438 WDVV Equations and Frobenius Manifolds

Dahmen W (1997) Wavelets and multiscale methods for operator
equations. Acta Numerica 6: 35-228.

Daubechies I (1988) Orthonormal bases of compactly supporred
wavelets. Communications in Pure and Applied Mathematics
41: 909.

Daubechies I (1992) Ten Lectures on Wavelets. Philadelphia, PA:
SIAM,

Donoho and Johnstone (1994) Ideal spatal adaptation via
wavelet shrinkage. Biomerrika 81: 425,

Grossmann A and Morlet | (1984) Decomposition of Hardy
functions into square integrable wavelets of constant

shape. SIAM Journal of Mathematical Analysis. 15(4);
723-736.

Lemarie P-G and Meyver Yves (1986) Ondolettes ct bases
hilbertiennes. Revista Matematica Iberoamericano 2: 1.

Mallat S (1989) Multiresolution approximations and wavelet
orthonormal bases of L2(R). Transactions of the American
Mathematical Society 315: 69.

Mallar S (1998} A Wavelet Tour of Signal Processing. San Diego,
CA: Academic Press.

- WDVV Equations and Frobenius Manifolds

B Dubrovin, SISSA-ISAS, Trieste, Italy
§ © 2006 Elsevier Ltd. All rights reserved.

Main Definition

WDVV equations of associativity (after E Witten,
R Dijkgraaf, E Verlinde, and H Verlinde) is
tantamount to the following problem: find a func-
tion F(v) of n variables v=(v',v?,...,v") satisfying
the conditions [1], [3], and [4] given below. First,

83F(y) B
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must be a constant symmetric nondegenerate matrix.
Denote (™) = (n,5) " the inverse matrix and intro-

duce the functions

. v OPF(v
Ccllﬁ(v) - nr ( )

' m—r 017.61’}[:1:"'5” [2}

The main condition says that, for arbitrary
v',...,v" these functions must be structure con-
stants of an associative algebra, that is, introducing
a v-dependent multiplication law in the #-dimen-
sional space by

a b= (cjw{v)a“bﬁ, e :cgﬁ(v)a“'bﬂ

one obtains an n-parameter family of #-dimensional
associative algebras (these algebras will automati-
cally be also commutative). Spelling out this condi-
tion one obtains an overdetermined system of
nonlinear PDEs for the function F(v) often also
called WDVV associativity equations

OFw)  PHW)
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for arbitrary 1 < «,3,7v,6 <#. (Summation over
repeated indices will always be assumed.) The last
one is the so-called quasihomogeneity condition

EF=(3-d)F+1A, 0 + B + C  [4]

where
_ a0 x 9
E= (aﬁz/ + b ) w
for some constants a2, b satisfyin
3 ymg
af = 67, bt =0

A,p Ba, C,d are some constants. E is called Euler
vector field and d is the charge of the Frobenius
manifold.

For n=1 one has F(v)=(1/6)*. For n=2 one
can choose

F(u,v) = Yur? + f(u)

only the quasihomogeneity [4] makes a constraint
for f(v). The first nontrivial case is for n=23. The
solution to WDVV is expressed in terms of a
function f=f(x,y) in one of the two forms (in the
examples all indices are written as lower):

d#0: F=ivtvs+ivivd + flva,es)

2

xxy T Fyyy + Foxtyy 5]
d=0: F=3iv]+vivs+f(vavs)

fxxt wy fxxyf xyy =1

The function f(x,y) satisfies additional constraint
imposed by [4]. Because of this the above PDEs [5]
can be reduced (Dubrovin 1992, 1996) to a
particular case of the Painlevé-VI equation (see
Painlevé Equations).

The problem [1], [3], [4] is invariant with respect
to linear changes of coordinates preserving the
direction of the vector d/dv':

P Y — P%U'B L ch, dﬂE(P(})# 0, Elx — ér]x
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It is also allowed to add to F(v) a polynomial of the
degree at most 2. To consider more general non-
linear changes of coordinates one has to give a
coordinate-free form of the above equations [1], [3],
[4]. This gives rise to the notion of Frobenius
manifold introduced in Dubrovin (1992).

Recall that a Frobenius algebra is a pair (A, <,>),
where A is a commutative associative algebra with a
unity e over a field k (we will consider only the cases
k=R,C) and <,> is a k-bilinear symmetric non-
degenerate invariant form on A, that is,

<X Y, I>=<X,Y-T>
for arbitrary vectors x,y,z in A.

Definition Frobenius structure (-, e, <,>,E,d) on
the manifold M is a structure of a Frobenius algebra
on the tangent spaces T,M =(A,, <,>,) depending
(smoothly, analytically, etc.) on the point v € M. Tt
must satisfy the following axioms.

FM1. The curvature of the metric <,>, on M
(not necessarily positive definite) vanishes. Denote ¥V
the Levi-Civita connection for the metric. The unity
vector field e must be flat, Ve=0.

FM2. Let ¢ be the 3-tensor ¢(x,y,z):=<x-v,
2>, x,¥,2 € T,M. The 4-tensor (V,¢)(x,v,2) must
be symmetric in x,y,z,w € T, M.

FM3. A linear vector field E € Vect(M) (called
Euler vector field) must be fixed on M, that is,
VVE =0, such that

Lieg(x-y) — Liegx -y —x - Liegy = x - v
Lieg <,>=(2-4d) <,>

for some number d € k called “charge.”

The last condition (also called quasihomogeneity)
means that the derivations QFunc(M):: E, QVECt(M)::
id + ade define on the space Vect(M) of vecror fields
on M a structure of graded Frobenius algebra over
the graded ring of functions Func{M).

Flatness of the metric <, > implies local existence
of a system of flat coordinates »',...,v" on M.

Usually, they are chosen in such a way that

0
ol

is the unity vector field. In such coordinates, the
problem of local classification of Frobenius mani-
folds reduces to the WDVV associativity equations
[1], [3], [4]. Namely, n,3 is the constant Gram
matrix of the metric in these coordinates

a a
e G
tad v v

The structure constants of the Frobenius algebra
Au:Tx,'M

a o ; 3,
o~ o) 5 i

can be locally represented by third derivatives [2] of
a function F(v) satisfying [1], [3], [4]. The function
F(v) is called “potential” of the Frobenius manifold.
It 1s defined up to adding of an at most quadratic
polynomial in ¢!, ... 0"

A generalization of the above definition to the
case of Frobenius supermanifolds can be found in
Manin (1999). For the more general class of the
so-called F-manifolds, the requirement of the
existence of a flat invariant metric has been relaxed.

Deformed Flat Connection

One of the main geometrical structures of the theory
of Frobenius manifolds is the deformed flat connec-
tion. This is a symmetric affine connection on M x
C* defined by the following formulas:

Vey=Vyy+zx-y, x,yeTM,ze C"

N 1

Viay =9y +E-y— EVJJ 7]
- d - d

de*Z— Vd/dzd—z =0

where, as above, V is the Levi-Civita connection for
the metric <, > and

2-d __
V=S VE 8]

is an operator on the tangent bundle TM antisym-

metric with respect to <, >,
<Vx,y>=—<x,Vy>

Observe that the unity vector field ¢ is an eigen-

vector of this operator with the eigenvalue

Ve = —Ee

The connection V = V(z) is not metric but it satisfies

V <x,y>=<V(-2)x,y> + <x,V(2)y >
x,yc TM

for any z € C*. As it was discovered in Dubrovin
(1992), vanishing of the curvature of the connection
V is essentially equivalent to the axioms of
Frobenius manifold.
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Definition A “deformed flat function” f{v;z) on a
domain in M x C" is defined by the requirement of
horizontality of the differential df

vdf =0 9]

Due to vanishing of the curvature of V locally
there exist # independent deformed flat functions
filvsz), ... falvsz) such  that their differentials,
together with the flat 1-form dz, span the cotangent
plane T}, (M x C"). They will be called “deformed
flat coordinates.” The global analytic properties of
deformed flat coordinates can be derived, for the
case of semisimple Frobenius manifolds, from the
results of the section “Moduli of semisimple
Frobenius manifolds” discussed later.

One can relax the definition of Frobenius manifold
dropping the last axiom FM3. The potential F(v) in
this case satisfies [1] and [3] but not [4]. In this case,
the deformed flat connection V is just a family of
affine flat connections on M depending on the
parameter z € C given by the first line in [7]. The
curvature and torsion of this family of connections
vanishes identically in z. The deformed flat functions
of V defined as in [9] can be chosen in the form of
power series in z. The flatness equations written in the
flat coordinates on M yield a recursion equation for
the coefficients of these power series

Vdf =0, f= ZBP(I})ZP

p=0
ROuf = ZCKH(UJ a,f

({))\8“00(7)) =0 -0 [1()]
ROy 11 () = &, (WD0,0) T =
Thus, f(z;0) is just an affine linear function of the
flat coordinates v', ..., ¢"; the dependence on z can
be considered as a deformation of the affine
structure. This motivates the name “deformed flat
coordinates.” The coefficients of the expansions of
the deformed flat coordinates are the leading terms
of the s-expansion of the Hamiltonian densities
of the integrable hierarchies associated with the
Frobenius manifolds (see below).

Intersection Form of a
Frobenius Manifold

Another important geometric structure on M is the
intersection form of the Frobenius manifold. It is a

symmetric bilinear form on the cotangent bundle
T*M defined by the formula

{w‘},wz) = lgwy - Wy, Wwi,wy € ™M [] 1]

Here the multiplication law on the cotangent planes
is defined by means of the isomorphism.

<, >: TM—T'M

The discriminant ¥ © M is a proper analytic (for an
analytic M) subset where the intersection form
degenerates. One can introduce a new metric on
the open subset M\Y taking the inverse of the
intersection form. A remarkable result of the theory
of Frobenius manifolds is vanishing of the curvature
of this new metric. Moreover, the new flat metric
together with the following new multiplication:

x*yi=x-y-E!

defines on M\Y a structure of an almost-dual
Frobenius manifold (Dubrovin 2004). In the original
flat coordinates v',...,0" the coordinate expressions
for the new metric and for the associated Levi-Civita
connection V*, called the Gauss—Manin connection,
read

g (v) == (dv, dv”) = E7(v)c2(v)
*0r g _ pofd ¥
Ve dy” =17 (v) dv 12]

g
7() =~ W ) = &) (3 - V)
The pair (,) and <, > of bilinear forms on T*M
possesses the following property crucial for under-
standing the relationships between Frobenius mani-
folds and integrable systems: they form a flat pencil.
That means that on the complement to the subset

Xyi= {v e M| det(g”’q(v) - /\77“-‘3] =0}
The inverse to the bilinear form
(h=0)=-A<,> [13]

defines a metric with vanishing curvature. Flat
functions p=p(v; A) for the flat metric are deter-
mined from the system

(V" = AV)dp =0 [14]

They are called “periods™ of the Frobenius manifold.
The periods p(v; M) are related to the deformed flat
functions f(v;z) by the suitably regularized Laplace-
type integral transform

plr;A) = fome&f{y;z)\d/zz [15]

Choosing a system of # independent periods, one
obtains a system of flat coordinates p'(v:\),. ..,
p"(v; A) for the metric (,), on M\X,,

(dp'(; 2),dp/(v; A)) ;= G7 [16]

for some constant nondegenerate matrix G¥.
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The structure of a flat pencil on the Frobenius
manifold M gives rise to a natural Poisson pencil
(=bi-Hamiltonian structure) on the infinite-dimen-
sional “manifold” £(M) consisting of smooth maps
ot a circle to M (the so-called loop space). In the flat
coordinates ¢',...,v" for the metric <, > the
Poisson pencil has the form

(v"(6), ")} =18 (x — 3)
(07 (), 000}, = g (0(2)8' x — ) 17]
+ T2 0075 (x — 3)

By definition of the Poisson pencil, the linear
combination a1{,}; +a2{,}, of the Poisson brackets
is again a Poisson bracket for arbitrary constants
ai,az. Choosing a system of # independent periods
pv;A),i=1,...,n, as a new system of dependent
variables, one obtains a reduction of the Poisson
bracket {,},:={,}; — Al,}; for a given A to the
canonical form

P )P Wi = G (x—y) (18]

Under an additional assumption of existence of tau
function (Dubrovin 1996, Dubrovin and Zhang),
one can prove that any Poisson pencil on £(M) of
the form [17] with a nondegenerate matrix (")
comes from a Frobenius structure on M.

Canonical Coordinates on Semisimple
Frobenius Manifolds

Definition The Frobenius manifold M is called
semisimple if the algebras T,M are semisimple for
v belonging to an open dense subset in M.

Any n-dimensional semisimple Frobenius algebra
over C is isomorphic to the orthogonal direct sum of
n copies of one-dimensional algebras. In this section,
all the manifolds will be assumed to be complex
analytic.

Near a semisimple point, the roots u;=u;(v),
i=1,...,n, of the characteristic equation

det (g™ (v) — Ap™?) =0 [19]

can be used as local coordinates. The vectors
Jf0u;,i=1,...,n, are basic idempotents of the
algebras T,M

a 9 d

Qu; Ou; " O
We call uy,...,u, “canonical coordinates.” Observe
that we violate the indices convention labeling the
canonical coordinates by subscripts. We will never
use summation over repeated indices when working

in the canonical coordinates. Actually, existence of
canonical coordinates can be proved without using
[4] (sce details in Dubrovin {1992)).

Choosing locally branches of the square roots

Wi (1) := \/ < /Oy, O]ty >,

we obrtain a transition matrix W = (1, (1)),

o "t (1) O
S AN i 21
v Z iy (w) Ou; [21]

i=1,...,n [20]

=1

from the basis 8/9v" to the orthonormal basis

(i ;) = &
fr = ) 5
5 22)

f2 :?ﬂif(u)%

_‘l é)

fro = (1)

du,,
The matrix () satisfies orthogonality condition
" a 0
v {M)\I}(M) =1 n= (’U(vﬁ): N = <%3W>

In this formula ¥* stands for the transposed matrix.
The lengths [20] coincide with the first column of
this matrix.

Denote V(u) = (Vj;(u)) the matrix of the antisym-
metric operator V [8] with respect to the orthonor-
mal frame

V()= T(u) V¥ (u) 23]

The antisymmetric matrix V()= (V,(u)) satisfies
the following system of commuting time-dependent
Hamiltonian flows on the Lie algebra so(x)
equipped with the standard Lie-Poisson brackets
Vi, Viadh = Vibje — Vb + Vi by — Vi

av

(9714,' = {ViHi(V;M)}a

with quadratic Hamiltonians

i=1,....n [24]

1 v
HiViu) =~ f 25]
2~ — uy
J#
The matrix W(u) satisfies
ow
= ¥; P:
Ty~ Vi) 26]

Vi(u):= adg, ad, (V(w), i =1,...,n

Here the matrix unity E; has the entries (Ei)ap =
buibi,U = diag(uy, ... ,u,). Conversely, given a solu-
tion to |24] and [26], one can reconstruct the
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Frobenius manifold structure by quadratures
(Dubrovin 1998). The reconstruction depends on a
choice of an eigenvector of the constant matrix
V=0 Yu) V(iu)P(u).

The system [24] coincides with the equations of
isomonodromic deformations (see Isomonodromic
Deformations) of the following linear differential
operator with rational coefficients:

g_(u+‘—;)y 27]

The latter is nothing but the last component of the
deformed flat connection [7] written in the ortho-
normal frame [22]. Other components of the
horizontality equations yield

OY = (zE: + Vi(u))Y, i=1..n [28]

The compatibility conditions of the system [27] and
[28] coincide with |24].

The integration of [24], [26] and, more generally,
the reconstruction of the Frobenius structure can be
reduced to a solution of a certain Riemann—Hilbert
problem (see Riemann-Hilbert Problem).

The isomonodromic tau function of the semisim-
ple Frobenius manifold is defined by

dl(’)g T[(M) = iH,(V(M),M)dMi [29]
=1

It is an analytic function on a suitable unramified
covering of the semisimple part of M.

Alternatively, eqns [24] can be represented as the
isomonodromy deformations of the dual Fuchsian
system

[Uﬂj%:(? v) 30]

The latter comes from the Gauss—Manin system for
the periods p=p(v;\) of the Frobenius manifold
written in the canonical coordinates [22].

Moduli of Semisimple
Frobenius Manifolds

All n-dimensional semisimple Frobenius manifolds
form a finite-dimensional space. They depend on
n(n — 1)/2 essential parameters. To parametrize the
Frobenius manifolds one can choose, for example,
the initial data for the isomonodromy deformation
equations [24]. Alternatively, they can be parame-
trized by monodromy data of the deformed flat
connection according to the following construction.

The first part of the monodromy dara is the
spectrum (V, <, >, i, R) of the Frobenius manifold
associated with the Poisson pencil. Here V is an

n-dimensional linear space equipped with a sym-
metric nondegenerate bilinear form <, >. Two
lincar operators on V, a semisimple operator
fi: V=V, and a nilpotent operator R: V — V must
satisfy the following properties. First, the operator /i
1§ antisymmetric:

f=—p [31]

and the operator R satisfies
R* — 76—7T1-,‘].R em’ﬁ [32}

Here the adjoint operators are defined with respect
to the bilinear form <, >. The last condition to be
imposed onto the operator R can be formulated in a
simple way by choosing a basis eq,...,e, of
cigenvectors of the semisimple operator [,
80 = fg€n, a=1,...,n

We require the existence of a decomposition

R=Ro+Ri+Ry+ - [33}

where for any integer k& > 0 the linear operator R,
satisfies

Reea cspanies|pup=p,+k} Ya=1,....n [34]

In the nonresonant case, such that none of the
differences of the eigenvalues of /i being equal to a
positive integer, all the matrices Ry, R,,..., are equal
to zero. Observe a useful identity

2"Rz7#=Ro+ 2Ry +2* Ry + - -+ 35]

More generally, for any operator A: V— V com-
muting with e*# a decomposition is defined as

A= & [A],
ke, 36}
Z’QA P i sz[/”k [
ke,

In particular, [R], =Ry, k >0, [R], =0, k < 0.

One has to also choose an eigenvector e of the
operator [ such that Rpe=0; denote —d/2 the
corresponding eigenvalue

d

ecV, je=-Se  Re=0 [37

The second part of the monodromy data is a pair
of linear operators

C:. V- 5.

The space C” is assumed to be equipped with the
standard complex Euclidean structure given by
the sum of squares. The properties of the operators
S, C depend on the choice of an unordered set
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0 0 0

u =(uy,...,u,;) of n pairwise distinct complex

numbers and on a choice of a ray ¢, on an auxiliary
complex z-plane starting at the origin such that

Rez(u —M)#O it zEl, 38]
Let us order the complex numbers in such a way that
) 0, i<z — oo, ze b, [39]

The operator § must be upper triangular

=(8;), S;=0,ix>7
S e 40
AS;',':]., lzl,...?’l
The operator C must satisfy
C'SC=efem™ [41]

Here the adjoint operator C* is understood as
follows:

> 1

T oY oL
The group of diagonal # x n matrices
D =diag(+1,...,+1)
acts on the pairs (S, C) by

S—DSD, CiDC

One is to factor out the action of this diagonal
group. Besides, the operator C is defined up to a left
action of certain group of linear operators depend-
ing on the spectrum.

For the generic (i.e.,
27

nonresonant) case where
has simple spectrum, the operator C is defined
up to left multiplication by any matrix commuting
with ¢*™_ In this situation, the monodromy data
(1, R,S,C) are locally umqucly determined by the
n(n — 1)/2 entries of the matrix S. Therefore, near a
generic point, the variety of the monodromy data is
a smooth manifold of the dimension n(n — 1)/2. At
nongeneric points, the variety can get additional
strata.

The monodromy data S, C are determined at an
arbitrary semisimple point of a Frobenius manifold
in terms of the analytic properties of horizontal
sections of the deformed flat connection V [7] in the
complex z-plane (the so-called “Stokes matrix” and
the “central connection matrix” of the operator
[27]). Locally, they do not depend on the point of
the semisimple Frobenius manifold (the isomono-
dromicity property).

We will now describe the reconstruction procedure
giving a parametrization of semisimple Frobenius

manifolds in terms of the monodromy data (/, R,
5,C).

Conversely, to reconstruct the Frobenius manifold
near a semisimple point with the canonical coordi-
nates uf,...,ul, one is to solve the following
boundary-value problem. Let

0=(=t)ut,

be the oriented line on the complex z-plane chosen
as in [38]. Here the ray 7/ is the opposite to #,.
Denote 1Ig /11; the right/left half-planes with respect
to £. To reconstruct the Frobenius manifold, one is
to find three matrix-valued functions &q(z;u),
$plz;u), and Py (z;u):

Do(z5u): V— C”
‘:I)R/[(Z, M) 0"

for u close to u” such that ®gy(z;u) is analytic and

invertible for z € C, ®p(z;u)/Pp(z;u) are analytic
and invertible for z € ITg /TI; resp., and continuous
up to the boundary #\0 and

PryLlziu) ~ 1+ O(1/z), |z] — o0, z € g/l

functions
must satisfy the

The  boundary  values of the
Polz;u),Priz;u), and  Pp(z;u)

tollowing boundary-value problem (as above

U=diag(u:, ..., u,)):
Pp(ziu) = Op(zu)e?VSe 7V, ze 0, [42]
Dp(ziu) = O (z;u)etVUSTe =V, ze [43]
Dy (z; u)z” R — Pr(zu)etVC,  zelly ”m
Do (z;u)2" Oy (z;u)efUSC, z el

Here z/':= e“["gz, Ri=eRlo8z are considered as

Aut(V)-valued functions on the universal covering
of C\0; the branch cut in the definition of logz is
chosen to be along ¢_.

The solution of the above boundary-value pro-
blem [42]-[44], if exists, is unique. It can be reduced
to a certain Riemann—Hilbert problem, that is, to a
problem of factorization of an analytic # x n

nondegenerate matrix-valued function on the
annulus
Glzu), r<|z] <R, det G(z;u)#0
depending on the parameter u=(u,...,u,) in a
product
G(z;u) = Golzin) ' Goolzsu) [45]

of two matrix-valued functions Gpy(z; #) and
Goolzs 1) analytic for |z| < R and r < |z| < oo resp.,
with nowhere-vanishing determinant.
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Existence of a solution to the Riemann-Hilbert
problem for a given u = (i1, ..., 1,), 1u; # u; for i # j,
means triviality of certain #-dimensional vector
bundle over the Riemann sphere with the transition
functions given by G(z;#). Existence of the solution
for u=u" implies solvability of the Riemann-
Hilbert problem for u sufficiently close to 1. From
these arguments, it can be deduced that the matrices
Polz;u), Ppyzsu) are analytic in (zu) for u
sufficiently close to #”. Moreover, they can be
analytically continued in # to the universal covering
of the space of configurations of # distinct points on
the complex plane:

(GH\U[#;'{M:' =u;}) /Sy [46]

The resulting functions are meromorphic on the
universal covering, according to the results of
B Malgrange and T Miwa. The structure of the
global analytic continuation is given (Dubrovin
1999) in terms of a certain action of the braid group

By = mi ((C"\Ugsi{sti = u;}) /S)

on the monodromy data.

Examples of Frobenius Manifolds

Example 0 Trivial Frobenius manifold, M=A4, a
graded Frobenius algebra, F(v)=(1/6) <e,v-v-v>
is a cubic polynomial.

First nontrivial examples appeared in the setting
of 2D topological field theories (Dijkgraaf ef al.
1991, Witten 1991) (see Topological Quantum Field
Theory: Overview). Mathematical formalization of
these ideas gives rise to the following two classes of
examples.

Example 1 Frobenius structure on the base of an
isolated hypersurface singularity. The construction
(Hertling 2002, Sabbah 2002) uses the K Saito
theory of periods of primitive forms. For the
example of A, singularity f(x)=x""! the Frobenius
structure on the base of universal unfolding

My, = {fi(x)=x""" 412" 4t sasi, s, €CY

is constructed as follows (Dijkgraaf et al. 1991):

_9
e_asn
1 d
E = k4 1)s,—
n—l—lz( - )Skask
n—1

Comt1

The multiplication is introduced by identifying the
tangent space TsM with the quotient algebra

TsMa, = Clx]/(f{(x))
The metric has the form
Afs(x)/0s;0fs(x) /s d
fi(x)

The flat coordinates v, =v,(s) can be found from
the expansion of the solution to the equation

filx) = k"1,

<0,,0,> = —(n+ 1)res,

- 1 Uy Vu_1 U1 1
*=k-om (‘12{+ Tt ) *O(w)
The potentials of the Frobenius manifolds M., for

n=1,2,3 read

1.3

F/'H =31

; 1,2 1.4

Fa, = 50701 + =51, (47
1 2 1,2 1 .,2,,2 1 5

FAJ = U5 + VU3 T g VIV F 5503

The space of polynomials M4, can be identified with
the orbit space of C/W(A,) of the Weyl group of the
type A,. More generally (Dubrovin 1996), the orbit
space My := C"/W of an arbitrary irreducible finite
Coxeter group W < O(n) carries a natural structure
of a polynomial semisimple Frobenius manifold.
Conversely, all irreducible polynomial semisimple
Frobenius manifolds with positive degrees of the flat
coordinates can be obtained by this construction
(Hertling 2002). Generalizations for the orbit spaces
of certain infinite groups were obtained in Dubrovin
and Zhang (1998b) and Bertola (2000).

Example 2 Gromov-Witten (GW) invariants (see
Topological Sigma Models). Let X be a smooth
projective variety. We will assume for simplicity that
Hed(X)=0. To every such variety, one can associ-
ate a bunch of rational numbers. They are expressed
in terms of intersection theory of certain cycles on
the moduli spaces X ,. s of stable genus g and
degree 3 curves on X with s marked points (see
details in Kontsevich and Manin (1994)):

Xg\m.ﬁ:: {f (Cgaxh e 9xm) - X:

LG -peHyxiz)) Y

Denote n:= dim H*(X; C). Choosing a basis ¢ =1,
D2, ..., 0, we define the numbers

<Tp (Qﬁm ) coTpy, (d)um) >g.ﬂ
::/ et (g ) A (L)
[Xg.m‘:'g]vm

A Nevy(Ga,) A" (Lon) [49]
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for arbitrary non-negative integers pi,...
the evaluation maps ev;,i=1,.

. Pm. Here
., 71, are given by

f'_’f(xr)

The so-called tautological line bundles £; over X, ., 4
by definition have the fiber T, Co,i= 1,...,m (see
the article Moduli Spaces: An Introduction regarding
the construction of the so-called virtual fundamental
class [Xg m 31"™). The numbers [49] can be defined
for an arbitrary compact symplectic manifold X
where one is to deal with the intersection theory on
the moduli spaces of pseudoholomorphic curves
fixing a suitable almost-complex structure on X.
They depend only on the symplectic structure on X.
In particular, the numbers

ev; Xg.m,;ﬁ = X,

<T0(®E,|). -~TU(§'Drlm)>g\;"3 [50}

are called the genus g and degree 3 GW invariants of
X. In certain cases, they admit an interpretation in
terms of enumerative gecometry of the variety X
(Kontsevich and Manin 1994). The numbers [49]
with some of p; >0 are called “gravitational
descendents.”

One can form a generating functions of the
numbers [49]

Z Z faal 1 . .t“m-pm
" et (XZ)
<Tp (@m) < T (Der,) >g.8 51]

(summation over repeated indices 1 < oy, ..., a <
n will always be assumed). Here t™* are indetermi-
nates labeled by pairs (o,p) with a=1,...,n,
p=0,1,2,.... {Usually one is to insert in the
definition of ]—"? elements g” of the Novikov ring
C[H,(X; Z)]. However, due to the divisor axiom
(Kontsevich and Manin 1994) and these insertions
can be compensated by a suitable shift in the space
of couplings ¢t = (¢*?).) We finally introduce the full
generating function called total GW potential (it is
also called the free energy of the topological sigma
model with the target space X)

= 0 FY 52]

g=0

FX(t;¢)
Restricting the genus-zero generating function
onto the so-called small phase space

FX(U) = f-g'(t(v.() =

u:(yl,...,v”)

1)(11 tm,p>0 = 0)
153)

one obtains a solution to the WDVV associativity
equations. This solution defines a structure of

(formal) Frobenius manifold on H*(X) with the
bilinear form n given by the Poincaré¢ pairing

T3 — f Pa N Pg
X

e =

the unity

B
and the Euler vector field

H i a

a=1

Here the numbers g.,r. are defined by the
conditions
bo € H(X), (X)) = ruta

83

The resulting Frobenius manifold will be denoted
My. The corresponding #n-parameter family of
n-dimensional algebras on the tangent spaces T, My
is also called “quantum cohomology” QH"(X). At
the point v, € My of classical limit, the algebra
T, ,Mx coincides with the cohomology ring H*(X).
In all known examples, the series [33] actually
converges in a neighborhood of the poinc .
Therefore, one obtains a genuine Frobenius structure
on a domain My C H*(X;C)/2mH>(X;Z). How-
ever, a general proof of convergence is still missing.

In particular, for d =1, the quantum cohomology
of complex projective line P! is a two-dimensional
Frobenius manifold with the potential, unity, and
the Euler vector field

Flu,v) = Juv® + e,

A

G
13 15,
E=v—+2—
y8v+ Ot

For d=2 one has a three-dimensional Frobenius
manifold QOH*(P*) with

1,2 1,, .2
F(vy,v2,v3) = 30703 + 50105
31< 1

+ Ny
; 3k—1 )
I [54]
o (9?)1
7] ) J
= 3y —
e Ul@ 1+ (3!/2 U38U3

where N, =number of rational curves on P? passing
through 3k —1 generic points. WDVV [5] vyields
(Kontsevich and Manin 1994) recursion relations for
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the numbers N, starting from N;=1. The closed
analytic formula for the function [54] is still unknown.

Only for certain very exceptional X the Frobenius
manifold My is semisimple (e.g., for X =P9). The
general geometrical reasons of the semisimplicity of
My are still to have been understood.

For the case X = Calabi-Yau manifold, the Fro-
benius manifold QH*(X) is never semisimple. This
Frobenius structure can be computed in terms of the
mirror symmetry construction (see Mirror Symme-
try: A Geometric Survey).

Frobenius Manifold and Integrable
Systems

The identities in the cohomology ring generated by
the cocycles ev!(¢,) and ;= c1(L;) can be recast
into the form of differential equations for the
generating function [52]. The variable xi=1th0
corresponding to ¢; =1 plays a distinguished role
in these differential equations. According to the idea
of Witten (1991), the differential equations for the
generating functions can be written as a hierarchy of
systems of 7 evolutionary PDEs (n = dim H*{X)) for
the unknown functions

o2 X €
o = (lgamo(on) = & ST

The variable x =5? is the spatial variable of the
equations of the hierarchy. The remaining para-
meters (coupling constants) t®# of the generating
function play the role of the time variables. Witten
suggested to use the two-point correlators

[55]

PFX(t, e
hop = {Tpr1(da)T0(d1)) = ﬁzm(tg—_?

as the densities of the Hamiltonians of the flows of
the hierarchy.

Existence of such a hierarchy can be proved for
the case of GW invariants (and their descendents)
of complex projective spaces P4 (the results of
Givenral (2001) along with Dubrovin and Zhang
(2005) can be used). For d=0 one obrtains,
according to the celebrated result by Kontsevich
conjectured by Witten (see Topological Gravity,
Two-Dimensional), the tau function of the solution
to the KdV hierarchy (see Korteweg-de Vries Equation
and Other Modulation Equations) specified by the
initial condition,

[56]

u(x)|,—g =%

For d =1 the hierarchy in question is the extended
Toda lattice (see details in Dubrovin and Zhang
(2004); see also Toda Lattices). For all other d > 2,

the needed integrable hierarchy is a new one. It can
be associated (Dubrovin and Zhang) with an arbi-
trary n-dimensional semisimple Frobenius manifold
M. The equations of the hierarchy have the form

i k
+ G (w)wlow

wh = Al(w)wl + & | Bl ks

XXX
+ Dyl +O(e), i=1on  [57]

The coefficients of ¢*¢ are graded homogeneous
polynomials in i,y etc., of the degree 2g+1,

degd™u/dx" = m

The construction of the hierarchy is done in two
steps. First, we construct the leading approximation
(Dubrovin 1992). The equation of the hierarchy
specifying the dependence on t=¢*" at e=0 reads

v
ot
a=1,....,n

s (vaa,p+'l(y))
p=0

58]

The functions 6, ,(v),v € M, are the coefficients of
expansion [10] of the deformed flat functions
normalized by 0, 0=v,. The solution v=uv(x,?) of
interest is determined from the implicit function
equations

v=xe+ Y 1"PV0u,(0) 159]
o,
Next, one has to find solution

AF = z €72 F (Ui, . .-

g1

j U£3372)) [60]

of the following universal loop equation (closely
related with the Virasoro conjecture of Eguchi and
Xiong (1998)):

AT af( 1 )“J
22 o “\E(v) — A
r

IAF L WA aff r—k+1 a7,
2 T ;(k)dx S

T3 2\ Gokaunl T Gk duel
% aﬁ—(-la"rPQGaﬁai{ 18,0196

e ( PPAF  OAFOAF )

62 SAF (‘3k+1

2 Lk X
Apa(;N) s ) 17 as
X {V 3 v 3 ve| G [61]
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Here U = U(v) is the operator of multiplication by
E(v),po=palv; A),a=1,...,n, is a system of flat
coordinates [16] of the bilinear form [13]. The
substitution

2g ¢ 2
Vo W= Uy + € 0o AF (0, Uiyy .. -5 €7)

[62]
a=1,...,n

transforms [58] to [57]. The terms of the expansion
[60] are not polynomial in the derivatives. For
example (Dubrovin and Zhang 1998a),

Fi= 24Zlogu +logjuzgu()}

i = dex(57 )—iﬂw

(the canonical coordinates have been used) where
() 1s the isomonodromic tau function [29]. The
transformation [62] applied to the solution [59]
expresses higher-genus GW invariants of a variety X
with semisimple quantum cohomology QH*(X) via
the genus-zero invariants. For the particular case of
X =P, the formula [63] yields (Dubrovin and
Zhang 1998a)

" — 27 1
=+ S kN
8(27 + 2/ — 3¢") 8+;

[63]

Here

e
=2 Negry; 3k —1)!

k>0

is the generating function of the genus-zero GW
invariants of P* (see [54]) and NL“ = the number of
elliptic plane curves of the degree k passing through
3k generic points.

See also: Bi-Hamiltonian Methods in Soliton Theory;
Functional Equations and Integrable Systems; Integrable
Systems: Overview; Isomonodromic Deformations;
Korteweg—de Vries Equation and Other Modulation
Equations; Mirror Symmetry: A Geometric Survey; Moduli
Spaces: An Introduction; Painlevé Equations;
Riemann-Hilbert Problem; Toda Lattices; Topological
Gravity, Two-Dimensional; Topological Quantum Field
Theory: Overview; Topological Sigma Models.
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