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Abstract

The Drinfeld–Sokolov construction associates a hierarchy of bihamiltonian integrable systems with ev-
ery untwisted affine Lie algebra. We compute the complete sets of invariants of the related bihamiltonian
structures with respect to the group of Miura-type transformations.
© 2008 Elsevier Inc. All rights reserved.

MSC: primary 37K10; secondary 53D5

Keywords: Bihamiltonian structures of PDEs; Frobenius manifolds; Affine Lie algebras; Drinfeld–Sokolov construction

1. Introduction

The problem of classification of integrable systems of evolutionary PDEs

wi
t = Ki(w;wx,wxx, . . .), i = 1, . . . , n,

w = (
w1, . . . ,wn

) ∈ Mn
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was studied by many mathematicians in the last 40 years with the help of various techniques;
in such a general setup it remains essentially open, although there are already strong results
for many particular subclasses of equations (see, for example, [46,52,38,53,22] and references
therein).

Before starting the classification work one has to adopt a definition of complete integrability.
For Hamiltonian PDEs

Ki(w;wx,wxx, . . .) = {
wi(x),H

}
, i = 1, . . . , n,

with a suitable class of the Poisson brackets { , } and the Hamiltonians H , one can define inte-
grability, similarly to the finite dimensional case, by assuming existence of a complete family of
commuting Hamiltonians (we do not explain here the notion of completeness, see e.g. in [22]).
More specific is the class of bihamiltonian evolutionary PDEs admitting two different Hamilto-
nian descriptions

Ki(w;wx,wxx, . . .) = {
wi(x),H1

}
1 = {

wi(x),H2
}

2

with respect to a compatible pair of Poisson brackets (see below). Under certain genericity as-
sumptions existence of a bihamiltonian representation ensures complete integrability (see details
in [22,17]). Thus, the problem of classification of integrable PDEs reduces to the problem of clas-
sification of bihamiltonian structures of a suitable class. Even in this bihamiltonian framework
the classification problem is still far from being resolved.

In [22,40,17] we proposed a kind of a perturbative approach to the classification problem
considering the subclass of bihamiltonian PDEs admitting a (formal) expansion with respect to a
small parameter ε

wi
t = Ai

j (w)w
j
x + ε

[
Bi

j (w)w
j
xx + Ci

jk(w)w
j
xwk

x

]
+ ε2[Di

j (w)w
j
xxx + Ei

jk(w)w
j
xwk

xx + F i
jkl(w)w

j
xwk

xw
l
x

]+ · · · ,
i = 1, . . . , n (1.1)

(summation over repeated indices will be assumed). Such systems are to be classified with respect
to a certain pronilpotent extension of the group of (local) diffeomorphisms of the manifold Mn

that we called the group of Miura-type transformations (see Section 2 below). In this way we
managed to produce a complete set of invariants of the bihamiltonian structures satisfying certain
semisimplicity assumptions. The first part of these invariants is a differential-geometric object
defined on the manifold Mn called flat pencil of metrics; it describes the bihamiltonian structure
of the hydrodynamic limit

wi
t = Ai

j (w)w
j
x (1.2)

of the system (1.1). The second part comes from the deformation theory of these bihamiltonian
structures of hydrodynamic type; it consists of n functions of one variable called the central
invariants of the bihamiltonian structure. The main result of the papers [40,17] says that the
flat pencil of metrics along with the collection of central invariants completely characterizes
the equivalence class of a semisimple bihamiltonian structure with respect to the group of local
Miura-type transformations (for the precise formulation see Theorem 2.12 below). In particular,
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the systems of bihamiltonian PDEs with all vanishing central invariants are equivalent to the
hydrodynamic limit (1.2).

Apart from this trivial case no general results about existence of bihamiltonian structures and
integrable hierarchies with a given pair

(flat pencil of metrics, collection of central invariants)

is available. The most studied is the class of the so-called integrable hierarchies of topological
type motivated by the theory of Gromov–Witten invariants. For this class the Poisson pencil
comes from a semisimple Frobenius structure on the manifold Mn; all the central invariants are
constants equal to each other. Some partial existence results for integrable hierarchies of the
topological type will appear elsewhere [23]. So, for the moment we have decided to review the
list of known examples of bihamiltonian PDEs of the form (1.1) in the framework of our theory
of flat pencils and central invariants.

First examples of such an analysis have been carried out in [40,17]. In the present paper we
will consider the flat pencils of metrics and the central invariants for the bihamiltonian hierarchies
constructed by V. Drinfeld and V. Sokolov in [13].

The Drinfeld–Sokolov’s celebrated paper [13] gives a very simple construction, in terms of the
Poisson reduction procedure, of a hierarchy of integrable PDEs associated with a Kac–Moody
Lie algebra and a choice of a vertex on the extended Dynkin diagram. In this paper we will
only consider the most well-known version of this construction for which the affine Lie algebra
is untwisted and the chosen vertex of the Dynkin diagram is c0 (the one added to the Dynkin
diagram of the associated simple Lie algebra). In this case the hierarchy admits a bihamiltonian
structure. The importance of this part of the Drinfeld–Sokolov construction became clear after
the discovery, due to V. Fateev and S. Lukyanov [26], of the connection of the second Poisson
structure for the Drinfeld–Sokolov hierarchy with the semiclassical limit Wcl(g) of the Zamolod-
chikov’s W -algebra [54] (see also [2]). Moreover, according to the conjecture of Drinfeld, proved
by B. Feigin and E. Frenkel (see in [28,30]) the classical W -algebra Wcl(g) arises naturally on
the center of the universal enveloping algebra of the affine algebra ĝ′ of the Langlands dual Lie
algebra g′ at the critical level.

In all these theories the first Poisson structure of Drinfeld and Sokolov seems to be something
superfluous: in the standard definition the classical W -algebra is defined just as the second Pois-
son structure of Drinfeld and Sokolov. However, in the framework of our differential-geometric
classification approach a single Poisson bracket has essentially no invariants: after extension to
Miura-type transformations with complex coefficients any two local Poisson brackets of our class
are equivalent [32]; see also [9,22].

The main result of this paper is the complete description of the flat pencils of metrics and
computation of the central invariants for the Drinfeld–Sokolov bihamiltonian structures for all
untwisted affine Lie algebras. We prove that the flat pencils of metrics are obtained from the
Frobenius structures on the orbit spaces of the corresponding Weyl groups constructed by one of
the authors in [14] via the theory of flat structures of K. Saito et al. [50,49]. The central invariants
are proved to be all constants; they are identified with 1

48 × the square lengths, with respect to the
invariant bilinear form used in the Drinfeld–Sokolov reduction procedure, of the generators in
the Cartan subalgebra. In particular, this proves that the Drinfeld–Sokolov integrable hierarchies
for the A, D and E series are equivalent, in the sense of Definition 2.3, to an integrable hierarchy
of the topological type. The Drinfeld–Sokolov hierarchies associated with nonsimply laced Lie
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algebras do not belong to the topological type. Their tau-functions do not satisfy the topological
recursion relations (see [25] for the B2 case).

The plan of the paper is as follows: we first recall in the next section the definitions of the
bihamiltonian structures, the associated flat pencils of metrics and central invariants. In Section 3
we remind the procedure of the Drinfeld–Sokolov reduction. In Section 4 we formulate the Main
Theorem about invariants of the Drinfeld–Sokolov bihamiltonian structures. The proof of this
theorem is given in Section 5 for the An hierarchies, in Section 6 for the Bn, Cn, Dn hierarchies,
and in Section 7 for the hierarchies associated with the exceptional simple Lie algebras. In the
final section we give some concluding remarks.

2. Central invariants of semisimple bihamiltonian structures

We study bihamiltonian structures of the following form

{
wi(x),wj (y)

}
a

= {
wi(x),wj (y)

}[0]
a

+
∑
k�1

εk
{
wi(x),wj (y)

}[k]
a

,

{
wi(x),wj (y)

}[k]
a

=
k+1∑
l=0

A
ij

k,l;a
(
w(x);wx(x), . . . ,w(l)(x)

)
δ(k−l+1)(x − y) (2.1)

where i, j = 1, . . . , n, a = 1,2. Here w = (w1, . . . ,wn) ∈ M for some n-dimensional mani-
fold M . The dependent variables w1, . . . ,wn will be considered as local coordinates on M . In
this paper the manifold M will be assumed to be diffeomorphic to an open ball.

The coefficients A
ij

k,l;a in (2.1) are homogeneous elements of degree l of the graded ring B of
polynomial functions on the jet bundle of M

B = lim−→
k

Bk, Bk = C∞(M)
[
wx,wxx, . . . ,w

(k)
]
, deg ∂k

xwi = k.

Antisymmetry and Jacobi identity for both brackets as well as the compatibility condition (see
below) are understood as identities for formal power series in ε.

Under certain nondegeneracy assumption (see below) the leading terms of the Poisson brack-
ets form a bihamiltonian structure of hydrodynamic type. The coefficients of this term will be
redenoted as follows

{
wi(x),wj (y)

}[0]
a

= g
ij
a

(
w(x)

)
δ′(x − y) + Γ

ij
k a

(
w(x)

)
wk

xδ(x − y), a = 1,2. (2.2)

For every a = 1,2 the map B ×B → B�ε� given by the formula

(P,Q) �→ δP

δwi(x)
Π

ij
a

δQ

δwj (x)
, (2.3)

P = P
(
w;wx, . . . ,w

(p)
)
, Q = Q

(
w;wx, . . . ,w

(q)
) ∈ B,

Π
ij
a = g

ij
a (w)∂x + Γ

ij
k a

(w)wk
x +

∑
εk

k+1∑
A

ij

k,l;a
(
w;wx, . . . ,w

(l)
)
∂k−l+1
x

k�1 l=0
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induces a Lie algebra structure on the quotient space

B̄ := B�ε�/ Im ∂x (2.4)

where

∂x =
∑

k

wi,k+1 ∂

∂wi,k
, wi,k := ∂kwi

∂xk
.

In the formula (2.3) summation over repeated indices i, j is assumed and

δ

δwi(x)
= ∂

∂wi
− ∂x

∂

∂wi
x

+ ∂2
x

∂

∂wi
xx

− ∂3
x

∂

∂wi
xxx

+ · · ·

is the Euler–Lagrange operator. The class of equivalence in the quotient space (2.4) of any ele-
ment P(w;wx, . . . ; ε) ∈ B�ε� will be denoted by

P̄ :=
∫

P(w;wx, . . . ; ε) dx ∈ B̄

and called a local functional. According to the above construction the Poisson bracket of two
local functionals

P̄ =
∫

P(w;wx, . . . ; ε) dx, Q̄ =
∫

Q(w;wx, . . . ; ε) dx

is a local functional given by

{P̄ , Q̄} =
∫

δP

δwi(x)
Πij δQ

δwj (x)
dx.

Here Π = Π1 or Π = Π2. Observe that, if P and Q are two homogeneous differential polyno-
mials of degrees p and q respectively then their bracket (2.3) will be a homogeneous element
of the ring B�ε� of formal power series in ε of degree p + q + 1 if the degree deg ε = −1 is
assigned to the indeterminate ε. So, for an arbitrary local functional of the degree zero

H =
∫ ∑

k�0

εkPk

(
w;wx,wxx, . . . ,w

(k)
)
dx, degPk

(
w;wx,wxx, . . . ,w

(k)
)= k,

the Hamiltonian vector field

wi
t = {

wi(x),H
}= Πij δP

δwj (x)

is a system of evolutionary PDEs of the form (1.1) for any of the two Poisson structures Πij =
Π

ij or Πij = Π
ij .
1 2
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By the definition of a bihamiltonian structure, any linear combination with constant coeffi-
cients of the two Poisson brackets must be again a Poisson bracket on B̄ (the so-called compat-
ibility condition). Due to this property an infinite hierarchy of pairwise commuting systems of
PDEs of the form (1.1) can be associated with the bihamiltonian structure (see details in [22]).

In the dispersionless limit ε → 0 Eqs. (1.1) become a system of the first order quasilinear
PDEs (1.2). The leading term (2.2) gives a bihamiltonian structure of (1.2). The bihamiltonian
structures (2.1) will be considered up to invertible linear transformations with constant coeffi-
cients

{ , }1 �→ κ11{ , }1 + κ12{ , }2,

{ , }2 �→ κ21{ , }1 + κ22{ , }2,

κ11κ22 − κ12κ21 �= 0. (2.5)

The dependence of the associated integrable hierarchy on the changes (2.5) is nontrivial; it sim-
plifies if one allows only triangular transformations

{ , }1 �→ κ11{ , }1

{ , }2 �→ κ21{ , }1 + κ22{ , }2,

κ11κ22 �= 0. (2.6)

Definition 2.1. A compatible pair of Poisson brackets (2.1) considered modulo triangular trans-
formations (2.6) is called a Poisson pencil.

The antisymmetry of the Poisson brackets (2.1) gives a system of linear differential constraints
for the coefficients. They can be written in a compact form

Π
ji
a = −(

Π
ij
a

)†
, a = 1,2. (2.7)

Here the (formally) adjoint to a scalar differential operator

L =
∑

k

Ak(x)∂k
x

is defined by

L† =
∑

k

(−∂x)
kAk(x). (2.8)

The validity of the Jacobi identity for the pencil of Poisson brackets imposes a system of highly
nontrivial nonlinear differential equations for the coefficients.

We will now introduce an equivalence relation in order to formulate the classification problem.

Definition 2.2. A Miura-type transformation is a change of variables of the form

wi �→ w̃i(w;wx,wxx, . . . ; ε) = F i
0(w) +

∑
k�1

εkF i
k

(
w;wx, . . . ,w

(k)
)

(2.9)

where F i ∈ B with degF i = k, and the map w �→ F i(w) is a diffeomorphism of M .
k k 0
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All Miura-type transformations form a group G(M). It acts by automorphisms on the graded
ring B�ε�. This action commutes with the action of the operator of total x-derivative ∂x . There-
fore the action of the group G(M) on the Poisson brackets of the form (2.1) is defined. The
explicit formula

Π̃kl
a = Lk

i Π
ij
a Ll

j

†
, a = 1,2, (2.10)

involves the operator of linearization of (2.9)

Li
j =

∑
m

∂w̃i(w;wx,wxx, . . . ; ε)
∂wj,m

∂m
x (2.11)

and the adjoint operator Li
j

† (see (2.8)).

Definition 2.3. Two Poisson pencils of the form (2.1) are called equivalent if one can be trans-
formed to another by a combination of a Miura-type transformation and a linear change (2.6).

We will now describe the complete set of invariants of bihamiltonian structures (2.1) under
certain nondegeneracy assumptions. Observe first that, at the leading order ε = 0 one obtains
from (2.10) the tensor law, with respect to the coordinate change wi �→ F i

0(w), for the (2,0)

symmetric tensors g
ij
a (w). So the nondegeneracy assumption

det
(
g

ij
a (w)

) �= 0 for a generic w ∈ M, a = 1,2, (2.12)

does not depend on the choice of a coordinate system.
Due to (2.7) each tensor g

ij
a (w) for a = 1,2 is symmetric. It defines therefore a symmetric

nondegenerate bilinear form on the cotangent bundle T ∗M . We will call it a metric. The coeffi-
cients Γ

ij
k a

(w) in (2.2) are expressed via the Christoffel coefficients of the metric:

Γ
ij
k = −gisΓ

j
sk. (2.13)

Recall [19] that validity of the Jacobi identity implies vanishing of the curvature of the metric.
Thus the signature of the metric gij (w) is the only local (i.e., M = Bn = a small ball in Rn)
invariant of a single Poisson bracket of hydrodynamic type (2.2) with respect to the group of
local diffeomorphisms. Moreover [32,9], the signature of the metric is the only local invariant
of a single Poisson bracket of the form (2.1) with respect to the group G(Bn). The theory of
invariants of bihamiltonian structure is richer.

We will impose in sequel a somewhat stronger assumption for the pair of metrics.

Definition 2.4. We say that the pair of metrics is strongly nondegenerate if for any λ ∈ C the
symmetric matrix (g

ij

2 (w) − λg
ij

1 (w)) does not degenerate for generic w ∈ M .

In particular the strong nondegeneracy assumption implies that all the roots λ = λ(w) of the
characteristic equation
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det
(
g

ij

2 (w) − λg
ij

1 (w)
)= 0 (2.14)

are nonconstant functions on M .
We will now add one more assumption requiring that the roots of the characteristic equation

(2.14) are pairwise distinct at a generic point of M .

Definition 2.5. A Poisson pencil (2.1) is called semisimple at the point w0 ∈ M if the roots
λ = u1(w0), . . . , λ = un(w0) of the characteristic equation (2.14) are pairwise distinct.

The following statement was proved in [29] (see also [17]).

Lemma 2.6. Given a strongly nondegenerate pair of metrics g
ij
a (w), a = 1,2, satisfying the

semisimplicity assumption at a point w0 ∈ M , then the roots λ = u1(w), . . . , λ = un(w) of the
characteristic equation (2.14) define a system of local coordinates near w0. They are called the
canonical coordinates of the pencil. In the canonical coordinates the two metrics diagonalize:

g
ij

1 (u) = f i(u)δij , g
ij

2 (u) = uif i(u)δij , i, j = 1, . . . , n, (2.15)

for some functions f 1(u), . . . , f n(u), u = (u1, . . . , un) ∈ M .

Definition 2.7. A bihamiltonian structure of the form (2.1) is called semisimple if it is semisimple
at generic points of M , and the associated pair of metrics (g

ij

1 , g
ij

2 ) is strongly nondegenerate.

We are now ready to construct invariants of a Poisson pencil with respect to the action of
the group of Miura-type transformations. Given a Poisson pencil of the form (2.1) define two
matrix-valued formal power series in an indeterminate p with coefficients depending on w ∈ M :

π
ij
a (p;w) :=

∞∑
k=0

A
ij

k,0;a(w)pk, a = 1,2. (2.16)

Recall that A
ij

0,0;a = g
ij
a . The antisymmetry (2.7) implies

π
ji
a (−p;w) = π

ij
a (p;w). (2.17)

Lemma 2.8. Under Miura-type transformations (2.9) the matrices (2.16) transform in the fol-
lowing way

π̃ kl
a (p;w) = 
k

i (p;w)π
ij
a (p;w)
l

j (−p;w), a = 1,2, (2.18)

where the formal series 
i
j (p;w) are defined by the following formula


i
j (p;w) =

∞∑
k=0

∂F i
k (w;wx, . . . ,w

(k))

∂wj,k
pk. (2.19)
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Note that, according to the grading rules degF i
k (w;wx, . . . ,w

(k)) = k the coefficients of the
series (2.19) are jet-independent.

Proof of the lemma readily follows from the transformation rule (2.10), (2.11).
Denote

R(p,λ;w) := det
(
π

ij

2 (p;w) − λπ
ij

1 (p;w)
)

(2.20)

the characteristic polynomial of the pair of matrix-valued power series. According to the lemma
the roots λ1(p;w), . . . , λn(p;w) of the characteristic polynomial are invariant, up to a permu-
tation, with respect to Miura-type transformations. In general these roots are algebraic functions
of p depending on w ∈ M . We will now study the properties of these roots under an additional
assumption of semisimplicity.

Lemma 2.9. Let the pair of metrics (g
ij

1 , g
ij

2 ) be semisimple at a point w0 ∈ M , and λ =
u1(w0), . . . , λ = un(w0) be the roots of the characteristic equation

R(0, λ;w0) = det
(
g

ij

2 (w0) − λg
ij

1 (w0)
)= 0.

Then the roots λ1(p;w), . . . , λn(p;w) of the characteristic equation

R(p,λ;w) = 0 (2.21)

for w sufficiently close to w0 admit a formal power series expansion in p

λi(p;w) = ui(w) +
∞∑

k=1

λi
k(w)pk, i = 1, . . . , n. (2.22)

These power series, considered up to permutations and up to affine transformations

λi(p;w) �→ aλi(p;w) + b, i = 1, . . . , n, a �= 0,

are invariants of the Poisson pencil with respect to the action of the group of Miura-type trans-
formations.

Observe that, due to (2.17), all odd coefficients of the series (2.22) vanish.
In order to avoid inessential complications with signs, let us consider the complex situation

assuming the manifold M to be complex analytic and all coefficients of the Poisson brackets and
of the Miura-type transformations to be complex analytic functions in w. Then the complete set
of local invariants of a semisimple bihamiltonian structures of the form (2.1) consists of

• flat pencil of metrics on M ;
• collection of n functions of one variable called central invariants.

Flat pencil of metrics on M is, roughly speaking, a pair of (contravariant) metrics g
ij

1 (w),

g
ij

2 (w) such that, at any point w ∈ M their arbitrary linear combination

a1g
ij
(w) + a2g

ij
(w)
1 2
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has zero curvature, and the contravariant Christoffel coefficients (2.13) for the above metric have
the form of the same linear combination

a1Γ
ij
k 1 + a2Γ

ij
k 2

(see details in [16]).

Remark 2.10. A flat pencil of metrics arises on an arbitrary Frobenius manifold according to the
following construction [14,15]. Recall that an arbitrary Frobenius manifold is equipped with a
flat metric 〈 , 〉, a product of tangent vectors (a, b) �→ a · b, and an Euler vector field E. We put

( , )1 := 〈 , 〉 (2.23)

and define the second metric1 on the cotangent bundle from the equation

(ω1,ω2)2 = iEω1 · ω2 (2.24)

that must be valid for an arbitrary pair of 1-forms on the Frobenius manifold. In this formula
the identification of tangent and cotangent spaces at every point is done by means of the first
metric ( , )1. By means of this identification one defines the product of 1-forms ω1 · ω2 via the
product of tangent vectors.

Similarly to Definition 2.3 we give

Definition 2.11. Two flat pencils are called (locally) equivalent if one can be transformed to
another by a combination of a (local) diffeomorphism and a linear change (2.5).

The differential geometry problem of local classification of semisimple flat pencils reduces to
an integrable system of differential equations (see [17] and references therein).

One thus arrives at the problem of local classification of semisimple bihamiltonian structures
of the form (2.1), (2.2) with a given flat pencil of metrics (i.e., with the given leading term (2.2)).
The theory of central invariants gives a parametrization of the infinitesimal deformation space
of the bihamiltonian structure (2.2). We will not recall here the underlined cohomological the-
ory [40,17]; we only give the definition and the computational formulae for the central invariants.

Given a semisimple Poisson pencil, consider the roots

λi(p;w) = ui(w) + λi
2(w)p2 +O

(
p4), i = 1, . . . , n,

of the characteristic equation (2.21). Denote

ci(w) := 1

3

λi
2(w)

f i(w)
, i = 1, . . . , n (2.25)

(the coefficient 1/3 is chosen for a convenience of normalization).

1 It also appeared in [1] under the guise of the operation of convolution of invariants of reflection groups.
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Theorem 2.12. (See [17].)

(i) Each function ci(w) defined in (2.25) depends only on ui(w),

ci(w) = ci

(
ui(w)

)
, i = 1, . . . , n.

(ii) Two semisimple bihamiltonian structures of the form (2.1) with the same leading terms
{ , }[0]

a , a = 1,2, are equivalent iff they have the same set of central invariants ci(u
i),

i = 1, . . . , n.

Explicitly, the central invariants can be computed via the coefficients of the Poisson pencil
according to the following formula. Denote P

ij
a (u) (respectively Q

ij
a (u)) the components of the

tensor A
ij

1,0;a(w) (respectively A
ij

2,0;a(w)) in the canonical coordinates:

π
ij

1 (p;u) = f i(u)δij + P
ij

1 (u)p + Q
ij

1 (u)p2 +O
(
p3),

π
ij

2 (p;u) = uif i(u)δij + P
ij

2 (u)p + Q
ij

2 (u)p2 +O
(
p3).

By using the results of [17], one can find a transformation of the form (2.18) that reduces the two
matrix-valued polynomials to the form

π̃
ij

1 (p;u) = f i(u)δij +O
(
p3),

π̃
ij

2 (p;u) = uif i(u)δij + μi(u)δijp2 +O
(
p3).

Clearly

λi
2(u) = μi(u)

f i(u)
, i = 1, . . . , n.

This yields the following expression for the ith (i = 1, . . . , n) central invariant of the semisimple
bihamiltonian structure (2.1)

ci

(
ui
)= 1

3(f i(u))2

[
Qii

2 (u) − uiQii
1 (u) +

∑
k �=i

(P ki
2 (u) − uiP ki

1 (u))2

f k(u)(uk − ui)

]
. (2.26)

To compute the central invariants it is sometimes more convenient to use directly the tensor
A

ij

1,0;a(w) and A
ij

2,0;a(w) in the original coordinates w1, . . . ,wn. To do so, let us denote

Ψ (λ;w) = det
[
g

ij

2 (w) − λg
ij

1 (w)
]

(2.27)

the characteristic polynomial of the pair of metrics g
ij

2 , g
ij

1 . In the canonical coordinates
u1(w), . . . , un(w) both metrics become diagonal:
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n∑
k,l=1

(
∂Ψ (λ;w)

∂wk

)
λ=ui

(
∂Ψ (λ;w)

∂wl

)
λ=uj

gkl
1 (w) = 0, i �= j,

n∑
k,l=1

(
∂Ψ (λ;w)

∂wk

)
λ=ui

(
∂Ψ (λ;w)

∂wl

)
λ=uj

gkl
2 (w) = 0, i �= j. (2.28)

Here we used the implicit function theorem formula

∂ui(w)

∂wk
= −

(
1

Ψ ′(λ;w)

∂Ψ (λ;w)

∂wk

)
λ=ui

, Ψ ′(λ;w) = ∂Ψ (λ;w)

∂λ
.

Then in the case when the linear in ε terms of the bihamiltonian structure (2.1) vanish, the central
invariants defined by (2.26) have the following expressions:

ci

(
ui
)= 1

3

[
Ψ ′(ui;w)]2

∑n
k,l=1

(
∂Ψ (λ;w)

∂wk

)(
∂Ψ (λ;w)

∂wl

)
(Akl

2,0;2(w) − λAkl
2,0;1(w))[∑n

k,l=1

(
∂Ψ (λ;w)

∂wk

)(
∂Ψ (λ;w)

∂wl

)
gkl

1 (w)
]2

∣∣∣∣
λ=ui

. (2.29)

For the general case we obtain a similar but a little bit lengthy formula.
Note that linear transformations (2.5) yield fractional linear transformations of the canonical

coordinates

ui �→ κ21 + uiκ22

κ11 + uiκ12
, i = 1, . . . , n.

The transformation law of central invariants is given by

ci �→ 
−1(κ11 + κ12u
i
)
ci, i = 1, . . . , n, (2.30)

where 
 = κ11κ22 − κ12κ21. For the simultaneous rescalings

{ , }a �→ κ{ , }a, a = 1,2,

one has

ci �→ κ−1ci, i = 1, . . . , n.

Observe that the central invariants do not change when rescaling only the first Poisson bracket
without changing the second one. Because of this the central invariants of a Poisson pencil are
well defined up to a common constant factor.

3. The Drinfeld–Sokolov reduction

Before explaining the Drinfeld–Sokolov procedure let us first recall the classical construction
of the linear Poisson bracket on the dual space g∗ to a finite dimensional Lie algebra g (the so-
called Lie–Poisson bracket). It is uniquely defined by the following requirement: given two linear
functions a, b on g∗, a, b ∈ g, their Poisson bracket coincides with the commutator in g:
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{a, b} = [a, b]. (3.1)

Choosing a basis in the Lie algebra

g = span(e1, . . . , eN), [ei, ej ] =
N∑

k=1

ck
ij ek (3.2)

one obtains the Lie–Poisson bracket in the associated dual system of coordinates (x1, . . . , xN)

on g∗ written in the following form

{xi, xj } =
N∑

k=1

ck
ij xk, i, j = 1, . . . ,N. (3.3)

The Jacobi identity for the linear Poisson bracket (3.3) is equivalent to the Jacobi identity for the
Lie algebra (3.2). The Poisson bivector (3.3) will be denoted

πg ∈ Λ2Txg
∗. (3.4)

Linear Hamiltonians

Ha(x) = 〈a, x〉, a ∈ g, x ∈ g∗,

generate the coadjoint action of the Lie group G associated with g:

ẋ = {x,Ha} ⇔ 〈
b, x(t)

〉= 〈
e−t adab, x(0)

〉
for any b ∈ g. (3.5)

A simple generalization is given by linear inhomogeneous Poisson bracket

{xi, xj } =
N∑

k=1

ck
ij xk + c0

ij . (3.6)

It can be interpreted as the Lie–Poisson bracket on the one-dimensional central extension

0 → Ck → g̃ → g → 0

of the Lie algebra by means of the 2-cocycle

c0(ei, ej ) = c0
ij , c0([a, b], c)+ c0([c, a], b)+ c0([b, c], a)= 0. (3.7)

Let us now recall the setting of the Marsden–Weinstein Hamiltonian reduction proce-
dure [45,44,47]. Given a Poisson manifold M, a family of Hamiltonians

H1(x), . . . ,HN(x) ∈ C∞(M)
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forming an N -dimensional Lie subalgebra g in C∞(M)

{Hi,Hj } =
N∑

k=1

ck
ijHk(x), ck

ij = const,

generates a Poisson action on M of the connected and simply connected Lie group G associated
with g, assuming that any nontrivial linear combination of the generators H1, . . . ,HN is not a
Casimir of the Poisson bracket on M. The vector-valued function

P(x) = (
H1(x), . . . ,HN(x)

) ∈ g∗

is called the moment map for the Poisson action. The diagram

M
P

g

g∗

Ad∗g

M
P

g∗

is commutative for any g ∈ G.
Given a Hamiltonian H ∈ C∞(M) invariant with respect to the action of the group G

{H,Hi} = 0, i = 1, . . . ,N,

the goal of the reduction procedure is to reduce the order of the Hamiltonian system

ẋ = {x,H } (3.8)

i.e., to find a Poisson manifold (Mred, { , }red) of a lower dimension and a Hamiltonian Hred ∈
C∞(Mred) such that problem of integration of the Hamiltonian system (3.8) is reduced to the
one for

ẏ = {y,Hred}red, y ∈Mred.

The construction of the reduced space can be given as follows.
Consider a smooth common level surface of the Hamiltonians

Mh := {
x ∈M

∣∣H1(x) = h1, . . . , HN(x) = hN

}= P−1(h)

where

h = (h1, . . . , hN) ∈ g∗

is a regular value of the moment map. Denote Gh ⊂ G the stabilizer of h with respect to the
coadjoint action of G on g∗. The Lie algebra gh of the stabilizer is the kernel of the map

πg :g 
 T ∗g∗ → Thg
∗ 
 g∗ (3.9)
h
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where πg is the Poisson bivector (3.4) on g∗. The group Gh acts freely on Mh. Assume this
action to be free also on some neighborhood of Mh ⊂ M and that the orbit space Mh/Gh has
a structure of a smooth manifold. Define

Mred
h := Mh/Gh.

We will give a construction of the reduced Poisson bracket on Mred
h for the simplest case

Gh = G. In this particular case the Poisson brackets of the generators all vanish on Mh:

{Hi,Hj }|Mh
= 0, i, j = 1, . . . ,N.

Functions on Mred
h can be identified with G-invariant functions on Mh. For any two G-invariant

functions α, β on Mh denote α̂, β̂ arbitrary extensions of these two functions on a neighborhood
of Mh.

Definition 3.1. Under the above assumptions the Poisson bracket on the reduced space Mred
h =

Mh/G defined by the formula

{α,β}red := {α̂, β̂}|Mh
(3.10)

is called the reduced Poisson bracket.

It is easy to see that the right-hand side of (3.10) is a G-invariant function on Mh. Moreover,
the definition does not depend on the extensions α̂, β̂ of the G-invariant functions α, β .

We now proceed to outline the main steps of the Drinfeld–Sokolov reduction for the case of
untwisted affine Lie algebras, the details can be found in [13].

Let g be a simple Lie algebra over C, G the associated connected and simply connected Lie
group. Fix a nondegenerate symmetric invariant bilinear form 〈,〉g on g. The central extension

0 → Ck → ĝ → L(g) → 0

of the loop algebra L(g) := C∞(S1,g) is defined as the direct sum of vector spaces ĝ =
L(g) ⊕ Ck equipped with the following Lie bracket[

q(x) + ak,p(x) + bk
]
ĝ

= [
q(x),p(x)

]+ ω(q,p)k.

Here the 2-cocycle ω is defined by

ω(q,p) = −
∫
S1

〈
q(x),p′(x)

〉
g
dx. (3.11)

Denote by ĝ∗ be the space of linear functionals on ĝ of the following form


q(x)+ak
[
p(x) + bk

]=
∫

1

〈
q(x),p(x)

〉
g
dx + ab,
S



B. Dubrovin et al. / Advances in Mathematics 219 (2008) 780–837 795
where q(x),p(x) ∈ L(g), a, b ∈ C. We identify ĝ∗ with ĝ. Let

M = {
q(x) + εk

∣∣ q(x) ∈ L(g)
}⊂ ĝ∗

be the subspace of the linear functionals taking value ε at the central element k. Since the central
element k is a Casimir w.r.t. the Lie–Poisson structure on ĝ∗, the space M also possesses a
Poisson structure which is uniquely determined by the following condition: the Poisson bracket
of two linear functionals

Ha(x)[q] =
∫
S1

〈
a(x), q(x)

〉
g
dx, Hb(x)[q] =

∫
S1

〈
b(x), q(x)

〉
g
dx

a(x), b(x) ∈ L(g) (3.12)

coincides with the Lie bracket in ĝ:

{Ha(x),Hb(x)} = Hc(x) + εω(a, b), c(x) = [
a(x), b(x)

]
. (3.13)

Here we denote H [q] the value of a functional H on q(x) + εk ∈ M for brevity. Observe that
the above Poisson bracket can also be written in the following form:

{Ha(x),Hb(x)}[q] =
∫
S1

〈
a(x),

[
b(x), ε

d

dx
+ q(x)

]〉
g

dx

= −
∫
S1

〈
a(x), εbx(x) + adq(x) b(x)

〉
dx. (3.14)

Here [b(x), ε d
dx

] = −εbx(x). Since M is the level surface of a Casimir, the group Ĝ = exp ĝ

also acts on M as a Poisson action. The space M can be naturally identified with the following
space of first order linear differential operators

M=
{
ε

d

dx
+ q(x)

∣∣∣ q(x) ∈ L(g)

}
(3.15)

in such a way that the coadjoint action of g = exp(p(x) + bk) ∈ Ĝ on M is given by

Ad∗
g : ε

d

dx
+ q(x) �→ exp(adp(x))

(
ε

d

dx
+ q(x)

)
. (3.16)

Note that this action does not depend on the central element, so we can regard it as an action of
the loop group L(G) := C∞(S1,G) on M.

Remark 3.2. Given a basis I 1, . . . , IN in g such that[
I i, I j

]= c
ij
k I k,〈

I i, I j
〉 = gij

g
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one obtains a system of coordinates

wi = 〈
I i, ξ

〉
, ξ ∈ g∗, i = 1, . . . ,N, (3.17)

on the dual space g∗. The Poisson bracket (3.14) can be written in the form{
wi(x),wj (y)

}= c
ij
k wk(x)δ(x − y) − εgij δ′(x − y). (3.18)

After division by ε, this form of the Poisson bracket is similar to (2.1) but the ε-expansion begins
with terms of order ε−1. These terms will disappear after the reduction.

We choose a Cartan subalgebra h of g, and denote by Φ the root system corresponding to h.
Let 
 = (α1, . . . , αn) be a base of Φ (where n is the rank of g), and Φ+,Φ− be the positive and
negative root systems w.r.t. 
, then we have the Cartan decomposition

g = n+ ⊕ h ⊕ n− =
( ⊕

α∈Φ+
gα

)
⊕ h ⊕

( ⊕
α∈Φ+

g−α

)
. (3.19)

Denote b = b+ = n+ ⊕h, b− = n− ⊕h the Borel subalgebras w.r.t. h, and n = n+. Let N ⊂ G be
the subgroup of the Lie group G associated with the Lie subalgebra n ⊂ g. The Drinfeld–Sokolov
construction can be interpreted as a Hamiltonian reduction procedure w.r.t. the action (3.16) of
the loop group L(N) = C∞(S1,N) on M.

By definition, the coadjoint action (3.16) of the subgroup L(N) of L(G) is generated by the
linear Hamiltonians of the form Hv(x), where v(x) ∈ L(n) = C∞(S1,n). Therefore the moment
map

P :M → L(n)∗

associated with the coadjoint action of L(N) is given by the linear functional on L(n)

P
(

ε
d

dx
+ q(x)

)[
v(x)

]=
∫
S1

〈
q(x), v(x)

〉
dx. (3.20)

Note that the orthogonal complement of n w.r.t. the bilinear form 〈,〉g coincides with b, so one
can identify the dual space n∗ with the quotient

n∗ = g/b 
 n−. (3.21)

Thus the moment map (3.20) can be identified with the direct sum projection of the g-valued
function q(x) onto the “lower triangular part”

P
(

ε
d

dx
+ q(x)

)
= π−(q(x)

)
(3.22)

where π− :g → n− is the natural projection.
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Now we choose a set of Weyl generators Xi,Hi,Yi (i = 1, . . . , n) w.r.t. the Cartan decompo-
sition (3.19),

Xi ∈ gαi
, Hi = α∨

i ∈ h, Yi ∈ g−αi
.

Let

I =
n∑

i=1

Yi ∈ n− (3.23)

be a principal nilpotent element (see [36]). Denote

MI := P−1(I ) = ε
d

dx
+ I + L(b) (3.24)

the level surface of P considering I as a constant map S1 → n−.
From the commutation relations among the Weyl generators it follows that the element I ∈ n∗

is invariant with respect to the coadjoint action of L(n). Therefore the level surface MI is in-
variant with respect to the gauge action of the group L(N). By definition the functionals on the
quotient MI /L(N) are the gauge invariant functionals on MI . We will now construct a “system
of coordinates” on this quotient space.

According to the theory of simple Lie algebras [36], the map

adI :n → b

is injective. We fix a subspace V of b such that

b = V ⊕ [I,n], (3.25)

so dimV = dimb − dimn = n.

Proposition 3.3. The Hamiltonian action of the loop group L(N) on MI is free, namely, each
orbit contains a unique operator of the form

ε
d

dx
+ I + qcan(x) with qcan(x) ∈ L(V ) = C∞(

S1,V
)
.

According to this result of [13] the reduced Poisson manifold can be identified with the space
of operators written in the canonical form

MI /L(N) 

{
ε

d

dx
+ I + qcan(x)

∣∣∣ qcan(x) ∈ L(V )

}
(3.26)

for the given choice of the subspace V ⊂ b of the form (3.25). The functionals on the reduced
space MI /L(N) can be realized as functionals on MI invariant with respect to the gauge ac-
tion of L(N), they will be called gauge invariant functionals for brevity. We now construct a
bihamiltonian structure on the reduced space.

Let us first do the following trivial observation: given an element α ∈ g, the formula
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{Ha(x),Hb(x)}λ = 1

ε

∫
S1

〈
a(x),

[
b(x), ε

d

dx
+ q(x) − λα

]〉
g

dx (3.27)

(cf. (3.14)) defines a Poisson bracket on M for an arbitrary λ. Indeed, the translation q(x) �→
q(x) − λα for any λ is a Poisson map for a linear Poisson bracket. We obtain thus a Poisson
pencil on M.

We now choose α to be a generator of the (one-dimensional) centre of the nilpotent subalge-
bra,

α ∈ n, [α,n] = 0. (3.28)

A main result of Drinfeld–Sokolov construction is the following proposition:

Proposition 3.4. Given two gauge invariant functionals φ[q], ψ[q] on MI , then for any of their
extensions φ̂[q], ψ̂[q] to M, the functional obtained by restricting the Poisson bracket

{φ̂, ψ̂}λ (3.29)

to MI is again a gauge invariant functional on MI .

According to this result, the projection of the Poisson pencil from M to the reduced space
MI /L(N) is again a Poisson pencil. In principle this completes the Drinfeld–Sokolov construc-
tion, although the explicit realization of the bihamiltonian structure on the reduced space strongly
depends on the choice of the subspace V in (3.25). Changing the subspace yields a Miura-type
transformation of the resulting bihamiltonian structure. The resulting bihamiltonian structure

{ , }λ = { , }2 − λ { , }1 (3.30)

is called the Drinfeld–Sokolov bihamiltonian structure associated to the simple Lie algebra g. The
commuting Hamiltonians of the associated integrable hierarchy can be constructed as (formal)
spectral invariants of the differential operator

ε
d

dx
+ qcan(x) + I − λα. (3.31)

In the subsequent sections, we will recall the explicit representations, following [13], of the
reduced space and also of the bihamiltonian structures associated to the simple Lie algebras of
type A-B-C-D in terms of pseudo-differential operators.

Remark 3.5. There is an alternative approach to the Drinfeld–Sokolov reduction, due to P. Casati
and M. Pedroni [8] based on the Marsden–Ratiu reduction. In a recent paper [7] this approach
was applied to the G2 hierarchy.
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4. Formulation of main results

As the first result of the present paper, we will identify the dispersionless limit of the Drinfeld–
Sokolov bihamiltonian structures with the canonical bihamiltonian structures defined on the jet
spaces of the Frobenius manifolds—the orbit spaces of the Weyl groups. To this end, we need
first to establish an isomorphism between the reduced manifolds MI /L(N) that underline the
Drinfeld–Sokolov bihamiltonian structures and the loop spaces of the orbit spaces of the Weyl
groups.

Let g be a simple Lie algebra. It admits a decomposition w.r.t. the principal gradation

g =
⊕

1−h�j�h−1

gj , gj =
{

h if j = 0,⊕
α∈Φ,htα=j gα if j �= 0,

where ht is the height function of roots, h is the Coxeter number of g and other notations such as
h and Φ are defined as in Section 3.

We specify the choice of the complement of the subspace [I,n] of b that appears in (3.25) so
that

V =
h−1⊕
j=0

Vj , (4.1)

where the subspaces Vj satisfy

Vj ⊂ bj = b ∩ gj , bj = Vj ⊕ [I,bj+1]. (4.2)

Note that Vj is not a null space if and only if j is one of the exponents

1 = m1 � m2 � · · · � mn = h − 1

of the simple Lie algebra g. For all simple Lie algebras except the ones of Dn type with even n

the exponents have multiplicity one, i.e. dimVmi
= 1 and the exponents are distinct. For the Dn

(with even n) case, the exponents mi for i �= n
2 , n

2 +1 have multiplicity one, mn
2

= mn
2 +1 = n−1

and dimVn−1 = 2.
To choose a system of local coordinates of the reduced manifold MI /L(N) of (3.26), we fix

a canonical form

ε
d

dx
+ qcan + I ∈ MI /L(N)

of the linear operator ε d
dx

+ q + I under the gauge action of L(N) such that

qcan =
n∑

i=1

wiγi ∈ V. (4.3)

Here for the exponent mi with multiplicity one, γi is a basis of the one-dimensional sub-
space Vmi

; for the Dn case with even n, γn
2
, γ n

2 +1 is a basis of the 2-dimensional subspace Vn−1.

Then w1, . . . ,wn form a coordinate system on the space V ⊂ n.
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Remark 4.1. The subspace Vh−1 = bh−1 is determined uniquely since

bj = 0 for j � h.

Recall [6] that bh−1 coincides with the (one-dimensional) centre of n. We will choose the basic
vector γn ∈ Vh−1 as follows:

γn = α (4.4)

where α is the generator of the centre of n has been chosen in (3.28) (see also (3.31)).

According to the results of Section 3 there exists a gauge transformation reducing the linear
operator ε d

dx
+ q + I to the canonical form,

S−1(x)

(
ε

d

dx
+ q + I

)
S(x) = ε

d

dx
+ qcan + I (4.5)

where the function S(x) takes values in the nilpotent group N . The canonical form qcan and
the reducing gauge transformation S(x) are determined uniquely from the following recursion
procedure2

[I, Si+1] − qcan
i =

i∑
j=1

Sjq
can
i−j − qi −

i∑
j=1

qi−j Sj − ε
dSi

dx
, i � 0. (4.6)

Here we use decomposition

S = 1 + S1 + S2 + · · · ∈ L(N) (4.7)

induced by the principal gradation of g since the exponential map

n → N

is a polynomial isomorphism. As it was proved in [13], the reducing transformation and the
canonical form are uniquely determined from the recursion relation. Moreover, they are differen-
tial polynomials in q . In particular, the defined above coordinates w1, . . . ,wn of qcan are certain
differential polynomials

wi = wi
(
q;qx, . . . , q

(h−1)
)
, i = 1, . . . , n. (4.8)

We will now use these differential polynomials for defining a polynomial isomorphism of
affine algebraic varieties

h/W → V, (4.9)

2 Strictly speaking, the form we write (4.5) and the recursion relation (4.6) uses a matrix realization of the Lie algebra.
See [13] for the formulation of the recursion procedure independent of the matrix realization.
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where W = Wg is the Weyl group of the simple Lie algebra g.
Restricting the differential polynomials wi(q;qx, qxx, . . .) to the Cartan subalgebra

q = ξ =
n∑

i=1

ξ iα∨
i ∈ C∞(

S1,h
)

we obtain differential polynomials

w1(ξ ; ξx, ξxx, . . .), . . . ,w
n(ξ ; ξx, ξxx, . . .). (4.10)

Define polynomial functions on h by

yi(ξ) = wi(ξ ;0,0, . . .) ∈ C[h∗]. (4.11)

Lemma 4.2. The functions yi(ξ) are W -invariant homogeneous polynomials of degree mi + 1.
Moreover, they generate the ring of W -invariant polynomials C[h∗]W .

Proof. The restriction

F(q;qx, qxx, . . .) �→ F(q;0,0, . . .) =: f (q)

of any gauge invariant polynomial function on the differential operators of the form

ε
d

dx
+ q

yields a polynomial function on g invariant w.r.t. adjoint action of the Lie group G. Further
restriction onto the Cartan subalgebra establishes an isomorphism

S(g)G → S(h)W = C[h∗]W

of the ring of Ad-invariant polynomial functions on g and the ring of W -invariant polynomial
functions on h, according to Chevalley theorem [6]. Furthermore, the homomorphism

S(g)G → S(b)N

defined by the formula

f �→ f (I + q), q ∈ b,

is an isomorphism (see [37, Theorem 1.3]). Finally, according to Theorem 1.2 of [37] the adjoint
action of the nilpotent group establishes an isomorphism of affine varieties

N × (I + V ) → I + b.

Combining these statements we prove that the polynomials y1(ξ), . . . , yn(ξ) generate the ring
C[h∗]W .
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Now let us prove that degyi(ξ) = mi + 1. From the above definition, we know that these
functions are determined by the following equation obtained from (4.5) by eliminating d/dx

eads (q + I ) = qcan + I, (4.12)

where s ∈ n, q ∈ b, qcan ∈ V have the decomposition

s =
h−1∑
k=1

si , q =
h−1∑
k=0

qk, qcan =
h−1∑
i=1

qcan
i (4.13)

with sk, qk ∈ bk, q
can
i ∈ Vi . Comparing the degree 0 parts of the left and right-hand sides of (4.12),

we arrive at

adI s1 = q0. (4.14)

Since the map adI :b1 → b0 is an isomorphism, we have a unique s1 satisfying the above equa-
tion. Restricting to q0 = ξ we see that s1 depends linearly on ξ . Continuing this procedure by
comparing the degree 1, degree 2 etc. parts, at the ith step we arrive at the equation of the form

adI si + qcan
i−1 = Fi (4.15)

where Fi ∈ bi−1 is a homogeneous polynomial in ξ of degree i. If i − 1 is not an exponent, then
the above equation has a unique solution with qcan

i−1 = 0 since the map

adI :bi → bi−1 (4.16)

is an isomorphism [36]. So si will be a homogeneous polynomial in ξ of degree i. In the case
when i − 1 = mk is an exponent the map (4.16) is only injective. So the solution si ∈ bi , qcan

i−1 ∈
Vi−1 of the above Eq. (4.15) exists and is determined uniquely. The degree of homogeneous
polynomials si(ξ) and qcan

i−1(ξ) is equal to

deg si(ξ) = degqcan
i−1(ξ) = degFi(ξ) = i = mk + 1.

Thus the function yk(ξ) (or yk(ξ), yk+1(ξ)) when mk has multiplicity one (respectively has
multiplicity two) is a homogeneous polynomial of degree mk + 1. In this way we prove that
degyi(ξ) = mi + 1 for any i = 1, . . . , n. �

We obtained a ring isomorphism

C[V ∗] → C[h∗]W .

Dualizing we obtain the isomorphism (4.9) of affine algebraic varieties. This induces the isomor-
phism
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⎧⎪⎪⎨⎪⎪⎩
gauge invariant differential
polynomials f (q;qx, qxx, . . .)

on the space of differential
operators ε d

dx
+ q + I, q(x) ∈ b

⎫⎪⎪⎬⎪⎪⎭→
⎧⎨⎩

differential polynomials
on the affine algebraic
variety h/W

⎫⎬⎭ . (4.17)

Recall [14] that the orbit space Mg = h/W carries a natural structure of a polynomial Frobenius
manifold. According to (4.17) the Hamiltonians of Drinfeld–Sokolov hierarchy can be realized
as polynomial functions, considered modulo total x-derivatives, on the jet space of the Frobenius
manifold. We want to compute the Drinfeld–Sokolov bihamiltonian structure in terms of Mg.

Theorem 4.3. Under the isomorphism (4.17), the Drinfeld–Sokolov bihamiltonian structure as-
sociated to an untwisted affine Lie algebra ĝ is realized as a bihamiltonian structure on the jet
space of Mg. Its dispersionless limit coincides with the bihamiltonian structure of hydrodynamic
type naturally defined on the jet space of the Frobenius manifold by its flat pencil of metrics
defined in Remark 2.10.

Proof. Let us first remind the construction of the flat pencil of metrics on the orbit space Mg. Ac-
tually, the construction works uniformly for the orbit space of an arbitrary finite Coxeter group W

(in our case W = Wg). For the chosen basis of simple roots α1, . . . , αn ∈ h∗ denote

Gab = 〈
α∨

a ,α∨
b

〉
g
, a, b = 1, . . . , n,

the Gram matrix of the invariant bilinear form. Let(
Gab

)= (Gab)
−1 (4.18)

be the inverse matrix. It gives a (constant) bilinear form on the cotangent bundle T ∗h. The projec-
tion of the bilinear form onto the quotient h/W defines a bilinear form on T ∗Mg nondegenerate
outside the locus 
 ⊂ Mg of singular orbits (the so-called discriminant of the Coxeter group W ).
In order to represent this form in the coordinates let us choose the above constructed system
of W -invariant homogeneous polynomials y1(ξ), . . . , yn(ξ) generating the ring C[h∗]W . Here
ξ = ξaαa ∈ h. The polynomial function

Gab ∂yi(ξ)

∂ξa

∂yj (ξ)

∂ξb

is W -invariant for every i, j = 1, . . . , n and, thus, is a polynomial in y1, . . . , yn. Denote g
ij

2 (y)

these polynomials,

g
ij

2

(
y(ξ)

)= Gab ∂yi(ξ)

∂ξa

∂yj (ξ)

∂ξb
. (4.19)

This gives the Gram matrix of the second metric on T ∗Mg in the coordinates y1, . . . , yn. The

associated contravariant Christoffel coefficients are polynomials Γ
ij
k 2(y) defined from the equa-

tions

Γ
ij
k 2(y) dyk = ∂yi

a
Gab ∂2yj

b c
dξc. (4.20)
∂ξ ∂ξ ∂ξ
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To define the first metric, following [49,50], let us assume that the invariant polynomial y1(ξ)

has the maximal degree

degy1(ξ) = h.

Here h is the Coxeter number of the Lie algebra g. Put

g
ij

1 (y) := ∂g
ij

2 (y)

∂y1
, Γ

ij
k 1(y) := ∂Γ

ij
k 2(y)

∂y1
. (4.21)

This is the first metric and the associated contravariant Christoffel coefficients of the flat pencil
of metrics (2.23), (2.24) for the Frobenius structure on Mg. The second metric of the pencil
depends only on the normalization of the invariant bilinear form. The first metric depends on
the choice of the invariant polynomial y1(x) of the maximal degree. Changing this polynomial
yields a rescaling of the first metric; the Frobenius structure will also be rescaled. This rescaling,
however, does not change the central invariants (see the end of Section 2).

Define a Poisson bracket for two functionals ϕ, ψ on C∞(S1,h) by the formula

{ϕ,ψ}[ξ ] =
∫
S1

〈
d

dx
gradξ(x)ϕ,gradξ(x)ψ

〉
g

dx. (4.22)

In terms of the coordinates ξ1(x), . . . , ξn(x), we have{
ξ i(x), ξ j (y)

}= −Gij δ′(x − y), i, j = 1, . . . , n, (4.23)

where (Gij ) is defined in (4.18). Then as it is shown in [13], the Miura map

μ :
(
ξ1, . . . , ξn

) �→ (
w1(ξ ; ξx, ξxx, . . .), . . . ,w

n(ξ ; ξx, ξxx, . . .)
)

is a Poisson map between C∞(S1,h) and MI /L(N) if the latter is endowed with the second
Poisson bracket of the Drinfeld–Sokolov bihamiltonian structure (3.30).

From the above argument and (4.23), we see that the second metric (4.19) defined on the orbit
space of Wg coincides, up to a minus sign, with the metric defined on (I + b)/N by the leading
terms of the second Poisson bracket of the Drinfeld–Sokolov bihamiltonian structure associated
with the untwisted affine Lie algebra ĝ.

The definition of the first Drinfeld–Sokolov Poisson bracket depends on the choice of the base
element α of the one-dimensional center of the nilpotent subalgebra n of g, see (3.27), (3.28).
We note that gmn = gh−1 is just the center of n, so we can take γn = α in (4.3). Then in terms of
the local coordinates w1(x), . . . ,wn(x) the first Drinfeld–Sokolov Poisson bracket is obtained
from the second one by the shifting

wn(x) �→ wn(x) − λ, ∂k
xwn(x) �→ ∂k

xwn(x), k � 1,

and

{ , }2 �→ { , }2 − λ{ , }1.

Thus from the above results it follows the validity of Theorem 4.3. �
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Remark 4.4. Let us remind the algorithm of [14] of reconstruction of the Frobenius structure on
the orbit space.3 Let v1(ξ), . . . , vn(ξ) be a system of flat generators of the ring of W -invariant
polynomials in the sense of [49,50]. Geometrically they give a system of flat coordinates for the
first metric:

ηij := (
dvi, dvj

)
1 = const.

Put

gij (v) := (
dvi, dvj

)
2.

Then there exists an element F(v) of the degree 2h + 2 in the ring of W -invariant polynomials
such that

ηikηjl ∂
2F(v)

∂vk∂vl
= h

degvi + degvj − 2
gij (v). (4.24)

The third derivatives

ck
ij (v) := ηkl ∂3F(v)

∂vl∂vi∂vj

are the structure constants of the multiplication on the tangent space TvMg.

Remark 4.5. Relationship of the generalized Drinfeld–Sokolov hierarchies with algebraic Frobe-
nius manifolds is currently under investigation; first results have been obtained in [48,11].

Theorem 4.6. The suitably ordered central invariants of the Drinfeld–Sokolov bihamiltonian
structure for an untwisted affine Lie algebra ĝ are given by the formula

ci = 1

48

〈
α∨

i , α∨
i

〉
g
, i = 1, . . . , n, (4.25)

where α∨
i ∈ h are the coroots of the simple Lie algebra g.

In the formula (4.25) we use the same invariant bilinear form as the one used in the definition
of the Kac–Moody Lie algebra in Section 3.

If we fix on g the so-called normalized invariant bilinear form (see [34, §6.2 and Exercise 6.2])

〈a, b〉g := 1

2h∨ tr(ada · adb), (4.26)

3 This construction was extended in [21,24] to the orbit spaces of certain extensions of affine Weyl groups, and in [5]
to the orbit spaces of some Jacobi groups. More recently I. Satake [51] extended this construction to the orbit spaces of
the reflection groups for elliptic root systems for the so-called case of codimension one.
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here h∨ is the dual Coxeter number, then with the help of the table in §6.7 of [34] one obtains
the following values of central invariants, according to Theorem 4.6:

g c1 . . . cn−1 cn

An
1
24 . . . 1

24
1
24

Bn
1
24 . . . 1

24
1
12

Cn
1
12 . . . 1

12
1
24

Dn
1
24 . . . 1

24
1
24

En, n = 6,7,8 1
24 . . . 1

24
1
24

Fn, n = 4 1
24

1
24

1
12

1
12

Gn, n = 2 1
8

1
24

The “breaking of symmetry” between the central invariants for the nonsimply laced Lie alge-
bras has the following “experimental” explanation. Recall that the central invariants (2.26) are in
one-to-one correspondence with the canonical coordinates on the Frobenius manifold, i.e., with
the roots u1, . . . , un of the characteristic equation

det
(
g

ij

2 (w) − λg
ij

1 (w)
)= 0. (4.27)

It turns out that the characteristic polynomial factorizes in the product of two factors of the
degrees p and q , p + q = n, where p is the number of long simple roots and q is the number
of short simple roots. Such a splitting defines a partition of the set of central invariants in two
subsets; the central invariants inside each of the subsets have the same value. For simply laced
root systems the characteristic polynomial is irreducible. Recall that the map associating with the
point w the collection of the coefficients of the characteristic polynomial (4.27) for the case of
simply laced root systems coincides with the Lyashko–Looijenga map [42,43], see also [33].

The proof of Theorem 4.6 will be given in Section 5 for the An series, in Section 6 for the Bn,
Cn, Dn series and in Section 7 for the exceptional cases.

5. The An case

We first recall the Drinfeld–Sokolov bihamiltonian structure related to the simple Lie alge-
bra g of An type. This Lie algebra has the matrix realization sl(n + 1,C). We denote by eij the
matrix with 1 at the (i, j)th entry and 0 elsewhere. The Weyl generators of g are chosen as

Xi = ei,i+1, Yi = ei+1,i , Hi = ei,i − ei+1,i+1, i = 1, . . . , n. (5.1)

We use here the invariant bilinear form

〈a, b〉g = tr(ab), (5.2)

which coincides with the normalized invariant bilinear form (4.26) on g. The nilpotent subalge-
bra n, the Borel subalgebra b and the group N are realized as
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n = {
(aij ) ∈ Mat(n + 1,C)

∣∣ aij = 0, for i � j
}
,

b = {
(aij ) ∈ Mat(n + 1,C)

∣∣ aij = 0, for i > j
}
,

N = {
(sij ) ∈ Mat(n + 1,C)

∣∣ sij = 0 for i > j, sii = 1
}
.

The element I ∈ g that is introduced in (3.23) now has the expression
∑n

i=1 ei+1,i . We choose
the base element α ∈ g of the center of n, see (3.28), as

α = −e1,n+1 ∈ n.

Let q be an element in b̂,

q =
n∑

i=1

n+1∑
j=i

qij (x)eij −
n∑

i=1

qii(x)en+1,n+1.

We can choose the coordinate qcan on the orbit space (3.26) as [13]

qcan = −(
w1(x)e1,n+1 + w2(x)e2,n+1 + · · · + wn(x)en,n+1

)
,

where wk(x) are certain differential polynomials of qij . Here and henceforth we use lower in-
dices for the variable w instead of upper ones as in (4.3) for the convenience of presentation of
relevant formulae. Then the gauge invariant functionals take the following form

F =
∫
S1

f
(
x,w(x),wx(x), . . .

)
dx. (5.3)

The space of the gauge invariant functionals can be described in the following way [13].
Consider the operator

L= ε
d

dx
+ q + I (5.4)

as an (n + 1) × (n + 1) matrix with entries of differential operators. Let us represent it in the
form

L=
(

α β

A γ

)
. (5.5)

Here A is an n × n matrix. We can associate to it a scalar differential operator


(L) := β − αA−1γ. (5.6)

Define

L = −
(L)†, (5.7)

where the conjugation of a differential operator is defined as in (2.8). It can be written in the form
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L = Dn+1 + wn(x)Dn−1 + · · · + w2(x)D + w1(x), D = ε
d

dx
. (5.8)

Gauge invariant functionals on M will be identified with functionals on the space of Lax
operators (5.8). The variational derivative of a gauge invariant functional F w.r.t. L is defined as
the following pseudo-differential operator

δF

δL
=

n∑
i=1

D−i δF

δwi

.

It is easy to verify the following identity

δF =
∫ n∑

i=1

δF

δwi(x)
δwi dx = Tr

(
δF

δL
δL

)
(5.9)

where the linear functional Tr on pseudo-differential operators is defined by

TrA =
∫

resAdx ∈ B̄

and the residue of a pseudo-differential operator has the definition

res

(∑
i�m

fiD
i

)
= f−1.

Recall that, due to the important property of the residue

res(BA) = res(AB) + total x-derivative, (5.10)

the formula

Tr(AB) =
∫
S1

res(AB)dx ∈ B̄

defines an invariant symmetric inner product between two pseudo-differential operators.
In terms of the gauge invariant functionals F,G, the Drinfeld–Sokolov bihamiltonian struc-

ture can be written as

{F,G}λ = {F,G}2 − λ{F,G}1

= 1

ε
Tr

(
(LY )+LX − XL(YL)+ + 1

n + 1
X[L,gY ]

)
− λ

1

ε
Tr
([Y,X]L), (5.11)

where X = δF
δL

,Y = δG
δL

, and the positive part of a pseudo-differential operator Z = ∑
ziD

i is
defined by

Z+ =
∑

ziD
i.
i�0



B. Dubrovin et al. / Advances in Mathematics 219 (2008) 780–837 809
The function gY is defined by

gY = D−1(res[L,Y ]).
Due to (5.10), gY is a differential polynomial of the coefficients of the operators L,Y .

In the computation of Poisson brackets of our type it suffices to deal with the linear functionals


X =
∫ n∑

i=1

ai(x)wi(x) dx, 
Y =
∫ n∑

i=1

bi(x)wi(x) dx. (5.12)

Then the operators X = δ
X/δL, Y = δ
Y /δL read

X =
n∑

i=1

D−iai(x), Y =
n∑

i=1

D−ibi(x). (5.13)

For a pseudo-differential operator Z =∑
i�m zi(x)Di , define its symbol as

Ẑ(x,p) =
∑
i�m

zi(x)pi.

The symbol of the composition of two pseudo-differential operators can be computed by the
following well-known formula4

Ẑ1Z2(x,p) = Ẑ1(x,p) � Ẑ2(x,p) := e
ε ∂2

∂p∂x′ Ẑ1(x,p)Ẑ2(x
′,p′)

∣∣
x′=x,p′=p

=
∞∑

k=0

εk

k! ∂
k
pẐ1(x,p)∂k

x Ẑ2(x,p). (5.14)

Taking the commutator in the leading term one obtains the Poisson bracket on the (x,p)-plane
as follows

f (x,p) � g(x,p) − g(x,p) � f (x,p) = ε{f,g} + O
(
ε2),

{f,g} := ∂f

∂p

∂g

∂x
− ∂g

∂p

∂f

∂x
. (5.15)

In the sequel we will often omit writing explicitly the x-dependence of the symbol.
The symbol of the positive part of a pseudo-differential operator can be computed by Cauchy

integral formula

Ẑ+(p) = (
Ẑ(p)

)
+ =

∮
dq

2πi

Ẑ(q)

q − p
(5.16)

4 Warning: we use here the symbol � that usually arises in the quantization of Poisson brackets. However our “star
product” is different from the standard one.
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where the integration is taken along the circle of radius |q| > |p|.
Let

λ(x,p) = pn+1 + wn(x)pn−1 + · · · + w2(x)p + w1(x) = L̂

be the symbol of the Lax operator (5.8).

Theorem 5.1.

(i) The dispersionless limit of the An Drinfeld–Sokolov bihamiltonian structure is given by the
following formulae

{
λ(x,p),λ(y, q)

}
1 = λ′(p) − λ′(q)

p − q
δ′(x − y) +

[
λx(p) − λx(q)

(p − q)2
− λ′

x(q)

p − q

]
δ(x − y),

(5.17){
λ(x,p),λ(y, q)

}
2 =

(
λ′(p)λ(q) − λ′(q)λ(p)

p − q
+ 1

n + 1
λ′(p)λ′(q)

)
δ′(x − y)

+
[
λx(p)λ(q) − λx(q)λ(p)

(p − q)2
+ λx(q)λ′(p) − λ′

x(q)λ(p)

p − q

+ 1

n + 1
λ′(p)λ′

x(q)

]
δ(x − y). (5.18)

(ii) The central invariants of the bihamiltonian structure are equal to

c1 = c2 = · · · = cn = 1

24
.

Before proceeding to the proof let us explain the notations in the formulae (5.17)–(5.18). In the
left-hand sides we simply write the generating polynomials for the matrices {wi(x),wj (y)}1,2 of
Poisson brackets, i.e.,

{
λ(x,p),λ(y, q)

}
1,2 =

n∑
i,j=1

{
wi(x),wj (y)

}
1,2p

i−1qj−1.

In the right-hand sides we denote λ(p) ≡ λ(x,p),

λ′(p) = ∂

∂p
λ(x,p), λx(p) = ∂xλ(x,p).

Same for the terms depending on q , i.e. λ(q) ≡ λ(x, q), λ′(q) = ∂
∂q

λ(x, q) etc.
In particular the coefficients of δ′(x − y) in the formulae (5.17) and (5.18) give expressions

for the generating functions of the pair of flat metrics on the orbit space Mg, g = An, described
in Theorem 4.3, i.e.
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(
dλ(p), dλ(q)

)
1 ≡

n∑
i,j=1

(dwi, dwj )1p
i−1qj−1 = λ′(p) − λ′(q)

p − q
, (5.19)

(
dλ(p), dλ(q)

)
2 ≡

n∑
i,j=1

(dwi, dwj )2p
i−1qj−1

= λ′(p)λ(q) − λ′(q)λ(p)

p − q
+ 1

n + 1
λ′(p)λ′(q). (5.20)

These formulae for the metrics were already found in [50] (observe that the sign of the second
metric (the coefficients of δ′(x − y) of (5.18)) is opposite to the one given in Proposition 2.4.2
of [50]), although their relationships with the Drinfeld–Sokolov brackets were not discussed.
Similarly, the generating functions for the Christoffel coefficients for the two metrics can be
recovered from the δ(x − y) term in (5.17), (5.18). This generating function was found in [4] by
a straightforward computation of the Christoffel coefficients.

Proof of Theorem 5.1. Let us introduce the symbols

f (p) =
n∑

i=1

ai(x)

pi
, g(p) =

n∑
i=1

bi(x)

pi
. (5.21)

They are related to the symbols of the operators (5.13) via

X̂(p) =
∞∑

k=0

εk

k! ∂
k
p∂k

xf (p), Ŷ (p) =
∞∑

k=0

εk

k! ∂
k
p∂k

xg(p). (5.22)

We begin with the calculation of the leading term of the first Poisson bracket. Due to (5.15) one
obtains

{
X, 
Y }1 =
∫

res
({

g(x,p), f (x,p)
}
λ(x,p)

)
dx + O(ε).

Here res of a symbol is just the coefficient of p−1. Integrating by parts one rewrites∫
res

({g,f }λ)dx =
∫

res
(
f {λ,g})dx.

As the series f contains only negative powers of p, one can replace the series {λ,g} by its
positive part

{λ,g}+ =
∮

dq

2πi

λ′(q)gx(q) − λx(q)g′(q)

q − p
.

Integrating by parts in q and inserting two zero terms

−
∮

dq λ′(p)
gx(q) = 0,

∮
dq λx(p)

2
g(q) = 0
2πi q − p 2πi (q − p)
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one obtains the following expression for the leading term of the first Poisson bracket

{
X, 
Y }1 =
∫

dx

∮
dp

2πi

∮
dq

2πi

[
f (p)

λ′(p) − λ′(q)

p − q
gx(q)

+
(

λx(p) − λx(q)

(p − q)2
− λ′

x(q)

p − q

)
f (p)g(q)

]
+ O(ε).

This gives the formula (5.17). Note that the rational functions

λ′(p) − λ′(q)

p − q

and

λx(p) − λx(q)

(p − q)2
− λ′

x(q)

p − q

have no singularity on the diagonal, so the order of the loop integrals is inessential.
A similar computation proves also the formula (5.18).
Let us proceed to computing the higher order corrections. Note that what we want to compute

is just four tensors P
ij
a (w),Q

ij
a (w) (a = 1,2) independent of the jet coordinates (see (2.26)). So

through the computation we can omit all the derivatives of wi w.r.t. x, i.e. we can treat wi as
constants. By using this assumption, one can obtain

gY =
∮

dq

2πi

∞∑
k=1

εk−1

k! ∂k
qλ(q)∂k−1

x Ŷ (q). (5.23)

By substituting the formulae (5.14), (5.16), (5.22), (5.23) into the formula (5.11), we can
obtain

{
X, 
Y }a =
∫

dx

∮
dp

2πi

∮
dq

2πi

×
∑

k,i,s,j,t�0

∂i
p∂s

xf (p)Ãa,k,i,s,j,t (p, q, x)εk+s+t−1∂
j
q ∂t

xg(q), a = 1,2.

After few integration by parts, the above equation reduces to the following one

{
X, 
Y }a =
∫

dx

∮
dp

2πi

∮
dq

2πi

∑
k,s�0

f (p)Aa,k,s(p, q, x)εk+s−1∂s
xg(q). (5.24)

We already know the coefficients

A1,0,1 = λ′(p) − λ′(q)
p − q
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and

A2,0,1 = λ′(p)λ(q) − λ′(q)λ(p)

p − q
+ 1

n + 1
λ′(p)λ′(q).

The subsequent coefficients Aa,0,2, Aa,0,3 (a = 1,2) read

A1,0,2 = λ′(q) − λ′(p)

(q − p)2
− λ′′(q) + λ′′(p)

2(q − p)
,

A1,0,3 = λ′(q) − λ′(p)

(q − p)3
− λ′′(q) + λ′′(p)

2(q − p)2
+ λ′′′(q) − λ′′′(p)

6(q − p)
,

A2,0,2 = λ′(q)λ(p) − λ(q)λ′(p)

(q − p)2
− λ′′(q)λ(p) − 2λ′(q)λ′(p) + λ(q)λ′′(p)

2(q − p)

− λ′′(q)λ′(p) − λ′(q)λ′′(p)

2(n + 1)
,

A2,0,3 = λ′(q)λ(p) − λ(q)λ′(p)

(q − p)3
− λ′′(q)λ(p) − 2λ′(q)λ′(p) + λ(q)λ′′(p)

2(q − p)2

+ λ′′′(q)λ(p) − 3λ′′(q)λ′(p) + 3λ′(q)λ′′(p) − λ(q)λ′′′(p)

6(q − p)

+ 2λ′′′(q)λ′(p) − 3λ′′(q)λ′′(p) + 2λ′(q)λ′′′(p)

12(n + 1)
. (5.25)

Now we introduce two complex numbers P,Q such that |P | < |p|, |Q| < |q|, and define the
functions f (p), g(p) as

f (p) = 1

p − P
δ(x − y) =

∞∑
i=1

P i−1

pi
δ(x − y), g(p) = 1

q − Q
δ(x − z).

Here, unlike the form given in (5.21), we allow the symbols f (p), g(p) to contain terms of the
form 1

pi with i > n. However, it is easy to see that these additional terms do not affect the Poisson
bracket (5.24).

It follows then that


X = λ(y,P ) − P n+1 = wn(y)P n−1 + · · · + w2(y)P + w1(y),


Y = λ(z,Q) − Qn+1 = wn(z)Q
n−1 + · · · + w2(z)Q + w1(z),

and the formula (5.24) reads

{
λ(y,P ),λ(z,Q)

}
a

=
∑

k,s�0

εk+s−1δ(s)(y − z)

[∮
dp

2πi

∮
dq

2πi

Aa,k,s(p, q, y)

(p − P)(q − Q)

]
=

∑
εk+s−1Aa,k,s(P,Q,y)δ(s)(y − z). (5.26)
k,s�0
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Let r1, . . . , rn be the critical points of the polynomial λ(p), i.e., the roots of λ′(r) = 0. As-
suming them to be pairwise distinct, we have

A1,0,1(ri , rj , x) = δij λ
′′(x, ri), A2,0,1(ri , rj , x) = δij λ(x, ri)λ

′′(x, ri).

This shows that the critical values ui = λ(ri) are the canonical coordinates of the bihamiltonian
structure (5.26). Then the quantities in the formula (2.26) read

f i = λ′′(ri),

Qii
1 = 1

12
λ(4)(ri), Qii

2 = 1

12
λ(ri)λ

(4)(ri) + n

n + 1

λ′′(ri)2

4
,

P ki
1 = λ′′(rk) + λ′′(ri)

2(rk − ri)
, P ki

2 = λ′′(rk)λ(ri) + λ(rk)λ
′′(ri)

2(rk − ri)
.

Thus the central invariants read

ci = 1

3λ′′(ri)2

(
n

n + 1

λ′′(ri)2

4
+
∑
k �=i

(λ(rk) − λ(ri))λ
′′(ri)2

4λ′′(rk)(rk − ri)2

)

= 1

12

(
n

n + 1
+
∑
k �=i

(λ(rk) − λ(ri))

λ′′(rk)(rk − ri)2

)
= 1

12

(
n

n + 1
+ 1 − n

2(n + 1)

)

= 1

24
.

Here the third equality is obtained by applying the residue theorem to the meromorphic function

m(q) = λ(q) − λ(ri)

λ′(q)(q − ri)2
.

The theorem is proved. �
6. The Bn, Cn and Dn cases

The simple Lie algebras of type Bn, Cn and Dn can be realized as matrix Lie algebras
o(2n + 1), sp(2n) and o(2n). The details of these realizations are omitted here, see Appendix 1
of [13]. Note that the Weyl generators Xi,Yi,Hi we choose here correspond respectively to
Yi,Xi,−Hi of [13]. We begin with the following scalar differential operators satisfying certain
symmetry/antisymmetry conditions:

Bn: L = D2n+1 +
n∑

i=1

wi(x)D2i−1 +
n∑

i=1

vi(x)D2i−2, L + L† = 0, (6.1)

Cn: L = D2n +
n∑

wi(x)D2i−2 +
n∑

vi(x)D2i−3, L = L†, (6.2)

i=1 i=2
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Dn: L = D2n−1 +
n∑

i=2

wi(x)D2i−3 +
n∑

i=2

vi(x)D2i−4 + ρ(x)D−1ρ(x), L + L† = 0.

(6.3)

Here L† is the adjoint operator (2.8), the coefficients vi(x) are linear combinations of derivatives
of wi(x) uniquely determined by the symmetry/antisymmetry conditions. We assume w1(x) =
ρ2(x) for the Dn case.

As for the An case, the above scalar (pseudo) differential operators can also be derived from
the differential operator L of the form (5.4). In the present cases, the matrices q are upper tri-
angular ones belonging to o(2n + 1), sp(2n) and o(2n) respectively. The matrices I are given
respectively by

I =
n∑

i=1

(ei+1,i + e2n+2−i,2n+1−i ), I =
n−1∑
i=1

(ei+1,i + e2n+1−i,2n−i ) + en+1,n

and

I =
n−1∑
i=1

(ei+1,i + e2n+1−i,2n−i ) + 1

2
(en+1,n−1 + en+2,n).

The scalar differential operators L are given by −
(L)†, where the operator 
 is defined as
in (5.6).

The variational derivative of a functional of L w.r.t. L is now defined as

δF

δL
= 1

2

n∑
i=1

(
D−2i+ν δF

δwi(x)
+ δF

δwi(x)
D−2i+ν

)
, (6.4)

where ν = 0,1,2 for the Bn, Cn and Dn cases respectively. This definition ensures the validity
of (5.9).

In order to have a uniform expression of the Drinfeld–Sokolov second Hamiltonian structures
for the three types of simple Lie algebras, we fix in this section the invariant bilinear form on g

by

〈a, b〉g = tr(ab). (6.5)

Let us note that the normalized invariant bilinear form defined in (4.26) for the simple Lie alge-
bras of type Bn,Cn,Dn have the expressions

1

2
tr(ab), tr(ab),

1

2
tr(ab) (6.6)

respectively. With the above fixed invariant bilinear form, the second Hamiltonian structures for
the three types of simple Lie algebras have a uniform expression

{F,G}2 = 1
Tr
[
(LY )+LX − XL(YL)+

]
, (6.7)
ε
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while the first ones are defined as the Lie derivatives of the second ones along the coordinate wi ,
where i = 1 for Bn, Cn and i = 2 for Dn,

{F,G}2(wi, . . .) − λ{F,G}1(wi, . . .) = {F,G}2(wi − λ, . . .).

Explicitly,

Bn: {F,G}1 = 1

ε
TrL(YDX − XDY), (6.8)

Cn: {F,G}1 = 1

ε
TrL(YX − XY), (6.9)

Dn: {F,G}1 = 1

ε
TrL(X+DY+ − Y+DX+ + Y−DX− − X−DY−). (6.10)

Let us now describe the main result of this section. Let

λB(p) = p2n+1 +
n∑

i=1

wi(x)p2i−1, (6.11)

λC(p) = p2n +
n∑

i=1

wi(x)p2i−2, (6.12)

λD(p) = p2n−1 +
n∑

i=2

wi(x)p2i−3 + w1(x)

p
(6.13)

be the ε = 0 limits of the symbols of the Lax operators (6.1)–(6.3). Introduce

ΛB(P ) = ΛC(P ) = P n + wn(x)P n−1 + · · · + w1(x),

ΛD(P ) = P n−1 + wn(x)P n−2 + · · · + w2(x) + w1(x)

P
(6.14)

by the following substitution:

λB(p) = pΛB

(
p2),

λC(p) = ΛC

(
p2),

λD(p) = pΛD

(
p2). (6.15)

Theorem 6.1.

(i) The dispersionless limits of the Drinfeld–Sokolov bihamiltonian structures associated to the
simple Lie algebras of type Bn, Cn, and Dn have the following uniform expression
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{
Λ(x,P ),Λ(y,Q)

}
1 = 2

PΛ′(P ) − QΛ′(Q)

P − Q
δ′(x − y)

+
[

P + Q

(P − Q)2

(
Λx(P ) − Λx(Q)

)− 2
QΛ′

x(Q)

P − Q

]
δ(x − y),

(6.16){
Λ(x,P ),Λ(y,Q)

}
2 = 2

PΛ′(P )Λ(Q) − QΛ′(Q)Λ(P )

P − Q
δ′(x − y)

+
[

P + Q

(P − Q)2

(
Λx(P )Λ(Q) − Λx(Q)Λ(P )

)
+ 2

PΛ′(P )Λx(Q) − QΛ′
x(Q)Λ(P )

P − Q

]
δ(x − y), (6.17)

where Λ(x,P ) = ΛB , ΛC , or ΛD respectively.
(ii) The central invariants of the Drinfeld–Sokolov bihamiltonian structures read

Bn: c1 = · · · = cn−1 = 1

12
, cn = 1

6
, (6.18)

Cn: c1 = · · · = cn−1 = 1

12
, cn = 1

24
, (6.19)

Dn: c1 = c2 = · · · = cn = 1

12
. (6.20)

Note that the rescaling

〈,〉g �→ κ〈,〉g
of the invariant bilinear form on g yields the rescaling of the central invariants (2.26) of the
related Drinfeld–Sokolov bihamiltonian structure

ci �→ κci, i = 1, . . . , n.

So from the definition of the normalized bilinear form (4.26) and (5.2), (6.5), (6.6) and The-
orems 5.1, 6.1 it follows the validity of Theorem 4.6 for the cases An,Bn,Cn,Dn. Before
proceeding to the proof of the theorem let us explain the rule of labeling of the central invariants
for the Bn and Cn cases. The reader may remember that the labeling of the central invariants is
in one-to-one correspondence with labeling of the canonical coordinates. It will be shown below
that the canonical coordinates of the bihamiltonian structure of (6.16), (6.17) for the Bn and Cn

cases are defined as follows:

ui = Λ(ri), i = 1, . . . , n,

d

dP
Λ(P )

∣∣
P=ri

= 0, i = 1, . . . , n − 1, rn = 0. (6.21)

In these cases rn = 0 is always a critical point of Λ(p2). The associated critical value un = Λ(0)

“breaks the symmetry” between the canonical coordinates; the corresponding central invariant cn

differs from others.
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Proof of Theorem 6.1. The derivation of the dispersionless Poisson structures (6.16), (6.17)
follows the lines of the proof of Theorem 5.1. We will omit this part of the proof, and proceed
directly to computation of the central invariants.

Some part of the computation can be done uniformly for all the three types of Lie algebras.
To this end we introduce the symbol

λ(p) = p2n+1−ν +
n∑

i=1

wi(x)p2i−1−ν (6.22)

and also

f (p) =
∑
i�1

ai(x)

p2i−ν
, g(p) =

∑
i�1

bi(x)

p2i−ν
(6.23)

(we plan to still use the linear functionals (5.12)). Recall that ν = 0,1,2 for Bn, Cn and Dn

respectively. The symbols of the pseudo-differential operators X and Y read

X̂(p) = f (p) + 1

2

∑
k�1

εk

k! ∂
k
p∂k

xf (p), Ŷ (p) = g(p) + 1

2

∑
k�1

εk

k! ∂
k
p∂k

xg(p). (6.24)

We omit the derivatives of wi w.r.t. x in L̂(p) just like in the previous section.
By using the same method used in the proof of Theorem 5.1, we obtain the coefficients A2,0,1,

A2,0,2 and A2,0,3 in the expansion (5.24)

A2,0,1 = λ′(q)λ(p) − λ′(p)λ(q)

q − p
, A2,0,2 = 0,

A2,0,3 = λ′(q)λ(p) − λ′(p)λ(q)

2(q − p)3
− λ′′(q)λ(p) − 2λ′(q)λ′(p) + λ′′(p)λ(q)

4(q − p)2

+ λ′(q)λ′′(p) − λ′(p)λ′′(q)

4(q − p)
+ λ′′′(q)λ(p) − λ′′′(p)λ(q)

6(q − p)
. (6.25)

Now let P , Q be two complex numbers such that |P | < |p|2 and |Q| < |q|2. Define the
functions ai(x), bi(x) as in (6.23) from the following expansions

f (p) = pν

p2 − P
δ(x − y) =

∞∑
k=1

P k−1

p2k−ν
δ(x − y), g(q) = qν

q2 − Q
δ(x − z).

Then 
X = Λ(y,P ) − P n, 
Y = Λ(z,Q) − Qn, where

Λ(y,P ) = P n + wn(y)P n−1 + · · · + w1(y). (6.26)

The second Poisson bracket between the linear functionals now reads
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{
Λ(y,P ),Λ(z,Q)

}
2 =

∑
k,s�0

εk+s−1δ(s)(y − z)

[∮
dp

2πi

∮
dp

2πi

(pq)νA2,k,s(p, q, y)

(p2 − P)(q2 − Q)

]
.

Denote by R2,1 the coefficient of ε0δ′(y − z). It is easy to obtain

R2,1 = 2
PΛ′(P )Λ(Q) − QΛ′(Q)Λ(P )

P − Q
. (6.27)

Here Λ(P ) = Λ(y,P ), Λ(Q) = Λ(y,Q), and the primes stand for differentiations w.r.t. P or Q.
Then by definition one can obtain the coefficient of ε0δ′(y − z) in {Λ(y,P ),Λ(z,Q)}1 denoted
by R1,1

Bn,Cn: R1,1 = 2
PΛ′(P ) − QΛ′(Q)

P − Q
, (6.28)

Dn: R1,1 = 2
PQ(Λ′(P ) − Λ′(Q)) + PΛ(Q) − QΛ(P )

P − Q
. (6.29)

Denote the coefficients of ε2δ′′′(y − z) in {Λ(y,P ),Λ(z,Q)}α by Rα,3. After a lengthy com-
putation, we obtain

Bn: R2,3 = (P + Q)2(Λ′(P )Λ(Q) − Λ′(Q)Λ(P ))

(P − Q)3
+ 4

P 2Λ′′′(P )Λ(Q) − Q2Λ′′′(Q)Λ(P )

3(P − Q)

+ 2
PQ(Λ′(P )Λ′′(Q) − Λ′(Q)Λ′′(P ))

P − Q
+ 2

PΛ′′(P )Λ(Q) − QΛ′′(Q)Λ(P )

P − Q

+ 3Λ′(P )Λ′(Q) − 2
PQ(Λ′′(P )Λ(Q) − 2Λ′(P )Λ′(Q) + Λ(P )Λ′′(Q))

(P − Q)2
.

(6.30)

R1,3 = (P + Q)2(Λ′(P ) − Λ′(Q))

(P − Q)3
+ 4

P 2Λ′′′(P ) − Q2Λ′′′(Q)

3(P − Q)

+ 2
PΛ′′(P ) − QΛ′′(Q)

P − Q
− 2

PQ(Λ′′(P ) + Λ′′(Q))

(P − Q)2
. (6.31)

Cn: R2,3 = (P 2 + 6PQ + Q2)(Λ′(P )Λ(Q) − Λ′(Q)Λ(P ))

2(P − Q)3

+ 4
P 2Λ′′′(P )Λ(Q) − Q2Λ′′′(Q)Λ(P )

3(P − Q)
+ 2

PQ(Λ′(P )Λ′′(Q) − Λ′(Q)Λ′′(P ))

P − Q

+ PΛ′′(P )Λ(Q) − QΛ′′(Q)Λ(P )

P − Q
+ Λ′(P )Λ′(Q)

− 2
PQ(Λ′′(P )Λ(Q) − 2Λ′(P )Λ′(Q) + Λ(P )Λ′′(Q))

(P − Q)2
. (6.32)

R1,3 = (P 2 + 6PQ + Q2)(Λ′(P ) − Λ′(Q))

3
+ 4

P 2Λ′′′(P ) − Q2Λ′′′(Q)
2(P − Q) 3(P − Q)
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+ PΛ′′(P ) − QΛ′′(Q)

P − Q
− 2

PQ(Λ′′(P ) + Λ′′(Q))

(P − Q)2
. (6.33)

Dn: R2,3 = 4
PQ(Λ′(P )Λ(Q) − Λ′(Q)Λ(P ))

(P − Q)3

+ 4
P 2Λ′′′(P )Λ(Q) − Q2Λ′′′(Q)Λ(P )

3(P − Q)
+ 2

PQ(Λ′(P )Λ′′(Q) − Λ′(Q)Λ′′(P ))

P − Q

− Λ′(P )Λ′(Q) − 2
PQ(Λ′′(P )Λ(Q) − 2Λ′(P )Λ′(Q) + Λ(P )Λ′′(Q))

(P − Q)2

+ P 2Λ′(P )Λ(Q) − Q2Λ′(Q)Λ(P )

PQ(P − Q)
− Λ(0)

PΛ′(P ) + QΛ′(Q)

PQ
. (6.34)

R1,3 = 4PQ(PΛ′′′(P ) − QΛ′′′(Q))

3(P − Q)
− 2

PQ(PΛ′′(P ) + QΛ′′(Q))

(P − Q)2

+ 4PQ(P 2Λ̃′(P ) − Q2Λ̃′(Q))

(P − Q)3
+ PQ(Λ̃′(P ) − Λ̃′(Q))

P − Q
− Λ(0)(P + Q)

PQ
,

(6.35)

where

Λ̃(P ) = Λ(P )/P. (6.36)

Now we begin to compute the central invariants for the Bn,Cn cases. The formulae (6.27)
(6.28) show that in these two cases we have the same dispersionless limit, so the corresponding
Drinfeld–Sokolov bihamiltonian structures have the same canonical coordinates. Let r1, . . . , rn
be defined as in (6.21). Then we have un = w1 and u1, . . . , un−1 are the critical values of Λ(P ).
From the formulae (6.27) and (6.28), one can see that u1, . . . , un can serve as the canonical
coordinates of the Drinfeld–Sokolov bihamiltonian structures of Bn and Cn type. Following the
notations in (2.26), we have

Bn: f i = 2riΛ
′′(ri), f n = 2Λ′(0);

Qii
1 = 3Λ′′(ri) + 14

3
riΛ

′′′(ri) + r2
i Λ′′′′(ri), Qnn

1 = 3Λ′′(0);

Qii
2 = r2

i Λ′′(ri)2 + Λ(ri)Q
ii
1 , Qnn

2 = 2Λ′(0)2 + 3Λ(0)Λ′′(0);

ci = Qii
2 − Λ(ri)Q

ii
1

3(f i)2
= 1

12
, cn = Q11

2 − Λ(0)Q11
1

3(f 1)2
= 1

6
.

Cn: f i = 2riΛ
′′(ri), f n = 2Λ′(0);

Qii
1 = 3Λ′′(ri) + 11

3
riΛ

′′′(ri) + r2
i Λ′′′′(ri), Qnn

1 = 3

2
Λ′′(0);

Qii
2 = r2

i Λ′′(ri)2 + Λ(ri)Q
ii
1 , Qnn

2 = 1
Λ′(0)2 + 3

Λ(0)Λ′′(0);

2 2
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ci = Qii
2 − Λ(ri)Q

ii
1

3(f i)2
= 1

12
, cn = Q11

2 − Λ(0)Q11
1

3(f 1)2
= 1

24
.

Here i = 1, . . . , n.
To compute the central invariants for the Dn case, we first rewrite the two Poisson brackets in

terms of the symbol Λ̃ defined in (6.36). Let R̃α,k be obtained from Rα,k of (6.30), (6.31) with Λ

replaced by Λ̃. Denote by Sα,k the coefficients of εk−1δ(k)(y − z) in {Λ̃(P, y), Λ̃(Q, z)}α . Then
we have Sα,1 = R̃α,1, and

S2,3 = R̃2,3 − Λ(0)
PΛ′(P ) + QΛ′(Q)

P 2Q2
, S1,3 = R̃2,3 − Λ(0)(P + Q)

P 2Q2
.

Let r1, . . . , rn be the critical point of Λ̃(P ), and u1, . . . , un be the corresponding critical values,
they can serve as the canonical coordinates of the Drinfeld–Sokolov bihamiltonian structure in
the Dn case. So we have

Dn: f i = 2riΛ̃
′′(ri), Qii

1 = 3Λ̃′′(ri) + 14

3
riΛ̃

′′′(ri) + r2
i Λ̃′′′′(ri) − 2Λ(0)

r3
i

,

Qii
2 = Λ̃(ri)Q

ii
1 + r2

i Λ̃′′(ri)2, ci = Qii
2 − Λ̃(ri)Q

ii
1

3(f i)2
= 1

12
.

The theorem is proved. �
7. The exceptional cases

In this section we will use the approach of [3] based on the Dirac reduction procedure [12]
to compute the Drinfeld–Sokolov bihamiltonian structures associated to the exceptional Lie
algebras,5 and then proceed to calculating the central invariants. Let us consider the Poisson
bracket πg(I ) on g∗ evaluated at the point I as a skew symmetric bilinear form on

g 
 T ∗
I g∗

(cf. (3.9)). The stabilizer Ker adI of I coincides with the kernel of this bilinear form. The quotient

g/Ker adI

acquires a symplectic structure induced by πg(I ). The projection

n ↪→ g → g/Ker adI

realizes the nilpotent subalgebra n as a Lagrangian subspace in the quotient. Let

ndual ⊂ h ⊕ n− (7.1)

5 The hierarchies associated with the simply laced exceptional root systems have been systematically treated by V. Kac
and M. Wakimoto in [35]. They did not consider however the bihamiltonian structure of the exceptional hierarchies.
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be a pullback of a complementary Lagrangian subspace of the image of n such that

g = Ker adI ⊕ n ⊕ ndual. (7.2)

A choice of ndual specifies the transversal subspace V ⊂ b of (3.25) by the equation〈
b, qcan〉

g
= 0 ∀b ∈ ndual, qcan ∈ V. (7.3)

One can unify constraints (3.24) and (7.3) by considering a system of equations for q ∈ g:

〈a, q〉g = 〈a, I 〉g ∀a ∈ n,

〈b, q〉g = 0 ∀b ∈ ndual. (7.4)

The solution

q = I + qcan

determines the transversal slice V . The reduced Poisson bracket on qcan-valued loops can be
obtained as follows. Let us choose a basis

f1, . . . , f2m ∈ n ⊕ ndual, 2m = 2 dimn = dimg − n.

Introduce two 2m × 2m matrices

P = (Pab), Pab = −〈
I + qcan, [fa,fb]

〉
g
,

Q = (Qab), Qab = 〈fa,fb〉g. (7.5)

By construction of ndual the matrix

P |qcan=0 = πg(I )|n⊕ndual

does not degenerate. Consider matrix differential operator

M := P + Qε∂x (7.6)

with coefficients depending on qcan (via P ). Note that the matrix of pairwise Poisson brackets of
the constraints (7.4) is equal to

{〈
fa, q(x)

〉
g
,
〈
fb, q(y)

〉
g

}= −1

ε
Mabδ(x − y).

The following statement was proved in [27].

Lemma 7.1. The inverse M−1 to (7.6) is a matrix-valued differential operator of finite order with
coefficients depending polynomially on qcan, qcan, . . . .
x
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Let

γ 1, . . . , γ n ∈ Ker ad I (7.7)

be a basis in the centralizer of I . Recall [36] that this centralizer is a commutative subalgebra
in n− having generators only in the degrees −m1, . . . ,−mn; the number of generators in the
degree −mk is equal to the multiplicity of the exponent mk . The linear functions of qcan ∈ V

given by

wi = 〈
γ i, qcan〉

g
, i = 1, . . . , n, (7.8)

define a system of coordinates on V . Denote γ1, . . . , γn the dual basis in V ,〈
γ i, γj

〉
g

= δi
j , 〈fa, γi〉g = 0, i, j = 1, . . . , n, a = 1, . . . ,2m, (7.9)

so

qcan =
n∑

i=1

wiγi. (7.10)

Introduce the n × 2m matrix differential operator

N = (
Ni

a

)= (
Ri

a + Si
aε∂x

)
, Ni

a = ε
〈
γ i, fa

〉
g
∂x − 〈

qcan,
[
γ i, fa

]〉
g
. (7.11)

Denote N† the matrix of (formally) adjoint differential operators,

(
N†)a

i
= Ni

a

†
, i = 1, . . . , n, a = 1, . . . ,2m. (7.12)

Then the matrix of the second reduced Poisson bracket is given by the formula

{
wi(x),wj (y)

}red
2 = −1

ε

(
NM−1N†)ij δ(x − y). (7.13)

The first reduced bracket is given by a similar formula

{
wi(x),wj (y)

}red
1 = 1

ε

(
NM−1M̃M−1N† + ÑM−1N† + NM−1Ñ†)ij δ(x − y) (7.14)

where the n × 2m and 2m × 2m matrices Ñ i
a and M̃ab respectively are defined as follows:

Ñ i
a = 〈

α,
[
γ i, fa

]〉
g
, M̃ab = 〈

α, [fa,fb]
〉
g
, (7.15)

where α ∈ n is the generator of the center of n chosen above (see (3.28)). We will see below that
the terms of order ε−1 disappear from (7.13), (7.14).

Let us now explain how we compute the Frobenius structure and the central invariants using
the formula (7.13). For the second metric g

ij one obtains
2
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(
g

ij

2

(
qcan))= RP −1QP −1RT − SP −1RT + RP −1ST (7.16)

where RT ,ST denotes their transposed matrices. The matrices (A
ij

1,0;2) and (A
ij

2,0;2) have the
following form:(

A
ij

1,0;2
(
qcan))= −RP −1QP −1QP −1RT − RP −1QP −1ST

+ SP −1QP −1RT + SP −1ST , (7.17)(
A

ij

2,0;2
(
qcan))= RP −1QP −1QP −1QP −1RT − RP −1QP −1QP −1ST

+ SP −1QP −1QP −1RT + SP −1QP −1ST , (7.18)

where the matrices R = (Ri
a), S = (Si

a) are defined in (7.11). Doing the shift

qcan �→ qcan + λα, α ∈ {the center of n} (7.19)

one obtains in (7.16)–(7.18) linear functions in λ. The coefficients of λ of these functions give
the matrices g

ij

1 , A
ij

1,0;1(q
can) and A

ij

2,0;1(q
can) respectively.

The dual bases γ i ∈ Ker ad I and γi ∈ V can be chosen as follows. According to [36] the triple

I− := I, ρ =
n∑

i=1

ωi, I+ =
n∑

i=1

aiXi (7.20)

defines an embedding of the sl2 Lie algebra into g,

[I+, I−] = 2ρ, [ρ, I±] = ±I±. (7.21)

Here ω1, . . . ,ωn ∈ h are the fundamental weights, i.e. the basis dual to the basis of simple roots,
and the integer coefficients a1, . . . , an are defined from the decomposition

2ρ =
n∑

i=1

aiHi. (7.22)

We put

V := Ker ad I+. (7.23)

We choose

γi ∈ Ker ad I+ ∩ gmi , i = 1, . . . , n,

γ i ∈ Ker ad I− ∩ g−mi , i = 1, . . . , n. (7.24)

For all exceptional Lie algebras the vectors γi and γ i are determined uniquely up to normaliza-
tion. We can normalize them in such a way that〈

γ i, γj

〉
g

= δi
j .
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Lemma 7.2. For the exceptional simple Lie algebras of type G2, F4, E6, E7, E8, the central
invariants of the corresponding Drinfeld–Sokolov bihamiltonian structures coincide with the val-
ues listed in the table that is given at the end of Section 4.

Proof. The lemma can be proved by a straightforward computation by using the formula (2.26)
for the Lie algebras of G2 and F4 types. For the E type cases we can use the formula (2.29)
and the implicit function theorem to compute the central invariants, however the computations
become very involved; so we use a different method based on a comparison of the Drinfeld–
Sokolov bihamiltonian structure with the one obtained in [20] (see below).

Since the central invariants do not depend on the choice of α in (7.19), in what follows we
will fix α = γn.

We first illustrate the procedure by considering the G2 case6 in detail.
Let Xi,Hi,Yi (i = 1,2) be a set of Weyl generators of the simple Lie algebra g of G2 type,

whose Dynkin diagram is labeled as follows

We define a Chevalley basis of g

X3 = −[X1,X2], Y3 = [Y1, Y2],
X4 = −[X1,X3]/2, Y4 = [Y1, Y3]/2,

X5 = −[X1,X4]/3, Y5 = [Y1, Y4]/3,

X6 = −[X2,X5], Y6 = [Y2, Y5].

The normalized invariant bilinear form is given by

〈X1, Y1〉g = 〈X3, Y3〉g = 〈X4, Y4〉g = 3,

〈X2, Y2〉g = 〈X5, Y5〉g = 〈X6, Y6〉g = 1,

〈H1,H1〉g = 6, 〈H1,H2〉g = −3, 〈H2,H2〉g = 2. (7.25)

The elements ρ, I+ read

ρ = 3H1 + 5H2, I+ = 6X1 + 10X2.

We choose a basis of Ker ad I+

γ1 = 3

5
X1 + X2, γ2 = X6.

Then we can obtain the result of the Dirac reduction:

6 Explicit formulae for the G2 bihamiltonian structure were obtained in the original paper [13]. In [27] they have been
rederived using the Dirac reduction procedures.
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(
g

ij

2

)=
( − 5w1

7 − 15w2
7

− 15w2
7 − 768w5

1
875 − 1144

525 w2w
2
1

)
,

(
g

ij

1

)=
(

0 − 15
7

− 15
7 − 1144w2

1
525

)
,

(
A

ij

2,0,2

)=
( 25

14 0

0
42152w4

1
13125 + 62w2w1

21

)
,

(
A

ij

2,0,1

)=
(

0 0

0 62w1
21

)
,

and A
ij

1,0,2 = A
ij

1,0,1 = 0.

If we introduce the flat coordinates

t1 = w2 − 572w3
1

3375
, t2 = −7w1

15
,

the above metrics are just the flat pencil defined by the following Frobenius manifold

F = 1

2
t2
1 t2 + 24

35
t7
2 , E = t1

∂

∂t1
+ 1

3
t2

∂

∂t2
.

In the flat coordinates, we have

(
g

ij

2

)=
(

48t5
2 t1

t1
t2
3

)
,

(
g

ij

1

)=
(

0 1
1 0

)
,

(
A

ij

2,0,2

)=
(

88t4
2 − 310t1t2

49
286t2

2
147

286t2
2

147
7
18

)
,

(
A

ij

2,0,1

)=
(− 310t2

49 0
0 0

)
.

The canonical coordinates are

u1 = t1 + 4t3
2 , u2 = t1 − 4t3

2 ,

from which we can compute the quantities appeared in the formula (2.26)

f 1 = 24t2
2 , f 2 = −24t2

2 ,

Q11
2 = 9344t4

2

49
− 310t1t2

49
, Q22

2 = 4768t4
2

49
− 310t1t2

49
,

Q11
1 = −310t2

49
, Q22

1 = −310t2

49
.

So the central invariants are given by

c1 = Q11
2 − u1Q11

1

3(f 1)2
= 1

8
, c2 = Q22

2 − u2Q22
1

3(f 2)2
= 1

24
.

The F4F4F4 case
The root system of type F4 contains 24 positive roots, it is not convenient to define the Cheval-

ley basis explicitly, so we use an alternative way below to describe this basis.
The simple Lie algebra of type F4 has a 26-dimensional matrix realization [31], whose Weyl

generators are
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X1 = e1,2 + e6,8 + e7,10 + e9,12 + 2e11,13 + e11,14

+ e13,16 + e15,18 + e17,20 + e19,21 + e25,26,

X2 = e4,5 + e6,7 + e8,10 − e17,19 − e20,21 − e22,23,

X3 = e2,3 − e4,6 − e5,7 − e9,11 − e12,13 − 2e12,14

− e14,15 − e16,18 + e20,22 + e21,23 − e24,25,

X4 = e3,4 − e7,9 − e10,12 + e15,17 + e18,20 + e23,24,

Y1 = e2,1 + e8,6 + e10,7 + e12,9 + e13,11 + 2e16,13

+ e16,14 + e18,15 + e20,17 + e21,19 + e26,25,

Y2 = e5,4 + e7,6 + e10,8 − e19,17 − e21,20 − e23,22,

Y3 = e3,2 − e6,4 − e7,5 − e11,9 − e14,12 − e15,13

− 2e15,14 − e18,16 + e22,20 + e23,21 − e25,24,

Y4 = e4,3 − e9,7 − e12,10 + e17,15 + e20,18 + e24,23.

These generators correspond to the following labels on the Dynkin diagram

The normalized Killing form can be computed by the following formula

〈A,B〉g = 1

6
tr(AB).

Let αi be the simple root corresponding to Xi , i = 1, . . . ,4. For any positive root β ∈ Φ+ of
the form

β =
4∑

i=1

niαi, where ni � 0, i = 1, . . . ,4,

we define Xβ = Xn1,...,n4 (respectively Yβ = Yn1,...,n4 ) to be the matrix in the root space gβ (re-
spectively g−β ) such that the first nonzero element of the first nonzero row (respectively column)
is equal to 1. Since dimg±β = 1, Xβ,Yβ are fixed in this way uniquely. By a straightforward
calculation, one can show that{

Hi,Xβ,Yβ

∣∣ i = 1, . . . ,4, β ∈ Φ+}
form a Chevalley basis, and the element ρ is given by

ρ = 1

2

∑
+
[Xβ,Yβ ].
β∈Φ
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The element I+ now reads

I+ = 16X1 + 22X2 + 30X3 + 42X4.

We fix a basis {γi}4
i=1 of V = Ker ad I+ as follows:

γ1 = X0001 + 5

7
X0010 + 11

21
X0100 + 8X1000

21
, γ4 = X2243,

γ2 = X0122 − 8

21
X1121 + 128

231
X2021, γ3 = X2122 + 15

8
X1132.

By using the formulae given at the beginning of the present section, we can compute the
reduced Poisson brackets w.r.t. the above basis. To present the result, we introduce the following
flat coordinates

t1 = w4 − 762841w6
1

49009212
− 129973w2w

3
1

259308
− 2783w3w

2
1

3528
− 56741w2

2

142296
,

t2 = 1781w4
1

64827
+ 34w2w1

231
+ w3, t3 = 4199w3

1

63504
+ 4199w2

3696
, t4 = −13w1

42
.

Then the two metrics given by the coefficients of the leading terms of the reduced Poisson brack-
ets correspond to the flat pencil of metric of the Frobenius manifolds with potential

F = 1

2
t2
1 t4 + t1t2t3 + 20736t13

4

143
+ 82944t2

3 t7
4

2527
+ 1083

20
t2
2 t5

4

+ 288

19
t2t

2
3 t3

4 + 27648t4
3 t4

130321
+ 6859t3

2 t4

1152
,

its Euler vector field is

E =
4∑

i=1

Ei ∂

∂t1
= t1

∂

∂t1
+ 2t2

3

∂

∂t2
+ t3

2

∂

∂t3
+ t4

6

∂

∂t4
.

In the coordinates ti , the first metric g
ij

1 given by the coefficients of the leading terms of the first
Poisson structure has the standard expression [16]

(
g

ij

1

)= (ηij )
−1, ηij = ∂ti ∂tj Liee F, (7.26)

where the unity vector field e is given by

e = ∂

∂t1
. (7.27)

The second metric g
ij satisfies the formula
2
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g
ij

2 (t) =
n∑

m=1

Emc
ij
m(t), with c

ij
m(t) = gik

1 g
jl

1 ∂tm∂tk ∂tl F. (7.28)

Here n = 4.
The coefficients A

ij

1,0;a(a = 1,2) of the reduced Poisson brackets are equal to zero. The coef-

ficients A
ij

2,0;2 read

A11
2,0,2 = 238464t10

4 − 79854336t3t
7
4

4693
+ 362769128t2t

6
4

37349
+ 82248768000t2

3 t4
4

13482989

+ 65740256t1t
4
4

371293
− 286440

247
t2t3t

3
4 + 6443534125t2

2 t2
4

2689128
− 53236224t3

3 t4

1694173

− 4015872t1t3t4

54587
+ 1656

19
t2t

2
3 + 443t1t2

26
,

A12
2,0,2 = −15818112t8

4

4693
+ 42634554624t3t

5
4

13482989
− 6453151372t2t

4
4

21163701
− 51777792t2

3 t2
4

1694173

− 28255104t1t
2
4

709631
+ 7349328t2t3t4

54587
+ 153t2

2

13
,

A13
2,0,2 = 204693422t7

4

37349
− 5205718984t3t

4
4

7054567
+ 9722937545t2t

3
4

5378256
+ 3133152t2

3 t4

54587

+ 79t1t4

4
− 3611t2t3

312
,

A14
2,0,2 = 16435064t5

4

1113879
+ 14507020t3t

2
4

709631
− 2783t2t4

312
,

A22
2,0,2 = 13824t6

4

19
− 3170304t3t

3
4

89167
+ 4883336t2t

2
4

125229
+ 13824t2

3

6859
+ 2400t1

4693
,

A23
2,0,2 = −2508t5

4

13
+ 197596t3t

2
4

2197
+ 817t2t4

312
,

A24
2,0,2 = 39412t3

4

6591
− 56t3

247
, A34

2,0,2 = −2261t2
4

624
, A44

2,0,2 = 13

24
,

and the coefficients A
ij

2,0;1 are given by

A
ij

2,0;1(t) = ∂

∂t1
A

ij

2,0;2(t). (7.29)

Now we begin to compute the central invariants. We first find the canonical coordinates from
the characteristic equation det(gij

2 − λg
ij

1 ) = 0. The roots can be represented in the form

uμ1,μ2 =
(

t1 + 288
t3t

3
4

)
+ μ1

(
57

t2t
2
4 + 288

t2
3

)

19 2 361
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+ μ2
(361t2 + μ1576t3t4 + 2736t4

4 )
3
2

228
√

57
,

where μ1,μ2 = ±1. We number them in the way that

u1 = u++, u2 = u+−, u3 = u−+, u4 = u−−.

We then compute the metrics g1, g2 and the functions A2,0;1,A2,0;1 in the canonical coordinates.
After a straightforward computation, we obtain the central invariants from the formula (2.26),
they read

{c1, c2, c3, c4} =
{

1

24
,

1

24
,

1

12
,

1

12

}
,

which proves the lemma for the F4 case.

The E6E6E6 case
The proof of the lemma for the simple Lie algebras of E types are similar to that of the F4 case.

We take E6 for example. It has a 27-dimensional matrix realization [31], the Weyl generators are
realized as

X1 = e6,7 + e8,9 + e10,11 + e12,14 + e15,17 + e26,27,

X2 = e4,5 + e6,8 + e7,9 − e18,20 − e21,22 − e23,24,

X3 = e4,6 + e5,8 + e11,13 + e14,16 + e17,19 + e25,26,

X4 = e3,4 − e8,10 − e9,11 − e16,18 − e19,21 + e24,25,

X5 = e2,3 − e10,12 − e11,14 − e13,16 + e21,23 + e22,24,

X6 = e1,2 + e12,15 + e14,17 + e16,19 + e18,21 + e20,22,

and Yi = Xi
T , i = 1, . . . ,6. The Dynkin diagram for these generators are given by

The normalized Killing form is

〈A,B〉g = 1

6
tr(AB).

The Chevalley basis is defined in the same way as we did above for the F4 case. The ele-
ment I+ reads

I+ = 16X1 + 22X2 + 30X3 + 42X4 + 30X5 + 16X6.
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The basis {γi}6
i=1 of V = Ker ad I+ is chosen as

γ1 = X1 + 11

8
X2 + 15

8
X3 + 21

8
X4 + 15

8
X5 + X6,

γ2 = X001111 − 11

15
X010111 + X101110 + 11

15
X111100,

γ3 = X011111 − 21

8
X011210 − 16

11
X101111 − X111110,

γ4 = X011221 + 8

15
X111211 + X112210,

γ5 = X111221 + X112211,

γ6 = X122321.

The flat coordinates have the expressions

t1 = 5339887w6
1

84934656
+ 129973w3w

3
1

442368
− 2783w4w

2
1

77760

+ 1679w2
2w1

24300
+ 56741w2

3

1672704
+ w6

81
,

t2 = 4

15
w2w

2
1 + 2w5

27
, t3 = 33839w4

1

147456
+ 2261w3w1

12672
− 38w4

405
,

t4 = 1547w3
1

9216
+ 221w3

528
, t5 = 52w2

135
, t6 = 13w1

8
.

The potential of the corresponding Frobenius manifold is given by

F = −38

2

(
1

2
t2
1 t6 + t1t2t5 + t1t3t4 + t13

6

185328
+ 1

576
t2
5 t8

6 + 1

252
t2
4 t7

6

+ 1

60
t2
3 t5

6 + 1

24
t4t

2
5 t5

6 + 1

24
t2
2 t4

6 + 1

24
t3t

2
5 t4

6 + 1

24
t4
5 t3

6 + 1

6
t3t

2
4 t3

6

+ 1

6
t2t4t5t

3
6 + 1

4
t2
4 t2

5 t2
6 + 1

2
t2t3t5t

2
6 + 1

12
t4
4 t6 + 1

6
t3
3 t6 + 1

6
t2t

3
5 t6

+ 1

2
t3t4t

2
5 t6 + 1

2
t2
2 t4t6 + 1

12
t4t

4
5 + 1

4
t2
3 t2

5 + 1

2
t2
2 t3 + 1

2
t2t

2
4 t5

)
. (7.30)

Note that the function − 2
38 F(t) was obtained as polynomial solutions of the WDVV equations

associated to the root systems of type E6 by P. Di Francesco et al. in [10]. Polynomial solutions
to the WDVV equations associated to the root systems of type E7 and E8 are also computed
in [10].

The Euler vector field and the unity vector field have the forms
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E =
6∑

k=1

Ek ∂

∂tk
= t1

∂

∂t1
+ 3

4
t2

∂

∂t2
+ 2

3
t3

∂

∂t3
+ 1

2
t4

∂

∂t4
+ 5

12
t5

∂

∂t5
+ 1

6
t6

∂

∂t6
, (7.31)

e = 1

81

∂

∂t1
. (7.32)

The two flat metrics g1, g2 are expressed by the formulae given in (7.26), (7.28). We will
not write down the explicit expression of the functions A

ij

2,0;1, A
ij

2,0;2, since in this case they are
quite long. As a consequence of this fact, the computation of the central invariants by using the
formula (2.26) becomes rather tedious. To avoid this complexity, we employ an alternative way
to prove the result that the central invariants of the Drinfeld–Sokolov bihamiltonian structure
related to the E6 (also for E7,E8) type simple Lie algebra are equal to 1

24 .
Our approach is to establish, through an appropriate Miura-type transformation, a relationship

of the present bihamiltonian structure to the one defined by a semisimple Frobenius manifold via
the formulae of Theorems 1 and 2 of [20]. Then the needed result follows if we can prove that
the central invariants of the bihamiltonian structure given by Theorems 1 and 2 of [20] are equal
to 1

24 . This fact can be proved by using properties of a semisimple Frobenius manifold. In fact,
by using the formulae (3.9), (3.14), (3.15), (5.24) of [20] we can express the functions f i , Qii

1 ,
Qii

2 , P ki
1 ,P ki

2 that appear in (2.26) as follows:

f i = 1

ψ2
i1

, P ki
1 = P ki

2 = 0,

Qii
1 = 1

12

n∑
j=1

(
γij

ψ3
i1ψj1

+ γijψj1

ψ5
i1

)
,

Qii
2 = 1

24

[
1

3ψ4
i1

+ 2
n∑

j=1

(
uiγij

ψ3
i1ψj1

+ uiγijψj1

ψ5
i1

)]
.

Here n is the dimension of the semisimple Frobenius manifold, u1, . . . , un are its canonical
coordinates, the functions γij are the rotation coefficients of the flat metric of the Frobenius
manifold, and the functions ψi1 are defined by (4.5) of [20]. By plugging the above expressions
into the formula (2.26) we immediately obtain the result ci = 1

24 , i = 1, . . . , n.
Now let us assume that the needed Miura-type transformation has the form

t̃i = ti − ε2
(∑

m

Ki
mtm,xx +

∑
k,l

Mi
kl tk,x tl,x

)
, i = 1, . . . ,6,

A straightforward computation shows that there is a unique choice of the (1,1) tensor Ki
j with

the following nonzero components:

K1
3 = 92t6

247
, K1

4 = 1172287t2
6

2016846
, K1

5 = 3197t5

4056
, K4

6 = 17t6

26
,

K2
5 = 460t6

, K2
6 = 502t5

, K3
4 = 19

, K3
6 = 47120t2

6 ,

507 507 39 59319
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K1
6 = 2054383t4

6

60149466
+ 7521t4t6

5746
+ 115t3

247
.

such that in the new coordinates, the coefficients of ε2δ′′′(x − y) of our reduced bihamiltonian
structure can be expressed, in terms of the potential F(t̃ ) = F(t)|t �→t̃ given in (7.30), by the
following formulae of Theorems 1 and 2 of [20]:

A
ij

2,0;1(t̃ ) = 1

12
∂tk

(
gkl

1 c
ij
l

)
, (7.33)

A
ij

2,0;2(t̃ ) = 1

12

(
∂tk

(
gkl

2 c
ij
l

)+ 1

2
ckl
l c

ij
k

)
, (7.34)

where g
ij

1 (t̃ ), g
ij

2 (t̃ ), c
ij
k (t̃ ) are defined as in (7.26), (7.28) by using the function F(t) and the

vector fields (7.31), (7.32), and then replacing t by t̃ .
Since in the present case the central invariants are determined by the coefficients of

ε2δ′′′(x − y) of the bihamiltonian structure, the above Miura-type transformation (with arbi-
trary chosen functions Mi

kl) already establishes the fact that all the central invariants of the
bihamiltonian structure that we are considering are equal to 1

24 .
For the simple Lie algebra of type E7, E8, we give the relevant data in the Appendices A

and B of the preprint version [18] of the present paper. The notations in [18] are in agreement
with that of the above E6 case. We thus complete the proof of the lemma. �
8. Conclusion

In this paper, we compute the central invariants of the bihamiltonian structures of Drinfeld–
Sokolov reduction related to the affine Kac–Moody algebras of type A

(1)
n , B

(1)
n , C

(1)
n , D

(1)
n , G

(1)
2 ,

F
(1)
4 , E

(1)
6,7,8 with the standard gradation which is given by the vertex c0 in the (extended) Dynkin

diagram. Our result is based on a case by case computation. It is interesting to give a case in-
dependent derivation of the central invariants of the Drinfeld–Sokolov bihamiltonian structures.
One of the main difficulty lies in the fact that the central invariants depend in general explicitly
on the canonical coordinates, although in our present cases all the invariants we obtained are
constants. Examples of bihamiltonian structures that possess nonconstant central invariants can
be found in [40]. The results of [22] suggest that constancy of the central invariants is related to
existence of a tau-structure of the hierarchy.

For the standard gradations defined by another vertex, Drinfeld and Sokolov did not give the
bihamiltonian structures. We point out that the generalized KdV equations for other standard gra-
dations do possess bihamiltonian structures of the form (6.7), but in general these bihamiltonian
structures have infinite many terms. This is because all these equations are related to the gen-
eralized mKdV equations through a Miura-type transformation, while these transformations are
invertible in the formal power series sense. This fact has an immediate corollary that the central
invariants of these bihamiltonian structures are the same with the ones we have computed.

The generalized KdV equations related to the twisted affine Lie algebras seem not to possess
a bihamiltonian structure. We give here a counterexample [39].

Let us consider the generalized KdV equation related to A
(2)
2 equipped with the standard

gradation defined by the vertex c0. The simplest integrable equation reads [13]
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wt = 5w2wx + 5ε2(wxwxx + wwxxx) + ε4wxxxxx. (8.1)

Proposition 8.1. Eq. (8.1) possesses only one local Hamiltonian structure found in [13]

wt = {
w(x),H

}
, H =

∫ (
w3 − 3w2

x

)
dx,

{
w(x),w(y)

}= 2w(x)δ′(x − y) + wxδ(x − y) + ε2

2
δ′′′(x − y). (8.2)

The proof was obtained in [39] following the scheme of [41]. Let us give here the sketch of
the proof. First, we construct the so-called quasitriviality transformation v �→ w,

w = v + ε2

4
∂2
x (logv1 − logv)

+ ε4∂2
x

(
32v2

v2
− 27v2

1

v3
− 12v3

vv1
+ 5v4

v2
1

+ 11v2
2

vv2
1

− 21v3 v2

v3
1

+ 16v3
2

v4
1

)

+ ε6∂2
x

[
7533v4

1

4480v6
− 43081v2v

2
1

13440v5
+ 2063v3v1

1920v4
+ 2077v2

2

3360v4
− 619v4

2240v3

+ 1

v1

(
239v2v3

1344v3
+ 41v5

672v2

)
− 1

v2
1

(
157v3

2

1920 v3
+ 1549v4v2

6720v2
+ 13v2

3

80v2
+ 7v6

640v

)

+ 1

v3
1

(
8753v3v

2
2

13440 v2
+ 383v5v2

4480v
+ 689v3v4

4480v
+ v7

384

)

− 1

v4
1

(
4303v4

2

13440v2
+ 185v4v

2
2

448v
+ 2607v2

3v2

4480v
+ 21v2v6

640
+ 103v2

4

2240
+ 159v3v5

2240

)

+ 1

v5
1

(
9343v3v

3
2

6720v
+ 1059v5v

2
2

4480
+ 3819v3v4v2

4480
+ 177v3

3

896

)

− 1

v6
1

(
131v5

2

210v
+ 83

70
v4v

3
2 + 2241

896
v2

3v2
2

)
+ 59

14

v4
2v3

v7
1

− 5

3

v6
2

v8
1

]
+ O

(
ε8) (8.3)

transforming any monotone solution of the dispersionless equation

vt = 5v2vx

to a solution of (8.1). In this long formula we denote the jet coordinates by v1 = vx , v2 = vxx

etc. According to [39,41], any local Hamiltonian structure of (8.1) with coefficients depending
polynomially on the jet coordinates wx , wxx , . . . must be obtained from some dispersionless
Hamiltonian structure of the form

{
v(x), v(y)

}= ϕ
(
v(x)

)
δ′(x − y) + 1

ϕ′(v(x)
)
vx(x)δ(x − y)
2
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by applying the quasitriviality transformation (8.3). The unknown function ϕ(v) has to be chosen
in such a way to ensure cancellation of all the jet dependent denominators in the transformed
bracket

{
w(x),w(y)

}= ϕ(w)δ′(x − y) + 1

2
ϕ′(w)wxδ(x − y) + ε2Z2 + ε4Z4 + ε6Z6 + · · · . (8.4)

Here Z2 is a polynomial for any ϕ(v), while Z4 contains the following term

− 3

160

w4
xx

w2w4
x

[
3w2ϕ′′(w) − 2wϕ′(w) + 2ϕ(w)

]
δ′(x − y).

So, to ensure Z4 is a polynomial, we must have

ϕ(w) = c1w + c2w
2
3

for some constants c1 and c2. Next, Z6 contains the following term

5c2w
5
xx

432w10/3w4
x

δ′(x − y),

which implies c2 = 0. So we have ϕ(w) = c1w, by taking c1 = 2, we obtain the Hamiltonian
structure (8.2). The proposition is proved.

In a similar way we have analyzed another example of an integrable scalar equation associ-
ated with A

(2)
2 . It would be interesting to prove in general that the Drinfeld–Sokolov hierarchies

associated with twisted Kac–Moody Lie algebras never admit a local bihamiltonian structure.
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