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Abstract: Hamiltonian perturbations of the simplest hyperbolic equation ut +
a(u)ux = 0 are studied. We argue that the behaviour of solutions to the perturbed
equation near the point of gradient catastrophe of the unperturbed one should be essen-
tially independent on the choice of generic perturbation neither on the choice of generic
solution. Moreover, this behaviour is described by a special solution to an integrable
fourth order ODE.

1. Introduction

In the present work we continue the study of Hamiltonian perturbations of hyperbolic
PDEs initiated by the paper [10]. We consider here the simplest case of a single equation
in one spatial dimension,

ut + a(u)ux + ε
[
b1(u)uxx + b2(u)u

2
x

]

+ε2
[
b3(u)uxxx + b4(u)ux uxx + b5(u)u

3
x

]
+ · · · = 0. (1.1)

Here ε is a small parameter; the coefficient of εk is a graded homogeneous polynomial
in the derivatives ux , uxx , …of the total degree (k + 1),

deg u(n) = n, n > 0.

The unperturbed equation

ut + a(u)ux = 0 (1.2)

can be considered as the simplest example of a nonlinear hyperbolic system; the smooth
functions b1(u), b2(u), etc. determine the structure of the perturbation.
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Such expansions arise, e.g., in the study of the long wave (also called dispersionless)
approximations of evolutionary PDEs; see Sect. 5 below for other mechanisms that yield
perturbed equations of the form (1.1).

The unperturbed equation (1.2) admits a Hamiltonian description of the form

ut + {u(x), H0} ≡ ut + ∂x
δH0

δu(x)
= 0, (1.3)

H0 =
∫

f (u) dx, f ′′(u) = a(u),

{u(x), u(y)} = δ′(x − y). (1.4)

The perturbed equations of the form (1.1) are considered up to equivalencies defined
by Miura-type transformations [9] of the form

u �→ u +
∑
k≥1

εk Fk

(
u; ux , . . . , u(k)

)
, (1.5)

where Fk(u; ux , . . . , u(k)) is a graded homogeneous polynomial in the derivatives ux ,
uxx , . . . of the degree

deg Fk = k.

Using results of [15] (see also [6, 9]) one can show that any Hamiltonian perturbation
of Eq. (1.2) can be reduced to the form

ut + ∂x
δH

δu(x)
= 0, H = H0 + ε H1 + ε2 H2 + · · · ,

Hk =
∫

hk

(
u; ux , . . . , u(k)

)
dx, deg hk

(
u; ux , . . . , u(k)

)
= k. (1.6)

Recall that for H = ∫
h(u; ux , uxx , . . . ) dx,

δH

δu(x)
= E h,

where

E = ∂

∂u
− ∂x

∂

∂ux
+ ∂2

x
∂

∂uxx
− · · ·

is the Euler – Lagrange operator. The following well known property of the Euler
– Lagrange operator will be often used in this paper: E h = 0 iff there exists h1 =
h1(u; ux , . . . ) such that h = const + ∂x h1. Note that we do not specify here the class
of functions u(x). The Hamiltonians H = H [u] can be ill defined (e.g., a divergent
integral) but the evolutionary PDE (1.6) makes sense. The crucial point for the sub-
sequent considerations is the following statement (see, e.g., [7]): for two commuting
Hamiltonians

{H, F} = 0 ⇔ E
(
δH

δu(x)
∂x

δF

δu(x)

)
= 0
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the evolutionary PDEs

ut + ∂x
δH

δu(x)
= 0 and us + ∂x

δF

δu(x)
= 0

commute,

(ut )s = (us)t .

For sufficiently small ε one expects to see no major differences in the behaviour of
solutions to the perturbed and unperturbed Eqs. (1.1) and (1.2) within the regions where
the x-derivatives are bounded. However the differences become quite serious near the
critical point (also called the point of gradient catastrophe) where the derivatives of
solution to the unperturbed equation tend to infinity.

Although the case of small viscosity perturbations has been well studied and under-
stood (see [3] and references therein), the critical behaviour of solutions to general
conservative perturbations (1.6) to our best knowledge has not been investigated (see
the papers [32, 12, 17–19, 23–25, 28] for the study of various particular cases).

The main goal of this paper is to formulate the Universality Conjecture about the
behaviour of a generic solution to the general perturbed Hamiltonian equation near the
point of gradient catastrophe of the unperturbed solution. We argue that, up to shifts,
Galilean transformations and rescalings this behaviour essentially does not depend on
the choice of solution neither on the choice of the equation (provided certain genericity
assumptions hold valid). Moreover, this behaviour near the point (x0, t0, u0) is given by

u � u0 + a ε2/7U
(

b ε−6/7 (x − a0(t − t0)− x0) ; c ε−4/7(t − t0)
)

+ O
(
ε4/7

)
,

(1.7)

where U = U (X; T ) is the unique real smooth for all X ∈ R solution to the fourth order
ODE,

X = T U −
[

1

6
U 3 +

1

24

(
U ′2 + 2U U ′′) +

1

240
U I V

]
, U ′ = dU

d X
, etc., (1.8)

depending on the parameter T . Here a, b, c are some constants that depend on the choice
of the equation and the solution, a0 = a(v0).

Equation (1.8) appeared in [4] (for the particular value of the parameter T = 0) in
the study of the double scaling limit for the matrix model with the multicritical index
m = 3. It was observed that generic solutions to (1.8) blow up at some point of real
line; the conjecture about existence of a unique smooth solution has been formulated. To
our best knowledge, this conjecture remains open, although there are some supporting
evidences [20].

The present paper is organized as follows. In Sect. 2 we classify all Hamiltonian per-
turbations up to the order ε4. They are parametrized by two arbitrary functions c(u), p(u).
For the simplest example the perturbations of the Riemann wave equation ut + u ux = 0
read

ut + u ux +
ε2

24

[
2c uxxx + 4c′ux uxx + c′′u3

x

]

+ε4
[
2p uxxxxx + 2p′ (5uxx uxxx + 3ux uxxxx )

+p′′ (7ux u2
xx + 6u2

x uxxx

)
+ 2p′′′u3

x uxx

]
= 0. (1.9)
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For c(u) = const, p(u) = 0 this is nothing but the Korteweg - de Vries (KdV)
equation; for other choices of the functions c(u), p(u) it seems not to be an integra-
ble PDE. Remarkably, for arbitrary choice of the functional parameters the perturbed
equation possesses an infinite family of approximate symmetries (see [2, 9, 22, 30] for
discussion of approximate symmetries). In principle our approach can be applied to
classifying the Hamiltonian perturbations of higher orders. However, higher order terms
do not affect the type of critical behaviour.

In Sect. 3 we establish an important property of quasitriviality of all perturbations
(cf. [9, 10, 27]). The quasitriviality is given by a substitution

u �→ u + ε2 K2 (u; ux , uxx , uxxx ) + ε4 K4

(
u; ux , . . . , u(6)

)
(1.10)

that transforms, modulo O(ε6) the unperturbed equation (1.2) to (1.6). Here the func-
tions K2 and K4 depend rationally on the x-derivatives. We also formulate the first
part of our Main Conjecture that says that, for sufficiently small ε the solution to the
perturbed system exists at least on the same domain of the (x, t)-plane where the unper-
turbed solution is defined. In Sect. 4 we briefly discuss existence of a bihamiltonian
structure compatible with the perturbation (see also Appendix below). Some examples
of perturbed Hamiltonian equations are described in Sect. 5. In Sect. 6 we recollect some
properties of the ODE (1.8) and we formulate the second part of the Main Conjecture
describing the special function U (X; T ) in (1.7) as a particular solution to (1.8). Finally,
in Sect. 7 we give the precise formulation of the Universality Conjecture (Main Con-
jecture, Part 3) and give some evidences supporting it1. Because of lack of space we
do not consider the numerical evidences supporting the idea of Universality; they will
be given in a subsequent publication (see also [16]). In the last section we outline the
programme of further researches towards understanding of universality phenomena of
critical behaviour in general Hamiltonian perturbations of hyperbolic systems.

2. Hamiltonian Perturbations of the Riemann Wave Equation

Let us start with the simplest case of Hamiltonian perturbations of the equation

vt + v vx = 0 ⇔ vt + {v(x), H0} = 0,

{v(x), v(y)} = δ′(x − y),

H0 =
∫
v3

6
dx . (2.1)

Lemma 2.1. Up to the order O(ε4), all Hamiltonian perturbations of (2.1) can be re-
duced to the form

ut + ∂x
δH

δu(x)
= 0,

H =
∫ [

u3

6
− ε2 c(u)

24
u2

x + ε4
(

p(u)u2
xx + s(u)u4

x

)]
dx, (2.2)

where c(u), p(u), s(u) are arbitrary functions. Moreover, the function s(u) can be elim-
inated by a Miura-type transform.

1 Perhaps, only this Part 3 deserves the name of the Main Conjecture. However, the precise formulation of
it depends on the first two parts.
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Proof. The Hamiltonian must have the form

H = H0 + εH1 + · · · + ε4 H4,

where the density of Hk is a graded homogeneous polynomial of the degree k. So, the
density of H1 is a total derivative:

H1 =
∫
α(u)ux dx, α(u)ux = ∂x A(u), A′(u) = α(u).

The density of the Hamiltonian H2 modulo total derivatives must have the form

−c(u)

24
u2

x

for some function c(u). Similarly, H3 must have the form

H3 =
∫

c1(u)u
3
x dx .

Here c1(u) is another arbitrary function.
Let us show that H3 can be eliminated by a Miura-type transform. Let us look for it

in the form

u �→ u + ε{u(x), F} +
ε2

2
{{u(x), F}, F} + · · · , (2.3)

choosing

F = ε2
∫
α(u)u2

x dx .

Such a transformation preserves the Poisson bracket. The change of the Hamiltonian H
will be given by

δH = ε {F, H} + O(ε4).

At the order ε3 one has

δH = ε3
∫ [

1

2
α′(u)u2

x − ∂x (α ux )

]
u ux dx = ε3

2

∫
α(u)u3

x dx .

So, choosing α(u) = −2c1(u) we kill the terms cubic in ε.
The rest of the proof is obvious: in order 4 all the Hamiltonians have the form

H4 =
∫ [

p(u)u2
xx + s(u)u4

x

]
dx

for some functions p(u), s(u). The last term can be killed by the canonical transformation
of the form (2.3) generated by the Hamiltonian

F = −ε
3

2

∫
s(u)u3

x dx .

The lemma is proved. 	
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Choosing s(u) = 0 one obtains the family (1.9) of Hamiltonian perturbations of the
Riemann wave equation depending on two arbitrary functions c = c(u), p = p(u).

We will now compare the symmetries of (2.1) and those of the perturbed system
(2.2). It is easy to see that the Hamiltonian equation

vs + a(v)vx = 0 ⇔ vs + {v(x), H0
f } = 0, (2.4)

H0
f =

∫
f (v) dx, f ′′(v) = a(v)

is a symmetry of (2.1) for any a(v),

(vt )s = (vs)t .

Moreover, the Hamiltonians H0
f commute pairwise,

{H0
f , H0

g } = 0 ∀ f = f (u), ∀g = g(u).

This family of commuting Hamiltonians is complete in the following sense.

Lemma 2.2. The family of commuting Hamiltonians H0
f is maximal, i.e., if H =∫

h(u; ux , uxx , . . . ) dx commutes with all functionals of the form H0
f then

h(u; ux , uxx , . . . ) = g(u) + ∂x (. . . )

for some function g(u).

We will now construct a perturbation of the Hamiltonians H0
f preserving the commu-

tativity modulo O(ε6). Like in Lemma 2.1 one can easily check that all the perturbations
up to the order 4 must have the form

H f =
∫ {

f (u)− ε2 c f (u)

24
u2

x + ε4
[

p f (u)u
2
xx + s f (u)u

4
x

]}
dx

for some functions c f (u), p f (u), s f (u). To ensure commutativity one has to choose
these functions as follows.

Lemma 2.3. For any f = f (u) the Hamiltonian flow

us + ∂x
δH f

δu(x)
= 0, H f =

∫
h f dx,

h f = f − ε2

24
c f ′′′u2

x + ε4

[(
p f ′′′ +

c2 f (4)

480

)
u2

xx

−
(

c c′′ f (4)

1152
+

c c′ f (5)

1152
+

c2 f (6)

3456
+

p′ f (4)

6
+

p f (5)

6
− s f ′′′

)
u4

x

]
(2.5)

is a symmetry, modulo O(ε6), of (2.2). Moreover, the Hamiltonians H f commute pair-
wise:

{H f , Hg} = O(ε6)

for arbitrary two functions f (u) and g(u).
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Proof. One has to check the identity

E
(
δH f

δu(x)
∂x
δHg

δu(x)

)
= 0,

where E is the Euler – Lagrange operator. We leave this calculation as an exercise for
the reader.

Observe that for f = u3

6 the Hamiltonian H f coincides with (2.2). Also for f = u

(the Casimir of the Poisson bracket) and f = u2

2 (the momentum) the perturbation is
trivial,

H f = H0
f .

We do not know under what conditions on the functional parameters c(u), p(u) higher
order perturbations can be added to the Hamiltonians (2.5) preserving the commutativity.
The examples of Sect. 5 show that this can be done at least for some particular choices
of the functions. However, the remark at the end of Sect. 4 suggests that the answer is
not always affirmative. 	


3. Solutions to the Perturbed Equations. Quasitriviality

We address now the problem of existence of solutions to the perturbed equation for
t < tC . We will construct a formal asymptotic solution to (2.2) (and also to all commut-
ing flows (2.5)) valid on the entire interval t < tC . The basic idea is to find a substitution

v �→ u = v + O(ε)

that transforms all solutions to all unperturbed equations of the form (2.4) to solutions
to the corresponding perturbed equations (2.5).

Quasitriviality Theorem. There exists a transformation

v �→ u = v +
4∑

k=1

εk Fk(u; ux , . . . , u(nk )), (3.1)

where Fk are rational functions in the derivatives homogeneous of the degree k, indepen-
dent of f = f (u), that transforms all monotone solutions of (2.4) to solutions, modulo
O(ε6), of (2.5) and vice versa.

The general quasitriviality theorem for evolutionary PDEs admitting a bihamiltonian
description was obtained in [10]2. As we do not assume a priori existence of a biham-
iltonian structure (see, however, the next section), we will give here a direct proof of
quasitriviality for the family of commuting Hamiltonians (2.5).

For convenience we chose

s(u) = c(u) c′′′(u)
3456

.

2 In a very recent paper [27] the quasitriviality result was proved, in all orders in ε, for an arbitrary per-
turbation of the Riemann wave equation vt + v vx = 0. It has also been shown that the same transformation
trivializes also all symmetries of the perturbed equation.
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Theorem 3.1. Introduce the following Hamiltonian

K =
∫ [

1

24
ε c(u) ux log ux + ε3

(
c2(u)

5760

u3
xx

u3
x

− p(u)

4

u2
xx

ux

)]
dx .

Then the canonical transformation

u �→ v = u + ε{u(x), K } +
ε2

2
{{u(x), K }, K } + · · ·

satisfies

H f =
∫

f (v) dx + O(ε6) ∀ f (u).

The inverse transformation is the needed quasitriviality. It is generated by the Ham-
iltonian

−K =
∫ [

− 1

24
ε c(v) vx log vx − ε3

(
c2(v)

5760

v3
xx

v3
x

− p(v)

4

v2
xx

vx

)]
dx,

that is

v �→ u = v − ε{v(x), K } +
ε2

2
{{v(x), K }, K } + · · ·

= v +
ε2

24
∂x

(
c
vxx

vx
+ c′vx

)
+ ε4∂x

[
c2

(
v3

xx

360 v4
x

− 7 vxxvxxx

1920 v3
x

+
vxxxx

1152 v2
x

)

x

+c c′
(

47 vxx
3

5760 vx
3 − 37 vxx vxxx

2880 vx
2 +

5 vxxxx

1152 vx

)
+ c′2

(
vxxx

384
− vxx

2

5760 vx

)

+c c′′
(
vxxx

144
− vxx

2

360 vx

)

+
1

1152

(
7 c′ c′′ vx vxx + c′′2 vx

3 + 6 c c′′′ vx vxx + c′ c′′′ vx
3 + c c(4) vx

3
)

+p

(
vxx

3

2 vx
3 − vxx vxxx

vx
2 +

vxxxx

2 vx

)
+ p′vxxx + p′′ vx vxx

2

]
. (3.2)

In this formula c = c(v), p = p(v).

Main Conjecture, Part 1. Let v = v(x, t) be a smooth solution to the unperturbed
equation vt + a(v) vx = 0 defined for all x ∈ R and 0 ≤ t < t0 monotone in x for any
t . Then there exists a solution u = u(x, t; ε) to the perturbed equation

ut + ∂x
δH f

δu(x)
= 0, f ′′(u) = a(u)

defined on the same domain in the (x, t)-plane with the asymptotic at ε → 0 of the form
(3.2).
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4. Are All Hamiltonian Perturbations Also Bihamiltonian?

All unperturbed equations

vs + a(v) vx = 0

are bihamiltonian w.r.t. the Poisson pencil (see the definition in [9])

{v(x), v(y)}1 = δ′(x − y),

{v(x), v(y)}2 = q(v(x))δ′(x − y) +
1

2
q ′(v)vxδ(x − y) (4.1)

for an arbitrary function q(u),

vs + {v(x), H1}1 = vs + {v(x), H2}2 = 0, H1 =
∫

f1(v) dx, H2 =
∫

f2(v) dx

f ′′
1 (v) = a(v) = q(v) f ′′

2 (v) +
1

2
q ′(v) f ′

2(v).

To show that (4.1) is a Poisson pencil it suffices to observe that the linear combination

{v(x), v(y)}2 − λ {v(x), v(y)}1 = (q(v(x))− λ) δ′(x − y)

+
1

2
q ′(v)vxδ(x − y) (4.2)

is the Poisson bracket associated [11] with the flat metric

ds2 = dv2

q(v)− λ
.

Theorem 4.1. For c(u) 
= 0 the commuting Hamiltonians (2.5) admit a unique biham-
iltonian structure obtained by a deformation of (4.1) with q(u) satisfying

p(u) = c2

960

[
5

c′

c
− q ′′

q ′

]
, s(u) = 0. (4.3)

The proof of this result along with the explicit formula for the deformed bihamiltonian
structure is sketched in the Appendix below.

The assumption c 
= 0 is essential: one can check that for c(u) ≡ 0 the Hamiltonians
(2.5) commute, modulo O(ε6), only w.r.t. the standard Poisson bracket (1.4). On the
other hand it turns out that for this particular choice of the functional parameters the
deformation of commuting Hamiltonians cannot be extended to the order O(ε8).

5. Examples

Example 1. For c(u) = c0 = const, p(u) = s(u) = 0 one obtains from (2.2) the KdV
equation

ut + u ux + c0
ε2

12
uxxx = 0.
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Choosing in (2.5)

f (u) = uk+2

(k + 2)!
one obtains the Hamiltonians of the KdV hierarchy

∂u

∂tk
+ ∂x

δHk

δu(x)
= 0, Hk =

∫
hk dx, k ≥ 0

hk = uk+2

(k + 2)! − c0
ε2

24

uk−1

(k − 1)!u2
x

+ c2
0
ε4

96

[
uk−2

5 (k − 2)!u2
xx − uk−4

36 (k − 4)!u4
x

]
+ O(ε6).

The quasitriviality transformation (3.2) takes the form [2, 9]

v �→ u = v + ∂2
x

[
ε2

24
c0 log vx + c0

2ε4
(

v3
xx

360 v4
x

− 7 vxxvxxx

1920 v3
x

+
vxxxx

1152 v2
x

)]

+O(ε6). (5.1)

Example 2. The Volterra lattice

q̇n = qn(qn+1 − qn−1) (5.2)

(also called difference KdV) has the following bihamiltonian structure [13]

{qn, qm}1 = 2qnqm(δn+1,m − δn,m+1), (5.3)

q̇n = {qn, H1}1, H1 = 1

2

∑
log qn,

{qn, qm}2 = qnqm

{[qn + qm

2
− 2

] (
δn,m+1 − δn,m−1

)

+
1

2
δn,m+2 − 1

2
δn,m−2

}
, (5.4)

q̇n = {qn, H2}2, H2 =
∑

qn .

After substitution

qn = ev(nε)

and division by 4ε one arrives at the following bihamiltonian structure:

{v(x), v(y)}1 = 1

4ε
[δ(x − y + ε)− δ(x − y − ε)]

= δ′(x − y) +
ε2

3
δ′′′(x − y) + · · · , (5.5)



Hamiltonian Perturbations of Hyperbolic Systems of Conservation Laws, II 127

{v(x), v(y)}2 =
(

1 − ev(x)
)
δ′(x − y)− 1

2
evvxδ(x − y)

+ε2
[

1

12
(2 − 5 ev)δ′′′(x − y)− 5

8
evvxδ

′′(x − y)

−3

8
ev(vxx + v2

x )δ
′(x−y)− 1

12
ev(vxxx + 3vxvxx + v3

x )δ(x−y)

]
+ O(ε4). (5.6)

To compare this bihamiltonian structure with the one obtained in Theorem 4.1 the Pois-
son bracket (5.5) must be reduced to the standard form

{u(x), u(y)}1 = δ′(x − y) (5.7)

by means of the transformation

u =
√

ε∂x

sinh ε∂x
v = v − ε2

12
vxx +

ε4

160
vxxxx + O(ε6).

After the transformation the second bracket takes the form

{u(x), u(y)}2 =
(

1 − eu(x)
)
δ′(x − y)− 1

2
euuxδ(x − y)

−ε2eu(x)
[

1

4
δ′′′(x − y) +

3

8
uxδ

′′(x − y) +
1

24
(7uxx + 5u2

x )δ
′(x − y)

+
1

24
(2uxxx + 4ux uxx + u3

x )δ(x − y)

]
+ O(ε4). (5.8)

We leave as an exercise for the reader to compute the terms of order ε4 and to verify that
the Poisson bracket (5.8) is associated with the functional parameters chosen as follows

c(u) = 2, p(u) = − 1

240
, q(u) = 1 − eu, s(u) = 1

4320
.

Example 3. The Camassa – Holm equation [5] (see also [14])

vt − ε2vxxt = 3

2
v vx − ε2

[
vxvxx +

1

2
v vxxx

]
(5.9)

admits a bihamiltonian description (cf. [21]) after doing the following Miura-type trans-
formation

u = v − ε2vxx . (5.10)

The bihamiltonian structure reads

{u(x), u(y)}1 = δ′(x − y)− ε2δ′′′(x − y), (5.11)

{u(x), u(y)}2 = u(x)δ′(x − y) +
1

2
uxδ(x − y). (5.12)

The Casimir H−1 of the first Poisson bracket analytic in ε has the form

H−1 =
∫

h−1dx, h−1 = u(x).
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Applying the bihamiltonian recursion procedure one obtains a sequence of commuting
Hamiltonians Hk = ∫

hkdx of the hierarchy,

h0 = 1

2
u v, h1 = 1

8
[v3 + u v2], . . . .

The corresponding Hamiltonian flows

utk = {u(x), Hk}1 ≡ (1 − ε2∂2
x )∂x

δHk

δu(x)

read

ut0 = ux , ut1 = 3

2
v vx − ε2

[
vxvxx +

1

2
v vxxx

]
, . . . .

The last equation reduces to (5.9) after the substitution (5.10).
To compare the commuting Hamiltonians with those given in (2.5) one must first

reduce the first Poisson bracket to the standard form {ũ(x), ũ(y)}1 = δ′(x − y) by the
transformation

ũ =
(

1 − ε2∂2
x

)−1/2
u = u +

1

2
ε2uxx +

3

8
ε4uxxxx + · · · .

After the transformation the Camassa – Holm equation will read

ũt = 3

2
ũ ũx + ε2(2ũx ũxx + ũ ũxxx ) + ε4(5 ũxx ũxxx + 3 ũx ũxxxx + ũ ũxxxxx ) + · · · .

It is easy to see that the commuting Hamiltonians of Camassa – Holm hierarchy are
obtained from (2.5) by the specialization

c(u) = 8 u, p(u) = u

3
, q(u) = u, s(u) = 0.

6. Introducing a Special Function

Let us recall some properties of the differential equation

X = T U −
[

1

6
U 3 +

1

24
(U ′2 + 2U U ′′) +

1

240
U I V

]
(6.1)

often considered as a 4th order analogue of the classical Painlevé-I equation. First, it can
be interpreted as a monodromy preserving deformation of the following linear differen-
tial operator with polynomial coefficients

∂ψ

∂z
= Wψ, (6.2)

where the matrix W reads

W = − 1

120

(
12UU ′ + 8zU ′ + U ′′′ 2(16z2 + 8z U + 6U 2 + U ′′ − 60T )

2w21 −12UU ′ − 8zU ′ − U ′′′
)
,
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where

w21 = 32 z3 − 16z2U − 2z(2U 2 + U ′′ + 60 T ) + 8U 3 + 2U ′′U − U ′2 + 120X.

Indeed, it coincides with the compatibility conditions

WX − Uz + [W,U] = 0

of the linear system (6.2) with

∂ψ

∂X
= Uψ, U =




0 −1

2U − 2z 0


 . (6.3)

Moreover, the dependence of (6.2) on T is isomonodromic iff the function U (X) depends
also on the parameter T according to the KdV equation

UT + U U ′ +
1

12
U ′′′ = 0. (6.4)

This is the spelling of the compatibility condition of the linear system (6.2), (6.3) with

∂ψ

∂T
= Vψ, V = 1

6

(
U ′ 2U + 4z

8z2 − 4zU − 4U 2 − U ′′ −U ′
)
. (6.5)

The Painlevé property readily follows from the isomonodromicity: singularities in the
complex (X, T )-plane of general solution to (6.1), (6.4) are poles [20].

Main Conjecture, Part 2 (cf. [4]). The ODE (6.1) has unique solution U = U (X; T )
smooth for all real X ∈ R for all real values of the parameter T .

Note that due to the uniqueness the solution in question satisfies the KdV equation
(6.4).

For T << 0 the solution of interest is very close to the unique root of the cubic
equation

X � T U − U 3

6
,

that is,

U � (−T )1/2
[
w + (−T )−7/2 3w2 − 2

3 (w2 + 2)4

−(−T )−7w
189w4 − 972w2 + 436

9 (w2 + 2)9
+ O

(
(−T )−21/2

)]

X = −(−T )3/2
(
w +

1

6
w3

)
. (6.6)

Same is true for any T for |X | >> 0. For T >> 0 the solution develops oscillations
typical for dispersive waves [32] within a region around the origin; one can use the
Whitham method to approximate U (X; T ) by modulated elliptic functions within the
oscillatory zone [18, 29]. Thus the solution in question interpolates between the two
types of asymptotic behaviour (cf. [23] where the role of the special solution U (X; T )
in the KdV theory was discussed).
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The solutions to the fourth order ODE (6.1) can be parametrized [20] by the monodr-
omy data (i.e., the collection of Stokes multipliers) of the linear differential operator (6.3)
with coefficients polynomial in z. The solution corresponding to given Stokes multipli-
ers can be reconstructed by solving a certain Riemann – Hilbert problem. The particular
values of the Stokes multipliers associated with the smooth solution in question have
been conjectured in [20].

7. Local Galilean Symmetry and Critical Behaviour

We will now proceed to discussing the universality problem. Consider the perturbed
PDE

ut + {u(x), H f } = ut + a(u)ux + O(ε2) = 0, f ′′(u) = a(u). (7.1)

Let us apply the transformation (3.2) to the unperturbed solution v = v(x, t) of

vt + a(v)vx = 0 (7.2)

obtained by the method of characteristics:

x = a(v) t + b(v) (7.3)

for some smooth function b(v). Let the solution arrive at the point of gradient catastrophe
for some x = x0, t = t0, v = v0. At this point one has

x0 = a(v0)t0 + b(v0),

0 = a′(v0)t0 + b′(v0), (7.4)

0 = a′′(v0)t0 + b′′(v0)

(inflection point). Let us assume the following genericity assumption:

κ := −(a′′′(v0)t0 + b′′′(v0)) 
= 0. (7.5)

Let us first recall the universality property for the critical behaviour of the unper-
turbed solutions: up to shifts, Galilean transformations and rescalings a generic solution
to (7.2) near (x0, t0) behaves like the cubic root function. We will present this well known
statement in the following form. Introduce the new variables

x̄ = x − a0(t − t0)− x0,

t̄ = t − t0,

v̄ = v − v0.

Let us do the following scaling transformation

x̄ �→ λ x̄,

t̄ �→ λ
2
3 t̄, (7.6)

v̄ �→ λ
1
3 v̄.

Lemma 7.1. After the rescaling (7.6) any generic solution to (7.2) at the limit λ → 0
for t < t0 goes to the solution of the cubic equation

x̄ = a′
0v̄ t̄ − κ

v̄3

6
. (7.7)
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In these formulae a0 = a(v0), a′
0 = a′(v0). Note that the inequality

κ a′
0 > 0 (7.8)

must hold true in order to have the solution well defined for t < t0 near the point of
generic gradient catastrophe (7.4).

To prove the lemma it suffices to observe that, after the rescaling (7.6) and division
by λ Eq. (7.3) yields

x̄ = a′
0v̄ t̄ − κ

v̄3

6
+ O

(
λ1/3

)
.

The parameter κ can be eliminated from (7.7) by a rescaling. The resulting cubic
function can be interpreted as the universal unfolding of the A2 singularity [1]. Our
basic observation we are going to explain now is that, after a Hamiltonian perturbation
the A2 singularity transforms to the special solution of (1.8) described above.

Let us look for a solution to the perturbed PDE (7.1) in the form of a formal power
series

u = u(x, t; ε) = v(x, t) +
∑
k≥1

εkvk(x, t) (7.9)

with v(x, t) given by (7.3) satisfying (7.1) modulo O(ε5). We will say that such a solution
is monotone at the point x = x0, t = t0 if

ux (x0, t0; 0) ≡ vx (x0, t0) 
= 0.

According to the results of Sect. 3 all monotone solutions of the form (7.9) can be
obtained by applying the transformation (3.2) to the nonperturbed solution (7.2) (more
precisely, one has to allow ε-dependence of the function b(u)).

Lemma 7.2. Let us perform the rescaling (7.6) along with

ε �→ λ7/6ε (7.10)

in the quasitriviality transformation (3.2). Then the resulting solution to the perturbed
PDE will be equal to

u = v0 + λ1/3
{
v̄ + ∂2

x

[
ε2

24
c0 log v̄x + c0

2ε4

×
(

v̄3
xx

360 v̄4
x

− 7 v̄xx v̄xxx

1920 v̄3
x

+
v̄xxxx

1152 v̄2
x

)]}
+ O

(
λ2/3

)
(7.11)

(cf. (5.1)) where

c0 = c(v0), (7.12)

v̄ = v̄(x, t) is the solution to the cubic equation (7.7).

Proof is straightforward.
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It remains to identify (7.11) with the formal asymptotic solution (6.6) to the ODE
(6.1). This can be done by a direct substitution. An alternative way is to observe that,
near the point of gradient catastrophe the perturbed PDE acquires an additional Gal-
ilean symmetry. Indeed, according to the previous lemma, locally one can replace the
functions c(u), p(u) by constants c0 = c(v0), p0 = p(v0) (the constant p0, however,
does not enter in the leading term of the asymptotic expansion in powers of λ1/3). Let us
show that in this situation any solution to the perturbed PDE of the form (7.9) satisfies
also a fourth order ODE.

Lemma 7.3. Let c(u) = c0, p(u) = p0. Then for any solution u(x, t; ε) of the form
(7.9) monotone at the point (x0, t0) there exists a formal series

g(u; ε) = g0(u) +
∑
k≥1

εk gk(u)

such that for arbitrary x, t sufficiently close to x0, t0 the function u(x, t; ε) satisfies,
modulo O(ε5), the following fourth order ODE:

x = t
δH f ′

δu(x)
+
δHg′

δu(x)
. (7.13)

Here

g′′
0 (u) = b(u).

Proof. It is easy to see that the flow

uτ = 1 − t ∂x
δH f ′

δu(x)
(7.14)

is a symmetry of (7.1). Combining this symmetry with one of the commuting flows

us + ∂x
δHg′

δu(x)
= 0

one obtains another symmetry. The set of stationary points of this combination

∂x

(
t
δH f ′

δu(x)
+
δHg′

δu(x)
− x

)
= 0

is therefore invariant for the t-flow. Considering the limit ε → 0 it is easy to see that the
integration constant vanishes on the solution (3.2), (7.2). The lemma is proved.

The ODE for the function u(x) is closely related to the so-called string equation
known in matrix models and topological field theory (see, e.g., [9]). Explicitly

x = t a(u) + b(u) + c0
ε2

24

{
t

[
2 a′′uxx + a′′′u2

x

]
+

[
2 b′′uxx + b′′′u2

x

]}

+ε4
{[

2p0
(
t a′′ + b′′) +

1

240
c2

0

(
t a′′′ + b′′′)

]
uxxxx

+

[
4 p0

(
t a′′′ + b′′′) +

1

120
c2

0

(
t a I V + bI V

)]
uxxx ux

+

[
4p0

(
t a I V + bI V

)
+

11

1440
c2

0

(
t aV + bV

)]
uxx u2

x

+

[
1

2
p0

(
t aV + bV

)
+

1

1152
c2

0

(
t aV I + bV I

)]
u4

x

}
+ O(ε5). (7.15)
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Let us call the solution generic if, along with the condition κ := −(a′′′(v0)t0
+ b′′′(v0)) 
= 0 it also satisfies

c0 := c(v0) 
= 0. (7.16)

Main Conjecture, Part 3. The generic solution described in the Main Conjecture, Part
1 can be extended up to t = t0 + δ for sufficiently small positive δ = δ(ε); near the point
(x0, t0) it behaves in the following way:

u � v0 +

(
ε2c0

κ2

)1/7

U

(
x − a0(t − t0)− x0

(κ c3
0 ε

6)1/7
; a′

0(t − t0)

(κ3c2
0ε

4)1/7

)
+ O

(
ε4/7

)
. (7.17)

Here U = U (X; T ) is the solution to the ODE (1.8) specified in the Main Conjecture,
Part 2.

To arrive at the asymptotic formula (7.17) we do in (7.15) the rescaling of the form
(7.6) along with (7.10). After substitution to Eq. (7.15) and division by λ, one obtains

x̄ = a′
0ū t̄ − κ

[
ū3

6
+
ε2

24
c0

(
ū2

x + 2ū ūxx

)
+
ε4

240
c2

0ūxxxx

]
+ O

(
λ1/3

)
.

In derivation of this formula we use that the monomial of the form

εkui1
x ui2

xx ui3
xxx . . .

after the rescaling will be multiplied by λD with

D = 1

6
k +

1

3
(i1 + i2 + · · · )

due to the degree condition

i1 + 2 i2 + 3 i3 + · · · = k.

Adding the terms of higher order k > 4 will not change the leading term. Choosing

λ = ε6/7c3/7
0

we arrive at the needed asymptotic formula.
Clearly the above arguments require existence and uniqueness of the solution to (1.8)

smooth on the real line described in the Main Conjecture, Part 2. 	


8. Concluding Remarks

We have presented arguments supporting the conjectural universality of critical behav-
iour of solutions to generic Hamiltonian perturbations of a hyperbolic equation of the
form (1.2). In subsequent publications we will study the Main Conjecture in more details.
The possibilities of using the idea of Universality in numerical algorithms to dealing
with oscillatory behaviour of solutions to Hamiltonian PDEs will be explored. We will
also proceed to the study of singularities of generic solutions to integrable Hamiltonian
hyperbolic systems of conservation laws

ui
t + ∂x

(
ηi j ∂h(u)

∂u j

)
= 0, η j i = ηi j , det(ηi j ) 
= 0. (8.1)
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Recall that, according to the results of [31] the system (8.1) is integrable if it
diagonalizes in a system of curvilinear coordinates vk = vk(u), k = 1, . . . , n for the
Euclidean/pseudo-Euclidean metric

ds2 = ηi j dui du j =
n∑

k=1

gk(v)(dv
k)2,

(
ηi j

) :=
(
ηi j

)−1
,

vk
t + λk(v)vk

x = 0, k = 1, . . . , n

(in this formula there is no summation over repeated indices!). All Hamiltonian pertur-
bations of the hyperbolic system (8.1) can be written in the form

ui
t + ∂x

(
ηi j δH

δu j (x)

)
= 0, H =

∫ [
h(u) +

∑
k≥1

εkhk(u; ux , . . . , u(k))

]
dx,

deg hk = k.

We plan to study symmetries of the perturbed Hamiltonian hyperbolic systems. In partic-
ular, we will classify the perturbations preserving integrability and study the correspon-
dence between the types of critical behaviour of the perturbed and unperturbed systems.
The next step would be to extend our approach to Hamiltonian perturbations of spatially
multidimensional hyperbolic systems (cf. [8]).

Appendix: Bihamiltonian Structures Associated with the Perturbations of the
Riemann Wave Hierarchy

Theorem A.1. For arbitrary two functions c = c(u) 
= 0, q = q(u) the family of
Hamiltonians (2.5) with

p(u) = c2

960

[
5

c′

c
− q ′′

q ′

]
, s(u) = 0 (A.1)

is commutative

{H f , Hg}1,2 = 0
(

mod O(ε6)
)

∀ f = f (u), ∀g = g(u) (A.2)

with respect to the Poisson pencil of the form

{u(x), u(y)}1 = δ′(x − y),

{u(x), u(y)}2 = {u(x), u(y)}[0] + ε2{u(x), u(y)}[2] + ε4{u(x), u(y)}[4] + O(ε6).

Here the terms of order 0:

{u(x), u(y)}[0]
2 = q(u)δ′(x − y) +

1

2
q ′(u)uxδ(x − y).

All terms of higher orders are uniquely determined from the bicommutativity (A.2) pro-
vided validity of the constraint (A.1). Namely, the terms of order 2:
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{u(x), u(y)}[2]
2 = cq ′

8
δ′′′(x − y) +

3

16

(
cq ′)′

uxδ
′′(x − y)

+

[(
c′′q ′

16
+

c′q ′′

6
+

5cq ′′′

48

)
ux

2 +
c′q ′uxx

16
+

7cq ′′uxx

48

]
δ′(x − y)

+

[(
c′′q ′′

48
+

c′q ′′′

24
+

cq(4)

48

)
ux

3+
1

12

(
c′q ′′ + cq ′′′) ux uxx +

cq ′′

24
uxxx

]
δ(x−y).

The terms of order 4:

{u(x), u(y)}[4]
2 = 1

192

(
3cc′q ′ + c2q ′′)δV (x − y)+

5

384

(
3cc′q ′+c2q ′′)′uxδ

I V (x − y)

+

[(
3c′c′′q ′

32
+

cc′′′q ′

32
+

3c′2q ′′

32
+

5cc′′q ′′

48
− cc′q ′′2ux

2

240q ′

+
c2q ′′3

480q ′2 +
19cc′q ′′′

192
− 3c2q ′′q ′′′

640q ′ +
c2q(4)

64

)
ux

2

+

(
3c′2q ′

64
+

3cc′′q ′

64
+

17cc′q ′′

192
− c2q ′′2

480q ′ +
19c2q ′′′

960

)
uxx

]
δ′′′(x − y)

+

[(
3c′′2q ′

128
+

c′c′′′q ′

32
+

cc(4)q ′

128
+

19c′c′′q ′′

128
+

23cc′′′q ′′

384
+

5cc′q(4)

64
+

7cc′′q ′′′

64

+
c2q(5)

96
+

3c′2q ′′′

32
− c′2q ′′2

160q ′ − cc′′q ′′2

160q ′ +
cc′q ′′3

80q ′2 − c2q ′′4

160q ′3 − 17cc′q ′′q ′′′

640q ′

+
21c2q ′′2q ′′′

1280q ′2 − 9c2q ′′′2

1280q ′ − 9c2q ′′q(4)

1280q ′

)
ux

3 +

(
9c′c′′q ′

64
+

3cc′′′q ′

64

+
11c′2q ′′

64
+

13cc′′q ′′

64
− 3cc′q ′′2

160q ′ +
3c2q ′′3

320q ′2 +
69cc′q ′′′

320

−13c2q ′′q ′′′

640q ′ +
3c2q(4)

80

)
ux uxx

+

(
c′2q ′

32
+

cc′′q ′

32
+

13cc′q ′′

192
− c2q ′′2

320q ′ +
c2q ′′′

60

)
uxxx

]
δ′′(x − y)

+

[(
c′′2q ′′

48
+

c′c′′′q ′′

32
+

cc(4)q ′′

96
− c′c′′q ′′2

160q ′ − cc′′′q ′′2

480q ′ +
c′2q ′′3

160q ′2 +
cc′′q ′′3

160q ′2

−cc′q ′′4

80q ′3 +
c2q ′′5

160q ′4 +
35c′c′′q ′′′

384
+

5cc′′′q ′′′

128
− 9c′2q ′′q ′′′

640q ′ − 9cc′′q ′′q ′′′

640q ′

+
11cc′q ′′2q ′′′

320q ′2 − 13c2q ′′3q ′′′

640q ′3 − cc′q ′′′2

64q ′ +
19c2q ′′q ′′′2

1280q ′2 +
17c′2q(4)

384

+
5cc′′q(4)

96
− cc′q ′′q(4)

64q ′ +
17c2q ′′2q(4)

1920q ′2 − 11c2q ′′′q(4)

1280q ′ +
35cc′q(5)

1152
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−11c2q ′′q(5)

3840q ′ +
c2q(6)

288

)
ux

4 +

(
3c′′2q ′

128
+

c′c′′′q ′

32
+

cc(4)q ′

128
+

91c′c′′q ′′

384

+
37cc′′′q ′′

384
− c′2q ′′2

60q ′ − cc′′q ′′2

60q ′ +
cc′q ′′3

30q ′2 − c2q ′′4

60q ′3 +
59c′2q ′′′

320
+

53cc′′q ′′′

240

−47cc′q ′′q ′′′

640q ′ +
173c2q ′′2q ′′′

3840q ′2 − 77c2q ′′′2

3840q ′ +
169cc′q(4)

960
− 77c2q ′′q(4)

3840q ′

+
73c2q(5)

2880

)
ux

2uxx +

(
3c′c′′q ′

128
+

cc′′′q ′

128
+

5c′2q ′′

96
+

cc′′q ′′

16
− cc′q ′′2

80q ′

+
c2q ′′3

160q ′2 +
157cc′q ′′′

1920
− 5c2q ′′q ′′′

384q ′ +
31c2q(4)

1920

)
uxx

2

+

(
3c′c′′q ′

64
+

cc′′′q ′

64
+

c′2q ′′

12
+

3cc′′q ′′

32
− cc′q ′′2

60q ′

+
c2q ′′3

120q ′2 +
19cc′q ′′′

160
− 11c2q ′′q ′′′

640q ′ +
11c2q(4)

480

)
ux uxxx

+

(
c′2q ′

128
+

cc′′q ′

128
+

11cc′q ′′

384
− c2q ′′2

320q ′ +
17c2q ′′′

1920

)
uxxxx

]
δ′(x − y)

+

[(
c′′2q ′′′

192
+

c′c′′′q ′′′

128
+

cc(4)q ′′′

384
− c′c′′q ′′q ′′′

640q ′ − cc′′′q ′′q ′′′

1920q ′ +
c′2q ′′2q ′′′

640q ′2

+
cc′′q ′′2q ′′′

640q ′2 − cc′q ′′3q ′′′

320q ′3 +
c2q ′′4q ′′′

640q ′4 − c′2q ′′′2

640q ′ − cc′′q ′′′2

640q ′ +
3cc′q ′′q ′′′2

640q ′2

−c2q ′′2q ′′′2

320q ′3 +
c2q ′′′3

1280q ′2 +
7c′c′′q(4)

384
+

cc′′′q(4)

128
− c′2q ′′q(4)

640q ′ − cc′′q ′′q(4)

640q ′

+
cc′q ′′2q(4)

320q ′2 − c2q ′′3q(4)

640q ′3 − 3cc′q ′′′q(4)

640q ′ +
13c2q ′′q ′′′q(4)

3840q ′2 − c2q(4)
2

1280q ′

+
17c′2q(5)

2304
+

5cc′′q(5)

576
− cc′q ′′q(5)

640q ′ +
c2q ′′2q(5)

1280q ′2 − c2q ′′′q(5)

960q ′ +
5cc′q(6)

1152

−c2q ′′q(6)

3840q ′ +
c2q(7)

2304

)
ux

5 +

(
c′′2q ′′

64
+

c′c′′′q ′′

48
+

cc(4)q ′′

192
− c′c′′q ′′2

160q ′

−cc′′′q ′′2

480q ′ +
c′2q ′′3

160q ′2 +
cc′′q ′′3

160q ′2 − cc′q ′′4

80q ′3 +
c2q ′′5

160q ′4 +
97c′c′′q ′′′

960

+
13cc′′′q ′′′

320
− c′2q ′′q ′′′

60q ′ − cc′′q ′′q ′′′

60q ′ +
19cc′q ′′2q ′′′

480q ′2 − 11c2q ′′3q ′′′

480q ′3

−cc′q ′′′2

48q ′ +
3c2q ′′q ′′′2

160q ′2 +
19c′2q(4)

320
+

67cc′′q(4)

960
− cc′q ′′q(4)

48q ′ +
11c2q ′′2q(4)

960q ′2
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−c2q ′′′q(4)

80q ′ +
131cc′q(5)

2880
− c2q ′′q(5)

240q ′ +
c2q(6)

180

)
ux

3uxx

+

(
7c′c′′q ′′

128
+

7cc′′′q ′′

384
− 7c′2q ′′2

960q ′ − 7cc′′q ′′2

960q ′ +
7cc′q ′′3

480q ′2 − 7c2q ′′4

960q ′3

+
59c′2q ′′′

960
+

23cc′′q ′′′

320
− cc′q ′′q ′′′

30q ′ +
13c2q ′′2q ′′′

640q ′2 − 3c2q ′′′2

320q ′ +
131cc′q(4)

1920

−3c2q ′′q(4)

320q ′ +
31c2q(5)

2880

)
ux u2

xx +

(
3c′c′′q ′′

64
+

cc′′′q ′′

64
− c′2q ′′2

160q ′ − cc′′q ′′2

160q ′

+
cc′q ′′3

80q ′2 − c2q ′′4

160q ′3 +
47c′2q ′′′

960
+

13cc′′q ′′′

240
− 13cc′q ′′q ′′′

480q ′ +
c2q ′′2q ′′′

60q ′2

−7c2q ′′′2

960q ′ +
49cc′q(4)

960
− 7c2q ′′q(4)

960q ′ +
23c2q(5)

2880

)
ux

2uxxx

+

(
5c′2q ′′

192
+

5cc′′q ′′

192
− cc′q ′′2

96q ′ +
c2q ′′3

192q ′2 +
3cc′q ′′′

64

−c2q ′′q ′′′

96q ′ +
c2q(4)

96

)
uxx uxxx +

(
c′2q ′′

64
+

cc′′q ′′

64
− cc′q ′′2

160q ′ +
c2q ′′3

320q ′2

+
9cc′q ′′′

320
− c2q ′′q ′′′

160q ′ +
c2q(4)

160

)
ux uxxxx

+

(
cc′q ′′

192
− c2q ′′2

960q ′ +
c2q ′′′

480

)
uxxxxx

]
δ(x − y).

To prove the theorem one has to analyze the commutativity conditions

E
(
δH f

δu(x)
L
δHg

δu(x)

)
= 0

for arbitrary two functions f (u), g(u). Here

L = q∂x +
1

2
q ′ux − ε2

8
c q ′∂3

x + · · ·
is the Hamiltonian differential operator associated with the second Hamiltonian structure.
To prove validity of Jacobi identity one has to check that the ε-terms in the second
Hamiltonian structure can be eliminated by the quasitriviality transformation described
in Sect. 3. We will omit the calculations.

Observe that the family of bihamiltonian structures given in Theorem A.1 depends
on two arbitrary functions c = c(u), q = q(u), in agreement with the results of [26]. It
is understood that the Jacobi identity for the Poisson pencil holds true identically in λ
modulo terms of the order O(ε6).
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