete family of flows commuting with
(1.2).

Two important aspects of the theory of extended Toda hierarchy remained un-
clear, after [16], [33]. The missing points were the Lax pair formalism and a well
defined notion of tau function for an arbitrary solution of the extended hierarchy.
A Lax pair formalism is crucial both for the theory of integrability of the hierarchy
and for its applications in physics, while a well defined notion of tau function for
solutions of the hierarchy is needed to formulate explicitly the relation between the
extended Toda hierarchy and the CP 1 topological sigma model, or equivalently,
to the theory of Gromov–Witten invariants of CP 1 and their gravitational descen-
dents.

We present in Section 2 a Lax pair formalism of the extended Toda hierarchy.
By using this Lax pair formalism we are able to express in Section 3 the densities
of the Hamiltonians of the hierarchy in terms of the Lax operator, and in Section 4
we give the definition of the tau function for solutions of the hierarchy by using
the result of Section 3. In Section 5 we show that the extended Toda hierarchy
is equivalent to certain extension of the nonlinear Schrödinger hierarchy. In the
last Section we discuss the relation of the CP 1 topological sigma model with the
extended Toda hierarchy.

2. Logarithm of a Difference Operator and Formulation of the
Extended Toda Hierarchy

The Toda lattice equation (1.1) describes the motion of one-dimensional particles
with exponential interaction of neighbors [28]. A crucial aspect among the integra-
bility properties of this equation is its Lax pair formalism given by H. Flaschka [15]
and S. Manakov [24]. By introducing the new dependent variables

vn = −∂qn
∂t

, un = qn−1 − qn, (2.1)
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we can rewrite the Toda lattice equation in the form
∂vn

∂t
= eun+1 − eun ,

∂un

∂t
= vn − vn−1, n ∈ Z. (2.2)

Let Λ be the shift operator defined by

Λfn = fn+1

for any function f on the one dimensional infinite lattice. The Lax operator1 is
defined by

L̄ = Λ + vn + eunΛ−1 (2.3)
and the Toda lattice equation can be recast into the form

∂L̄

∂t
= [Λ + vn, L̄]. (2.4)

Here the square bracket stands for the usual commutator of two operators. Related
to the Toda lattice equation there is an infinite family of mutually commuting flows
of the form

∂L̄

∂tp
=

1
(p+ 1)!

[(L̄p+1)+, L̄], p ≥ 0,
∂

∂tq

∂L̄

∂tp
=

∂

∂tp

∂L̄

∂tq
. (2.5)

This family of evolutionary differential-difference equations is the so-called Toda
lattice hierarchy. Clearly for p = 0 the equation (2.5) coincides with (2.4).

We are to define certain extension of the Toda lattice by constructing another
infinite family of evolutionary equations that commute with each other and with
the flows of the original Toda lattice hierarchy. To this end, we first replace the
discrete variable n by a continuous variable x. By interpolating we introduce the
dependent variables u(x), v(x) such that

un = u(εn), vn = v(εn). (2.6)

Here ε is a formal parameter that can be viewed as the lattice mesh. We will also
use an alternative notation for the dependent variables

w1 := v, w2 := u (2.7)

and we will denote w = (w1, w2) the two-component vector. Then the Toda lattice
hierarchy for the functions wα(x, t0, t1, . . . ), α = 1, 2, can be recast into the form

ε
∂L

∂t2,p
=

1
(p+ 1)!

[(Lp+1)+, L], p ≥ 0. (2.8)

Here the Lax operator L acting on smooth functions on the line is defined by

L = Λ + v(x) + eu(x)Λ−1 (2.9)

with Λ being defined now as the shift operator

Λ = eε∂x

and the time variables t2,p are obtained from tp by rescaling t2,p = ε tp. We call
this hierarchy the Toda hierarchy.

1We use here not the original Lax operator introduced in [15], [24] but the one obtained from
[15], [24] by a gauge transformation.
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Let us denote R the ring of formal power series of the form
∑

k≥0 fkε
k, where

fk are polynomials of the variables v(x), u(x), e±u(x) and the x-derivatives of v, u.
The gradation on R is defined by

deg v(m) = 1−m, deg u(m) = −m, deg eu = 2, deg ε = 1, m ≥ 0. (2.10)

Here

v(m) = ∂m
x v, u(m) = ∂m

x u. (2.11)

The equations of Toda hierarchy will be considered as R-valued vector fields.
For example, the interpolated Toda lattice equation has the form

∂v

∂t2,0
=

1
ε
(eu(x+ε) − eu(x)) =

∑
k≥0

εk

(k + 1)!
∂k+1

x eu

∂u

∂t2,0
=

1
ε
(v(x)− v(x− ε)) =

∑
k≥0

(−1)k+1 εk

(k + 1)!
∂k+1

x v.

(2.12)

Following [7], we will treat equations of this class as infinite order evolutionary
PDEs. For the sake of brevity they will also be called PDEs in subsequent con-
siderations. The solutions of such PDEs will be considered in the class of formal
power series in ε.

The dressing operators P and Q (see [29])

P =
∑
k≥0

pkΛ−k, Q =
∑
k≥0

qkΛk, p0 = 1, (2.13)

can be formally defined by the following identities in the ring of Laurent series in
Λ−1 and Λ respectively:

L = PΛP−1 = QΛ−1Q−1. (2.14)

Note that the coefficients pk and qk of the dressing operators do not belong to the
ring R but to a certain extension of it (see [29]). The dressing operators are defined
up to the multiplication from the right by operators of the form 1 +

∑
k≥1 p̂kΛ−k

and
∑

k≥0 q̂kΛk respectively, where p̂k, q̂k are some constants.
To construct an extension of the Toda hierarchy we need to introduce the fol-

lowing notion of the logarithm of the Lax operator L:

logL :=
1
2
(Pε∂xP

−1 −Qε∂xQ
−1). (2.15)

Remarkably the above ambiguity in the choice of dressing operators is cancelled in
the definition of the operator logL. Moreover, the coefficients of the operator logL
do belong to R as the following theorem guarantees:

Theorem 2.1. The operator logL has the following expression

logL =
∑
k∈Z

gkΛk, gk = gk(w, wx, wxx, . . . ; ε) ∈ R. (2.16)
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Proof. Let us first consider the operator εPxP
−1 where Px =

∑
k≥1 pk,xΛ−k. It has

the expression
εPxP

−1 =
∑
k≥1

akΛ−k. (2.17)

From the definition of the dressing operator P it follows that

[εPxP
−1, Lm] = ε∂xL

m, m ≥ 1. (2.18)

For any operator A =
∑
YkΛk let us define its residue by

resA = Y0. (2.19)

By taking residue on both sides of (2.18) with m = 1 we get

a1(x+ ε)− a1(x) = −ε ∂xv(x), (2.20)

which shows that a1 ∈ R (see the explicit formula (2.23) below). By induction on
the index of ak and by taking residue on both sides of (2.18) for general m we show
that ak ∈ R for k ≥ 1.

To finish the proof of the theorem, we need to obtain similar result for the
operator QxQ

−1. From (2.13), (2.14) we know that the function q0 that appears in
the expression of Q satisfies the relations

q0(x)
q0(x− ε)

= eu(x),
q0,x(x)
q0(x)

− q0,x(x− ε)
q0(x− ε)

= ux, (2.21)

from which it follows that the coefficients of the operator L̃ = q−1
0 Lq0 belong to R.

Denote Q̃ = q−1
0 Q. We have by definition the relation

L̃ = Q̃Λ−1Q̃−1. (2.22)

By using the identity (2.22) we can show, as we did for the operator εPxP
−1 above,

that the operator ε Q̃xQ̃
−1 has the expression

ε Q̃xQ̃
−1 =

∑
k≥1

bkΛk, bk ∈ R.

Then the theorem follows from (2.21) and the identities

logL =
1
2
(
εQxQ

−1 − εPxP
−1
)
, Q = q0Q̃.

The theorem is proved. �

The proof of the above theorem also gives an algorithm of computing the coef-
ficients gk of the operator logL expanded in the form (2.16). Indeed, from (2.20)
we obtain

a1(x) = −
∑
k≥0

Bk

k!
(ε∂x)kv(x) + c (2.23)

where the coefficients Bk are the Bernoulli numbers and c is an integration constant.
If we set v = eu = 0 in the Lax operator L, then the coefficients of the dressing
operator P must be constants, and in this situation PxP

−1 = 0. This fact implies
that the integration constant c must be equal to zero. Now, if we already obtained
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the expression for the first n−1 coefficients of εPxP
−1 that is expanded in the form

(2.17), then the identity

res
(
[εPxP

−1, Ln]− ε∂xL
n
)

= 0

can be written in the form

an(x+ nε)− an(x) = ε∂xW

for some W ∈ R. So we have

an(x) =
∑
k≥0

Bk

k!
(nε∂x)kW.

Here the integration constants also disappear due to the same reason as for the
vanishing of the integration constant c for a1. The coefficients of the operator
Q̃xQ̃

−1 can be computed in a similar way.

Definition. The extended Toda hierarchy consists of the evolutionary PDEs that
are represented in the following Lax pair formalism:

ε
∂L

∂tβ,q
= [Aβ,q, L] := Aβ,qL− LAβ,q, β = 1, 2; q ≥ 0. (2.24)

Here the operators Aβ,q are defined by

A1,q =
2
q!

[Lq(logL− cq)]+, A2,q =
1

(q + 1)!
[Lq+1]+, (2.25)

and for any operator B =
∑
BkΛk, the operator B+ is given by

∑
k≥0BkΛk. Here

the constants cq are defined as follows

c0 = 0, cq = 1 +
1
2

+ · · ·+ 1
q
. (2.26)

The flows ∂
∂t2,p , p ≥ 0, form the original Toda hierarchy (2.8). We will see in

the next section that the flows ∂
∂t1,p , p ≥ 0, coincide with those defined in [16], [33]

by using a bihamiltonian recursion relation. In the literature the explicit Lax pair
formalism for these flows exists only for their dispersionless limit [12], [14], [13]. To
have a more concrete feeling of the form of these flows, let us write down the first
three of them. By the definition (2.25), we have

A1,0 =
(
Pε∂xP

−1 −Qε∂xQ
−1
)
+

= εQxQ
−1 = ε∂x − εQ∂xQ

−1.

Since [Qε∂xQ
−1, L] = 0, we obtain

∂wα

∂t1,0
= wα

x , α = 1, 2. (2.27)

So this first flow is just the translation along the spatial variable x. The second
flow is the interpolated Toda lattice equation (2.12).
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Introduce the following two operators that act on the space of smooth functions
of x:

B+f(x) := (Λ− 1)−1ε∂xf(x) =
∑
k≥0

Bk

k!
(ε∂x)kf(x),

B−f(x) := (1− Λ−1)−1ε∂xf(x) =
∑
k≥0

Bk

k!
(−ε∂x)kf(x).

(2.28)

Here Bk are the Bernoulli numbers. The following operator

A1,1 = (Λ + v)(ε∂x − 1) + B+v(x+ ε) + eu[ε∂x + 1− B−u(x− ε)]Λ−1 (2.29)

(it differs from the one given by (2.25) by the operator −L(1+Qε∂xQ
−1) commuting

with L) gives the Lax representation for the t1,1-flow

∂v

∂t1,1
= vvx +

1
ε

[
eu(x+ε) (B−u(x+ ε)− 2)− eu(x)(B−u(x− ε)− 2)

]
,

∂u

∂t1,1
=

1
ε

[
v(x)(B−u(x)− 2)− v(x− ε)(B−u(x− ε)− 2)

+ B+v(x+ ε)− B+v(x− ε)
]
.

(2.30)

We finish this section with the following simple statement.

Theorem 2.2. The components of the vector fields of the extended Toda hierarchy
are homogeneous elements of the graded ring R, of the degree

deg
∂wα

∂tβ,q
= q + µβ − µα, α, β = 1, 2; q ≥ 0. (2.31)

Here µ1 = − 1
2 , µ2 = 1

2 .

We leave the proof as an exercise for the reader.

3. Bihamiltonian Structure of the Extended Toda Hierarchy

The existence of a bihamiltonian structure for the original Toda lattice hierarchy
is well known (see for example [9], [23]). In this section we are to adopt it to the
extended Toda hierarchy (2.24). The bihamiltonian structure for the original Toda
hierarchy is given by the following two compatible Poisson brackets

{v(x), v(y)}1 = {u(x), u(y)}1 = 0,

{v(x), u(y)}1 =
1
ε
[eε ∂x − 1]δ(x− y),

(3.1)

{v(x), v(y)}2 =
1
ε
[eε ∂xeu(x) − eu(x)e−ε ∂x ]δ(x− y),

{v(x), u(y)}2 =
1
ε
v(x)[eε ∂x − 1]δ(x− y),

{u(x), u(y)}2 =
1
ε
[eε ∂x − e−ε ∂x ]δ(x− y).

(3.2)

In particular, for a local Hamiltonian

H =
∫
h(w; wx, wxx, . . . ; ε) dx, h(w; wx, wxx, . . . ; ε) ∈ R,
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the Hamiltonian system with respect to the first Poisson bracket reads

ut = {u(x), H}1 =
1
ε

[1− e−ε∂x ]
δH

δv(x)
,

vt = {v(x), H}1 =
1
ε

[eε∂x − 1]
δH

δu(x)
.

(3.3)

The same Hamiltonian will generate a different PDE when the second Poisson
bracket is used:

us = {u(x), H}2 =
1
ε

[Λ− Λ−1]
δH

δu(x)
+

1
ε

[1− Λ−1]
δH

δv(x)
,

vs = {v(x), H}2 =
1
ε
v(x) [Λ− 1]

δH

δu(x)
+

1
ε

[Λeu(x) − eu(x)Λ−1]
δH

δv(x)
.

(3.4)

Here s is the new time variable.
We have the following main theorem of this Section:

Theorem 3.1. The flows of the extended Toda hierarchy (2.24) are Hamiltonian
systems of the form

∂wα

∂tβ,q
= {wα(x), Hβ,q}1, α, β = 1, 2; q ≥ 0. (3.5)

They satisfy the following bihamiltonian recursion relation

{wα(x), Hβ,q−1}2 =
(
q + µβ +

1
2

)
{wα(x), Hβ,q}1 +Rγ

β{w
α(x), Hγ,q−1}1. (3.6)

Here the Hamiltonians have the form

Hβ,q =
∫
hβ,q(w; wx, . . . ; ε)dx, β = 1, 2; q ≥ −1 (3.7)

with the Hamiltonian densities hβ,q = hβ,q(w; wx, . . . ; ε) ∈ R given by

h1,q =
2

(q + 1)!
res[Lq+1(logL− cq+1)], h2,q =

1
(q + 2)!

resLq+2, (3.8)

and
Rγ

β = 2δγ
2 δβ,1. (3.9)

Proof. We first prove that the flows ∂
∂t2,q have the Hamiltonian form (3.5). For a

1-form
∑
fα,m(u, ux, . . . )duα,m on the jet space, we say that it is equivalent to

zero if it is the x-derivative of another 1-form. We denote this equivalence relation
by ∼. Here wα,m = ∂wα(x)

∂xm . Alternatively,

w1,m = v(m), w2,m = u(m).

For example, we have

eudvx + euuxdv = ∂x(eudv) ∼ 0.

Under this notation, we can easily verify that

dh2,q =
∑ ∂h2,q

∂uα,m
duα,m =

1
(q + 2)!

d resLq+2 ∼ 1
(q + 1)!

resLq+1 dL (3.10)
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where dL = dv(x)+ eu(x)du(x) Λ−1. Expand the operators Aβ,q that are defined in
(2.25) into the form

A1,q =
∑
k≥0

a1,q;k Λk, A2,q =
∑
k≥0

a2,q;k Λk, (3.11)

then by using the definition of the Hamiltonians H2,q and the equivalence relation
(3.10) we deduce the validity of the following identities:

δH2,q

δv
= a2,q;0(x),

δH2,q

δu
= a2,q;1(x− ε)eu(x). (3.12)

So from the definition of the first Poisson bracket we have

{v(x), H2,q}1 =
1
ε

(
a2,q,1(x)eu(x+ε) − a2,q,1(x− ε)eu(x)

)
,

{u(x), H2,q}1 =
1
ε

(a2,q,0(x)− a2,q,0(x− ε))
(3.13)

which yields the Hamiltonian form (3.5) of the flows ∂
∂t2,q .

To prove that the flows ∂
∂t1,q are also Hamiltonian systems with respect to the

first Poisson bracket, we need first to show the validity of the following equivalence
relation:

res(Lq d logL) ∼ res(Lq−1dL). (3.14)

Indeed, from the commutativity of the operators L and Pε∂xP
−1 we obtain

d res
[
LqePε∂xP−1]

∼ q res
[
Lq−1ePε∂xP−1

dL
]
+ res

[
Lq
∑
k≥1

1
(k − 1)!

(Pε∂xP
−1)k−1 d(Pε∂xP

−1)

]
= q resLqdL+ res

[
LqePε∂xP−1

d(Pε∂xP
−1)
]
.

So from the obvious relations

LqePε∂xP−1
= Lq+1, d resLq+1 ∼ (q + 1) resLq dL

we arrive at
res[Lq d(Pε∂xP

−1)] ∼ resLq−1 dL. (3.15)

In a similar way we obtain the following equivalence relation

res[Lq d(Qε∂xQ
−1)] ∼ − resLq−1 dL. (3.16)

The equivalence relation (3.14) now readily follows from the above two equations.
By using (3.14) we obtain

dh1,q =
2

(q + 1)!
d res[Lq+1(logL− cq+1)]

∼ 2
q!

res[Lq(logL− cq+1) dL] +
2

(q + 1)!
res[Lq dL]

=
2
q!

res[Lq(logL− cq) dL]. (3.17)
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It yields the following identities

δH1,q

δv
= a1,q;0(x),

δH1,q

δu
= a1,q;1(x− ε)eu(x). (3.18)

Here aα,p;k are defined in (3.11). From the above identities we see that the flows
∂

∂t1,q that is defined by (2.24) are Hamiltonian systems of the form (3.5).
We now proceed to proving the bihamiltonian recursion relation (3.6). In the

case of α = 1, β = 2, we can rewrite (3.6) by using the identities (3.12) into the
form

[Λeu(x) − eu(x)Λ−1]a2,q−1;0(x) + v(x)[Λ− 1]a2,q−1;1(x− ε)eu(x)

= (q + 1)
[
a2,q;1(x)eu(x+ε) − a2,q;1(x− ε)eu(x)

]
. (3.19)

On the other hand, from the first and the second equality of the relation

(q + 1)
1

(q + 1)!
Lq+1 = L

1
q!
Lq =

1
q!
LqL (3.20)

we obtain respectively the following identities

(q + 1)a2,q;1(x) = a2,q−1;0(x+ ε) + v(x)a2,q−1;1(x) + eu(x)a2,q−1;2(x− ε),

(q + 1)a2,q;1(x) = a2,q−1;0(x) + v(x+ ε)a2,q−1;1(x) + eu(x+2ε)a2,q−1;2(x).

The recursion relation (3.19) can be easily verified by substituting the above two
expressions of a2,q;1(x) into its right hand side. In the case of α = 2, β = 2, the
recursion relation (3.6) can be also verified by using the identities in (3.20). Finally,
for the case of β = 1 the recursion relation (3.6) follows from the following trivial
identities

q
2
q!
Lq(logL− cq) = L

2
(q − 1)!

Lq−1(logL− cq−1)− 2
1
q!
Lq

=
2

(q − 1)!
Lq−1(logL− cq−1)L− 2

1
q!
Lq.

The theorem is proved. �

In [16], [33] an extended Toda hierarchy was defined by using the bihamilto-
nian recursion relation (3.6), and the Hamiltonians are defined implicitly from this
recursion relation. The above theorem shows that this extended Toda hierarchy
coincides with the one that is defined by (2.24), it also gives an explicit expression
of the densities of the Hamiltonians of the hierarchy. We list here the first few of
them

h1,−1 = B−u(x), h2,−1 = v(x),

h1,0 = B+(v(x) + v(x+ ε))− 2 v(x) + v(x)B−u(x),

h2,0 = v(x)2 + eu(x) + eu(x+ε),

(3.21)

where the operators B± are defined in (2.28). We will see below that these densities
of the Hamiltonians possess an important symmetry property which will be used
to define the tau functions for solutions of the extended Toda hierarchy.
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4. Tau Functions for the Extended Toda Hierarchy

We now proceed to define the tau functions for solutions of the extended Toda
hierarchy. Denote by R̃ the subset of homogeneous elements of the ring R, i. e.,
elements of the form

f =
∑
k≥0

fk(w, wx, . . . )εk,
2∑

i=1

∑
m≥1

mwi,m ∂fk

∂wi,m
= kfk,

where fk are homogeneous polynomials of e±u, v(m), u(m) for m ≥ 0 with deg fk =
deg f − k. From the definition of the extended Toda hierarchy (2.24) and the
densities of the hamiltonian (3.8) we know that ε ∂wα

∂tβ,q , hβ,q ∈ R̃. The degrees of
the flows are given in (2.31) and the degrees of hβ,q are given by

deg hβ,q = q +
3
2

+ µβ .

Lemma 4.1. The following formulae hold true:
∂ logL
∂tβ,q

= [Aβ,q, logL], β = 1, 2; q ≥ 0. (4.1)

Proof. From (2.18) we have[
∂(Pε∂xP

−1)
∂tβ,q

, Lm

]
+ [Pε∂xP

−1, [Aβ,q, L
m]] = 0.

The Jacobi identity and the commutativity between the operators L and Pε∂xP
−1

then imply the following identity[
∂(Pε∂xP

−1)
∂tβ,q

− [Aβ,q, P ε∂xP
−1], Lm

]
= 0.

Since the operator ∂(Pε∂xP−1)
∂tβ,q − [Aβ,q, P ε∂xP

−1] has the form
∑

k≥1 fkΛ−k with
coefficients fk being elements of R̃, we obtain from the last equality the formula

∂(Pε∂xP
−1)

∂tβ,q
− [Aβ,q, P ε∂xP

−1] = 0.

In a similar way we can also get the formula

∂(Qε∂xQ
−1)

∂tβ,q
− [Aβ,q, Qε∂xQ

−1] = 0.

So the lemma follows from the definition of logL and from the last two identities.
�

We introduce now the functions Ωα,p;β,q by the formula

(Λ− 1)Ωα,p;β,q := ε
∂hα,p−1

∂tβ,q
=

{
2
p! res([Aβ,q, L

p(logL− cp)]), α = 1;
1

(p+1)! res[Aβ,q, L
p+1], α = 2,

(4.2)

and by the homogeneity condition

Ωα,p;β,q ∈ R̃, deg Ωα,p;β,q = p+ q + 1 + µα + µβ , α, β = 1, 2; p, q ≥ 0. (4.3)

Note that in the above definition the second equality of (4.2) follows from the
definition (2.24), (3.8) and from the above lemma. The right hand side is a total
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x-derivative of a homogeneous element in R. Therefore Ωα,p;β,q ∈ R̃ and the
conditions (4.2) and (4.3) specify Ωα,p;β,q uniquely. The only exception is Ω1,0;1,0

that should be a homogeneous element of the degree 0. This is set to be

Ω1,0;1,0 = B−B+u.

The following theorem shows that Ωα,p;β,q is symmetric with respect to the pair of
its indices (α, p) and (β, q):

Theorem 4.2. The extended Toda hierarchy has the following tau-symmetry prop-
erty :

∂hα,p−1

∂tβ,q
=
∂hβ,q−1

∂tα,p
, α, β = 1, 2; p, q ≥ 0. (4.4)

Proof. Let us prove the theorem for the case when α = 1, β = 2, other cases are
proved in a similar way. From the second identity of (4.2) we obtain

∂h1,p−1

∂t2,q
=

2
p! (q + 1)!

res[(Lq+1)+, Lp(logL− cp)]

=
2

p! (q + 1)!
res[−(Lq+1)−, Lp(logL− cp)]

=
2

p! (q + 1)!
res[(Lp(logL− cp))+, (Lq+1)−]

=
2

p! (q + 1)!
res[(Lp(logL− cp))+, Lq+1] =

∂h2,q−1

∂t1,p
. (4.5)

Theorem is proved. �

From the above theorem and the definition (4.2) it follows that ∂Ωα,p;β,q

∂tσ,k is sym-
metric with respect to the three pairs of indices (α, p), (β, q), (σ, k). This property
justifies the following definition of tau function for the extended Toda hierarchy:

Definition. For any solution of the extended Toda hierarchy there exists a function
τ of the spatial and time variables x, tα,p, α = 1, 2, p ≥ 0, and of ε such that

Ωα,p;β,q = ε2
∂2 log τ
∂tα,p∂tβ,q

(4.6)

hold true for any α, β = 1, 2, p, q ≥ 0.

Recall that the solutions considered in this paper are assumed to be formal power
series in ε.

Since the first flow ∂
∂t1,0 of the extended Toda hierarchy coincides with the trans-

lation along the spatial variable x, we can modify the above definition of the tau
function by requiring that

∂ log τ
∂t1,0

=
∂ log τ
∂x

. (4.7)

Corollary 4.3. The densities of the Hamiltonians of the extened Toda hierarchy
have the following expressions in terms of the tau function:

hα,p = ε(Λ− 1)
∂ log τ
∂tα,p+1

, α = 1, 2; p ≥ −1. (4.8)
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Proof. From the definition of Ωα,p;1,0 we get

hα,p−1 =
∑
k≥1

εk−1

k!
∂k−1

x Ωα,p;1,0 =
∑
k≥1

εk+1

k!
∂k−1

x

∂2 log τ
∂tα,p∂t1,0

= ε(Λ− 1)
∂ log τ
∂tα,p

.

Here we used (4.7). The corollary is proved. �

Our notion of tau function for the extended Toda hierarchy follows that of Date,
Jimbo, Kashiwara and Miwa designed for the KP hierarchy [3]. Note that the above
corollary implies in particular the following relations of the dependent variables v, u
of the extended Toda hierarchy with the tau function:

v = ε
∂

∂t2,0
log

τ(x+ ε)
τ(x)

, u = log
τ(x+ ε)τ(x− ε)

τ2(x)
. (4.9)

In this formula we omit the dependence of the tau function on all the times tα,p

but the very first one t1,0 = x.

Remark 1. The above formulae mean that, the dependent variables u, v of the
extended Toda hierarchy are not normal coordinates in the sense of [7]. Because
of this the relationships between the tau-function and the Hamiltonian densities in
the present paper look more complicated than in the general setting of [7].

If we return back to the variable qn of the original Toda lattice equation (1.1),
then from the above relation we have

qn = log
τ(n)

τ(n− 1)
. (4.10)

So the tau function for the extended Toda hierarchy also agrees with the function
that was introduced by Hirota and Satsuma [19] to convert the Toda lattice equation
into a bilinear form. We will discuss the bilinear formulation of the extended Toda
hierarchy in a separate publication.

Remark 2. The dispersionless limit ε → 0 of the bihamiltonian structure (3.1),
(3.2) coincides with the canonical Poisson pencil on the loop space L(M) of the
Frobenius manifold M = MW̃ (1)(A1)

constructed in [10] on the orbit space of the
extended affine Weyl group W̃ (1)(A1). The Frobenius manifolds MW̃ (k)(Ak+m−1)

on the orbit spaces of more general extended affine Weyl groups W̃ (k)(Ak+m−1) of
the A-series are obtained by the dispersionless limits of extended Toda-like systems
associated with the difference Lax operators of the form

L = Λk + a1(x)Λk−1 + · · ·+ ak+m(x)Λ−m, ak+m(x) 6= 0.

This extended hierarchy coincides with the one associated with the Frobenius man-
ifold MW̃ (k)(Ak+m−1)

according to the general scheme of [7]. We will give details in
a separate publication. Recall that, in [10] there were also constructed Frobenius
manifolds on the orbit spaces of extended affine Weyl groups associated with the
Dynkin diagrams of the B C D E F G series. At the moment we do not know how
to construct Lax representation of the integrable hierarchies associated, according
to the results of [7], with these Frobenius manifolds. We plan to study this problem
in subsequent publications.



326 G. CARLET, B. DUBROVIN, AND Y. ZHANG

5. An Alternative Representation of the Extended Toda
Hierarchy—the Extended NLS Hierarchy

In this section we present an alternative representation of the extended Toda
hierarchy that is defined in the Section 2. We are to choose t2,0 as spatial variable
and write down the evolutionary PDEs that are satisfied by the functions u, v under
this new spatial variable. Let us redenote the time variables as follows:

T 1,p = t2,p, T 2,p = t1,p, p ≥ 0, (5.1)

and specify X = T 1,0 as the spatial variable. For the convenience of presentation,
we use the following quantities as the dependent variables:

w̃1(X, T ) ≡ ϕ = v(x− ε), w̃2(X, T ) ≡ ρ = eu(x). (5.2)

In terms of the tau function of the extended Toda hierarchy, these new dependent
variables have the expression

ϕ = ε(1− Λ−1)
∂ log τ
∂T 1,0

, ρ = exp[(1− Λ−1)(Λ− 1) log τ ]. (5.3)

Let us first proceed to writing down the Lax pair formalism for the hierarchy
that is satisfied by ϕ(X, T ), ρ(X, T ). Note that the extended Toda hierarchy is
the compatibility condition of the following linear systems

Lψ = λψ, (5.4)
∂ψ

∂tα,p
= ε−1Aα,pψ, (5.5)

where Aα,p are defined in (2.25) and λ is the spectral parameter. By using the
equation ε ∂t2,0ψ = (Λ + v)ψ, we can rewrite the linear system (5.4) in the form

Lψ = λψ (5.6)

with the operator L defined by

L = ε∂X + ρ(ε∂X − ϕ)−1. (5.7)

Here the pseudo-differential operator (ε∂X − ϕ)−1 has the expansion

(ε∂X − ϕ)−1 =
∑
k≥1

ak(ε ∂X)−k (5.8)

and the coefficients ak are uniquely defined by the relation

(ε∂X − ϕ)

(∑
k≥1

ak(ε ∂X)−k

)
= 1. (5.9)

For example, we have

a1 = 1, a2 = ϕ, a3 = −εϕX + ϕ2.

We can also reexpress the operators Aα,p as differential operators in ε∂X . This can
be easily done by the substitution

Λk 7→ (ε∂X − ϕ(x+ kε)) . . . (ε∂X − ϕ(x+ ε)). (5.10)
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So the linear systems in (5.5) can be expressed in the form

∂ψ

∂Tα,p
= ε−1Aα,pψ (5.11)

with

A1,p =
1

(p+ 1)!
(Lp+1)+, A2,p =

2
p!

(Lp(logL − cp))+, (5.12)

the subscript + here means to take the differential part of a pseudo-differential
operator. The pseudo-differential operator logL is obtained from logL by the
substitution of (5.10) and

Λ−k 7→ (ε∂X − ϕ(x− (k − 1)ε))−1 . . . (ε∂X − ϕ(x))−1. (5.13)

The coefficients of logL can be expressed in terms of the new dependent variables
ϕ, ρ and their X-derivatives. This can be achieved by using the system of equations
(2.12) to express ∂mw̃α

∂xm , m ≥ 1, in terms of ϕ, ρ and their X-derivatives. For
example, we have

∂ϕ

∂x
= ∂X

[
log ρ+

ε2

12ρ3
(ρρXX − ρ2

X − ρϕ2
X) +O(ε4)

]
, (5.14)

∂ρ

∂x
= ∂X

[
ϕ− ε2

6ρ2
(ρϕXX − ϕXρX) +O(ε4)

]
. (5.15)

Now the compatibility condition of the linear systems (5.6), (5.11) takes the form

ε
∂L
∂Tα,p

= [Aα,p, L], α = 1, 2; p ≥ 0. (5.16)

The T 1,0-flow coincides with the shift along X, and the T 2,0-flow is given by (5.14)
and (5.15). The T 1,1-flow has the form

∂ϕ

∂T 1,1
= ∂X(−ε ϕX + ϕ2 + 2 ρ),

∂ρ

∂T 1,1
= ∂X(ε ρX + 2ϕρ).

(5.17)

This integrable system appears in the study of nonlinear water waves in [2], [20].
In terms of the new variables

q = eε−1∂−1
X v = ρeε−1∂−1

X ϕ, r = eue−ε−1∂−1
X v = e−ε−1∂−1

X ϕ, (5.18)

or, equivalently,

ρ = q r, ϕ = −ε rX
r
,

the above system takes the form

∂q

∂T 1,1
= ε qXX + 2ε−1q2r,

∂r

∂T 1,1
= −ε rXX − 2ε−1qr2. (5.19)

These functions have the the following simple expressions in terms of the tau func-
tion of the extended Toda hierarchy:

q =
τ(x+ ε)
τ(x)

, r =
τ(x− ε)
τ(x)

. (5.20)
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Under the constraints ε = i, r = ±q∗ the system (5.19) is reduced to the well
known nonlinear Schrödinger equation (NLS) [32]. Due to this fact, we will call the
hierarchy (5.16) the extended NLS hierarchy.

The extended NLS hierarchy also possesses a bihamiltonian structure. The re-
lated compatible Poisson brackets are given by

{ϕ(X), ϕ(Y )}1 = {ρ(X), ρ(Y )}1 = 0,

{ϕ(X), ρ(Y )}1 = δ′(X − Y );
(5.21)

{ϕ(X), ϕ(Y )}2 = 2δ′(X − Y ),

{ϕ(X), ρ(Y )}2 = ϕ(X)δ′(X − Y ) + ϕXδ(X − Y )− εδ′′(X − Y ),

{ρ(X), ρ(Y )}2 = [ρ(X)∂X + ∂Xρ(X)]δ(X − Y ).

(5.22)

This Poisson pencil was given in [1] for the bihamiltonian structure of the system
(5.17). It is easy to verify that the extended NLS hierarchy hierarchy (5.16) has
the Hamiltonian form

∂w̃α

∂T β,q
= {w̃α(X), H̃β,q}1, α, β = 1, 2; q ≥ 0. (5.23)

Here the Hamiltonians H̃β,q =
∫
h̃β,qdX are defined by

h̃1,q =
1

(q + 2)!
resLq+2, h̃2,q =

2
(q + 1)!

res[Lq+1(logL − cq+1)] (5.24)

and the residue of a pseudo-differential operator equals the coefficient of ∂−1
X . The

hierarchy satisfies the following bihamiltonian recursion relation:

{w̃α(X), H̃β,q−1}2 =
(
q +

1
2

+ µ̃β

)
{w̃α(X), H̃β,q}1 + R̃γ

β {w̃
α(X), H̃γ,q−1}1,

α, β = 1, 2; q ≥ 0. (5.25)

Here µ̃1 = −µ̃2 = 1
2 , R̃

α
β = 2δα

1 δβ2.

Remark. In the “dispersionless” limit ε→ 0 the substitution (5.2) becomes

ϕ = v, ρ = eu. (5.26)

This coincides with the Legendre type transformation S2 of [6] (see Appendix B)
transforming the Frobenius manifold associated with Toda lattice with the potential

FToda =
1
2
v2u+ eu

to the Frobenius manifold associated with NLS with the potential

FNLS =
1
2
ϕ2ρ+

1
2
ρ2

[
log ρ− 3

2

]
(see Example B.1 in [6]). It looks plausible that the trick similar to the above
one will work also for an arbitrary semisimple Frobenius manifold in order to lift
the Legendre-type trasnforms of the Frobenius manifold to a transformation of the
integrable hierarchy associated with this manifold. We will describe these transfor-
mations in a separate publication.
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6. The Extended Toda Hierarchy and the CP 1 Topological
Sigma Model

Let φ1 = 1 ∈ H0(CP 1), φ2 = ω ∈ H2(CP 1) be the two primary fields for the
CP 1 topological sigma model. The 2-form ω is assumed to be normalized by the
condition ∫

CP 1
ω = 1.

The free energy of the CP 1 topological sigma-model is a function of infinite number
of coupling parameters

t = (t1,0, t2,0, t1,1, t2,1, . . . )
and of ε defined by the following genus expansion form:

F(t; ε) =
∑
g≥0

ε2g−2Fg(t). (6.1)

The parameter ε is called here the string coupling constant, and the function Fg =
Fg(t) is called the genus g free energy which is given by

Fg =
∑ 1

m!
tα1,p1 . . . tαm,pm〈τp1(φα1) . . . τpm

(φαm
)〉g, (6.2)

where τp(φα) are the gravitational descendent of the primary fields with coupling
constants tα,p, and the rational numbers 〈τp1(φα1) . . . τpm

(φαm
)〉g are given by the

genus g Gromov–Witten invariants and their descendents of CP 1:

〈τp1(φα1) . . . τpm
(φαm

)〉g

=
∑

β

qβ

∫
[M̄g,m(CP 1,β)]virt

ev∗1 φα1 ∧ ψ
p1
1 ∧ · · · ∧ ev∗m φαm

∧ ψpm
m .

Here M̄g,m(CP 1, β) is the moduli space of stable curves of genus g with m markings
of the given degree β ∈ H2(CP 1; Z), evi is the evaluation map

evi : M̄g,m(CP 1, β) → CP 1

corresponding to the i-th marking, ψi is the first Chern class of the tautological
line bundle over the moduli space corresponding to the i-th marking. According
to the divisor axiom [22] the dependence of the Gromov–Witten potential on the
indeterminate q appears only through the combination q et2,0

. We will therefore
omit the dependence on q in the formulae.

The conjectural relation of the CP 1 topological sigma model with the extended
Toda hierarchy can now be stated in a similar way as the Kontsevich–Witten result
[31], [21], [30]2 does for the relation of the 2d topological gravity with the KdV
hierarchy. Namely,

Theorem 6.1 (Toda conjecture). The functions

u(x, t; ε) = F(t1,0 + x+ ε)− 2F(t1,0 + x) + F(t1,0 + x− ε),

v(x, t; ε) = ε
∂

∂t2,0
[F(t1,0 + x+ ε)−F(t1,0 + x)]

(6.3)

2An alternative proof was given recently by Okounkov in [25].
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satisfy the equations of the extended Toda hierarchy (2.24). In these formulae we
write explicitly down only those arguments of the function F that have been modified.
This particular solution is uniquelly specified by the string equation∑

p≥1

tα,p ∂F
∂tα,p−1

+
1
ε2
t1,0 t2,0 =

∂F
∂t1,0

. (6.4)

The bihamiltonian description of the extended Toda hierarchy obtained in Sec-
tion 3 above along with the tau-structure described in Section 4 enables one to
rewrite the bihamiltonain recursion (3.6) in the form of a recursion for the correla-
tors of the CP 1 topological sigma-model. Namely, let us introduce, following [31],
the functions 〈〈τp(φα)τq(φβ) . . .〉〉 of t, ε by

〈〈τp1(φα1) . . . τpm
(φαm

)〉〉 = εm
∂

∂tα1,p1
. . .

∂

∂tαm,pm
F(t; ε). (6.5)

Then the following recursion relations hold true

(n+ 1)(Λ− 1)〈〈τn(ω)〉〉 = v(Λ− 1)〈〈τn−1(ω)〉〉+ (Λ + 1)〈〈τ0(ω)τn−1(ω)〉〉, (6.6)

n(Λ− 1)〈〈τn(1)〉〉 = v(Λ− 1)〈〈τn−1(1)〉〉 − 2(Λ− 1)〈〈τn−1(ω)〉〉
+ (Λ + 1)〈〈τ0(ω)τn−1(1)〉〉. (6.7)

In these recursion relations

Λ = exp ε
∂

∂t1,0
, v = ε(Λ− 1)

∂F
∂t2,0

.

We are to emphasize that, these recursion relations hold true for an arbitrary so-
lution of extended Toda hierarchy if one defines the “correlators” by the equation
(6.5) with the function F corresponding to the logarithm of the tau function of this
solution3. The needed solution is specified by (6.6), (6.7) together with the string
equation. In this case the recursion relations describe the topology of the forgetting
map [22]

M̄g,n(CP 1) → M̄g,n−1(CP 1).
Due to the discussion of the last Section, we can equally state Theorem 6.1 as

follows. The free energy (6.1) is the logarithm of a particular tau function of the
extended NLS hierarchy (5.16).

The proof of Theorem 6.1 at the genus one approximation can be obtained using
results of [5], [9], [12], [14], [13], [33], see also important papers [16], [27], [26]. The
crucial point in proving the validity of this conjecture in full genera is the Givental’s
result on the Virasoro constraints for CP 1 [18], [17]. Probably, one can derive our
Toda conjecture from the results of Okounkov and Pandharipande [27], [26] using
the arguments of Getzler’s paper [16] along with the Givental’s result. From our
point of view the most natural way of proving the Conjecture is that to use the
properties of the Virasoro symmetries of the extended Toda hierarchy and the
uniqueness of solution of the loop equation [11], [7]. The details of the proof along
with the construction of the Virasoro symmetries of the extended Toda hierarchy
will be published in a separate paper (see [8]).

3In the literature sometimes these recursion relations together with the Toda equations (2.12)

are called Toda conjecture.
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