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Abstract
We review recent classification results on the theory of systems of nonlinear
Hamiltonian partial differential equations with one spatial dimension, including
a perturbative approach to the integrability theory of such systems, and discuss
universality conjectures describing critical behaviour of solutions to such
systems.

PACS numbers: 02.30.Ik, 02.30.Jr

1. Introduction

The main subject of our research is the study of Hamiltonian perturbations of systems of
quasilinear hyperbolic1 PDEs:

ui
t + Ai

j (u)uj
x + higher order derivatives = 0, i = 1, . . . , n.

(Here and below the summation over repeated indices will be assumed.) They can be obtained,
in particular, by applying the procedure of weak dispersion expansion: starting from a system
of PDEs

ui
t + F i(u, ux, uxx, . . .) = 0, i = 1, . . . , n.

With the analytic right-hand side let us introduce slow variables

x �→ εx, t �→ εt.

Expanding in ε one obtains, after dividing by ε, a system of the above form

ui
t +

1

ε
F i(u, εux, ε

2uxx, . . .) = ui
t + Ai

j (u)uj
x + ε

(
Bi

j (u)uj
xx +

1

2
Ci

jk(u)uj
xu

k
x

)
+ · · ·

1 Always the strong hyperbolicity will be assumed, i.e. the eigenvalues of the n × n matrix (Ai
j (u)) are all real

and pairwise distinct for all u = (u1, . . . , un) in the domain under consideration. Certain parts of the formalism
developed in this paper will be applicable also to the quasilinear systems with complex distinct eigenvalues of the
coefficient matrix.
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assuming all the dependent variables are slow, i.e. the terms of the order 1/ε vanish:

F i(u, 0, 0, . . .) ≡ 0, i = 1, . . . , n.

The celebrated Korteweg–de Vries (KdV) equation

ut + u ux +
ε2

12
uxxx = 0 (1.1)

is one of the most well-known examples of such a weakly dispersive Hamiltonian PDE.
The systems of PDEs under investigation

ui
t + Ai

j (u)uj
x + ε

(
Bi

j (u)uj
xx + 1

2Ci
jk(u)uj

xu
k
x

)
+ · · · = 0, i = 1, . . . , n, (1.2)

depending on a small parameter ε will be considered as Hamiltonian vector fields on the
‘infinite-dimensional manifold’

L(Mn) ⊗ R[[ε]], (1.3)

where Mn is an n-dimensional manifold (in all our examples it will have the topology of a ball)
and

L(Mn) = {S1 → Mn}
is the space of loops on Mn. The dependent variables

u = (u1, . . . , un) ∈ Mn

are local coordinates on Mn. In expansion (1.2) the terms of order εk are polynomials of degree
k + 1 in the derivatives ux, uxx, . . . , where

deg u(m) = m, m = 1, 2, . . . .

The coefficients of these polynomials are smooth functions defined in every coordinate chart
on Mn.

The systems of the form (1.2) will be assumed to be Hamiltonian flows

ui
t = {ui(x),H } =

∑
k�0

εk

k+1∑
m=0

A
ij

k,m(u; ux, . . . , u
(m))∂k−m+1

x

δH

δuj (x)
(1.4)

with respect to a local Poisson bracket

{ui(x), uj (y)} =
∑
k�0

εk

k+1∑
m=0

A
ij

k,m(u(x); ux(x), . . . , u(m)(x))δ(k−m+1)(x − y)

deg A
ij

k,m(u; ux, . . . , u
(m)) = m

(1.5)

with local Hamiltonians

H =
∑
k�0

εk

∫
hk(u; ux, . . . , u

(k)) dx = H0 + εH1 + ε2H2 + · · ·

Hk =
∫

hk(u; ux, . . . , u
(k)) dx, deg hk(u; ux, . . . , u

(k)) = k.

(1.6)

Here δ(x) is the Dirac delta-function and

δH

δuj (x)
= ∂h

∂uj
− ∂x

∂h

∂u
j
x

+ ∂2
x

∂h

∂u
j
xx

− · · ·

is the Euler–Lagrange operator of a local Hamiltonian

H =
∫

h(u; ux, uxx, . . .) dx.

2
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The coefficients of the Poisson bracket and Hamiltonian densities will always be assumed
to be differential polynomials in every order in ε. The antisymmetry and Jacobi identity
for the Poisson bracket (1.5) are understood as identities for formal power series in
ε. Note that for a differential polynomial f (u; ux, uxx, . . . , u

(m)) the local functional∫
f (u; ux, uxx, . . . , u

(m)) dx is defined as the equivalence class of the differential polynomial
f modulo Im ∂x where

∂x =
∑

ui,k+1 ∂

∂ui,k
, ui,k := ∂kui

∂xk
(1.7)

is the operator of the total x-derivative. The Poisson bracket of local functionals of the form

F =
∑
k�0

εk

∫
fk(u; ux, . . . , u

(k)) dx, G =
∑
l�0

εl

∫
gl(u; ux, . . . , u

(l)) dx

deg fk(u; ux, . . . , u
(k)) = k, deg gl(u; ux, . . . , u

(l)) = l

(1.8)

reads

{F,G} =
∫

δF

δui(x)
Aij δG

δuj (x)
dx

Aij :=
∑
k�0

εk

k+1∑
m=0

A
ij

k,m(u; ux, . . . , u
(m))∂k−m+1

x .

(1.9)

Therefore, a local Poisson bracket (1.5) defines a structure of Lie algebra on the space Gloc of
local functionals.

Example 1.1. The KdV equation (1.1) admits a Hamiltonian representation

ut + {u(x),H } ≡ ut + ∂x

δH

δu(x)
= 0 (1.10)

with the Poisson bracket

{u(x), u(y)} = δ′(x − y) (1.11)

and the Hamiltonian

H =
∫ (

1

6
u3 − ε2

24
u2

x

)
dx. (1.12)

Let us now introduce a class of ‘coordinate changes’ on the infinite-dimensional manifold
L(Mn) ⊗ R[[ε]]. Define a generalized Miura transformation:

ui �→ ũi =
∑
k�0

εkF i
k (u; ux, . . . , u

(k))

deg F i
k (u; ux, . . . , u

(k)) = k

det

(
∂F i

0(u)

∂uj

)
�= 0.

(1.13)

The coefficients F i
k (u; ux, . . . , u

(k)) are differential polynomials. It is easy to see that the
transformations of the form (1.13) form a group. The classes of evolution PDEs (1.2), local
Poisson brackets (1.5) and local Hamiltonians (1.6) are invariant with respect to the action of
the group of generalized Miura transformations. We say that two objects of our theory (i.e.
two evolutionary vector fields of the form (1.2), two local Poisson brackets of the form (1.5),
or two local Hamiltonians of the form (1.6)) are equivalent if they are related by a generalized
Miura transformation.

3
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Our main goals are as follows:

• classification of Hamiltonian PDEs,
• selection of integrable PDEs and
• study of the general properties of solutions to these PDEs.

2. Classification problems

Setting ε = 0 in (1.4)–(1.6) one obtains the so-called dispersionless limit of the PDE

ui
t = Ai

j (u)uj
x. (2.1)

The dispersionless limit is itself a Hamiltonian PDE

ui
t = {ui(x),H0}0 (2.2)

with respect to the Poisson bracket

{ui(x), uj (y)}0 = A
ij

0,0(u)δ′(x − y) + A
ij

0,1(u; ux)δ(x − y) (2.3)

with a very simple local Hamiltonian

H0 =
∫

h0(u) dx. (2.4)

The original system (1.4) with its Hamiltonian structure (1.5) and (1.6) can be considered as
a deformation of (2.1)–(2.4).

The problem of classification of Hamiltonian systems of our class can therefore be
decomposed in two steps:

• classification of dispersionless Hamiltonian systems;
• classification of their perturbations.

The dispersionless systems and their Hamiltonian structures will be classified with respect
to the action of the group of (local) diffeomorphisms, while the perturbations have to be
classified up to equivalences established by the action of the group of generalized Miura
transformations.

The answer to the first question was obtained by Novikov and the author of [16] under
the so-called non-degeneracy assumption2

det
(
A

ij

0,0(u)
) �= 0. (2.5)

The non-degeneracy condition is invariant with respect to the action of the group of (local)
diffeomorphisms.

Theorem 2.1. Poisson brackets of the form (2.3) satisfying the non-degeneracy condition (2.5)
by a change of local coordinates ũi = ũi(u1, . . . , un), det(∂ũi/∂uj ) �= 0 can be reduced to
the following standard form:

{ũi(x), ũj (y)}0 = ηij δ′(x − y), (2.6)

where (ηij ) is a constant symmetric non-degenerate matrix.

The crucial step in the proof of this theorem is the observation that the Riemannian or
pseudo-Riemannian metric

ds2 = gij (u) dui duj , (gij (u)) = (
A

ij

0,0(u)
)−1

(2.7)

2 To avoid confusion with non-degeneracy of the Poisson bracket. The Poisson bracket (2.3) satisfying (2.5) is
always degenerate. The symplectic leaves of this bracket have a codimension n.

4
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defined by the inverse to the matrix
(
A

ij

0,0(u)
)

has a vanishing curvature. Moreover, the second
coefficient of bracket (2.3) can be expressed via the Christoffel coefficients of the Levi-Civita
connection for the metric

A
ij

0,1(u; ux) = −Ais
0,0(u)�

j

sk(u)uk
x. (2.8)

Choosing locally a system of flat coordinates one reduces the metric to a constant form

ds2 = ηij dvi dvj . (2.9)

The Christoffel coefficients in these coordinates vanish.
The matrix (ηij ) in (2.6) is the inverse to (ηij ).
We will omit tildes in the notation for the flat coordinates. From the previous theorem

one obtains

Corollary 2.2. Any Hamiltonian system of dispersionless PDEs can be locally reduced to the
form

ui
t = ηij ∂x

δH0

δuj (x)
= ηij ∂2h(u)

∂uj∂uk
uk

x, i = 1, . . . , n, H0 =
∫

h(u) dx. (2.10)

Let us now proceed to the study of perturbations of Hamiltonian systems (2.10). A priori,
there are two types of perturbations:

• perturbations of Hamiltonians (2.4)
• perturbation of Poisson brackets (2.3).

It turns out that one can discard the second type of perturbations to arrive at.

Theorem 2.3. Any system of Hamiltonian PDEs of classes (1.2) and (1.4)–(1.6) satisfying the
non-degeneracy assumption (2.5) can be reduced to the following standard form:

ui
t = ηij ∂x

δH

δuj (x)
, i = 1, . . . , n, (2.11)

with the Hamiltonian of the form (1.6). Here (ηij ) is a constant symmetric non-degenerate
matrix. Two such systems are equivalent iff the Hamiltonians are related by a canonical
transformation

H �→ H + ε{K,H } +
ε2

2
{K, {K,H }} + · · · ,

K =
∑
k�0

εk

∫
fk(u; ux, . . . , u

(k)) dx, deg fk(u; ux, . . . , u
(k)) = k.

(2.12)

Observe that the Poisson bracket for the system reads

{ui(x), uj (y)} = ηij δ′(x − y), ηij = ηji = const, det(ηij ) �= 0. (2.13)

The main idea in the proof of this theorem is in the study of suitably defined Poisson
cohomology of bracket (2.13). Triviality of Poisson cohomology in positive degrees in ε was
proved in [9, 18]; see also [17] for an extensive discussion of the deformation problem and its
generalizations.

Example 2.4. The Hopf equation

vt + vvx = 0 (2.14)

is a Hamiltonian system

vt + ∂x

δH0

δv(x)
= 0

5
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with the Hamiltonian

H0 =
∫

v3

6
dx (2.15)

and the Poisson bracket of the form (2.13):

{v(x), v(y)} = δ′(x − y). (2.16)

Any Hamiltonian perturbation of this equation of order ε4 can be reduced to the following
normal form parametrized by two arbitrary functions of one variable c = c(u), p = p(u):

ut + uux +
ε2

24

[
2cuxxx + 4c′uxuxx + c′′u3

x

]
+ ε4

[
2puxxxxx + 2p′(5uxxuxxx + 3uxuxxxx)

+ p′′(7uxu
2
xx + 6u2

xuxxx

)
+ 2p′′′u3

xuxx

] = 0. (2.17)

The Hamiltonian has the form

H =
∫ [

u3

6
− ε2 c(u)

24
u2

x + ε4p(u)u2
xx

]
dx. (2.18)

Two such perturbations are equivalent iff the associated functional parameters c(u), p(u)

coincide [10].

3. Selecting integrable PDEs

The theory of integrability of Hamiltonian systems studies the families of commuting
Hamiltonians. Observe that the commutativity {H,F } = 0 of local Hamiltonians with respect
to the Poisson bracket (2.13) reduces to the following system of differential equations for their
densities:

δ

δuk(x)

(
δH

δui(x)
ηij ∂x

δF

δuj (x)

)
= 0, k = 1, . . . , n. (3.1)

Commutativity of formal series

H = H0 + εH1 + ε2H2 + · · · , F = F0 + εF1 + ε2F2 + · · ·
must hold true at every order in ε:

{H0, F0} = 0

{H0, F1} + {H1, F0} = 0

{H0, F2} + {H1, F1} + {H2, F0} = 0, etc.

(3.2)

In particular the commutativity of the leading terms

H0 =
∫

h(u) dx, F0 =
∫

f (u) dx

reduces to the following bilinear system of differential equations:

∂2f

∂vi∂vl
ηij ∂2h

∂vj∂vk
= ∂2f

∂vi∂vk
ηij ∂2h

∂vj∂vl
, k, l = 1, . . . , n. (3.3)

Replacing the commutativity with the condition

{H,F } = O(εN+1) (3.4)

one obtains N-commuting Hamiltonians. Clearly the conditions of N-commutativity involve
only first N terms of the series H and F.

6
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After these preliminaries let us consider a system of Hamiltonian PDEs of the form

ui
t = ηij ∂x

δH

δuj (x)
, i = 1, . . . , n, (3.5)

H =
∑
k�0

εk

∫
hk(u; ux, . . . , u

(k)) dx = H0 + εH1 + ε2H2 + · · ·

Hk =
∫

hk(u; ux, . . . , u
(k)) dx, deg hk(u; ux, . . . , u

(k)) = k.

(3.6)

Here, as above (ηij ) is a constant symmetric non-degenerate matrix. The eigenvalues of the
leading coefficient matrix

Ai
j (u) = ηis ∂2h(u)

∂us∂uj
, h(u) ≡ h0(u) (3.7)

are assumed to be pairwise distinct for all u ∈ Mn.

Definition 3.1. The system (3.5) is called integrable if

• the leading-order hyperbolic system

ui
t = ηij ∂x

δH0

δuj (x)
= Ai

j (u)uj
x

H0 =
∫

h(u) dx

(3.8)

is integrable;
• for any first integral

H
f

0 =
∫

f (u) dx

{
H

f

0 ,H0
} = 0

(3.9)

of the hyperbolic system (3.8) there exists a first integral of (3.5) with the prescribed
leading term H

f

0 :

{Hf ,H } = 0

Hf =
∑
k�0

εk

∫
fk(u; ux, . . . , u

(k)) dx = H
f

0 + εH
f

1 + ε2H
f

2 + · · ·

H
f

k =
∫

fk(u; ux, . . . , u
(k)) dx, deg fk(u; ux, . . . , u

(k)) = k;

(3.10)

• for any pair of first integrals H
f

0 , Hg

0 of the hyperbolic system (3.8) the Hamiltonians Hf

and Hg commute3

{Hf ,Hg} = 0.

Replacing commutativity {Hf ,Hg} = 0 with N-commutativity one obtains the definition
of an N-integrable Hamiltonian PDE.

Remark 3.2. Under certain natural assumptions (see corollary 3.9 below) the coefficients of
the differential polynomials fk(u; ux, . . . , u

(k)) can be expressed via partial derivatives of the
function f (u).

3 In the examples considered so far the last condition is redundant. It would be interesting to prove this in general.

7
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The above definition relies on the knowledge of the theory of integrability [29] of
hyperbolic systems (also called systems of hydrodynamic type). In a nutshell this theory
states that a hyperbolic Hamiltonian system (3.8) is integrable if it can be reduced to a
diagonal form. This means that locally a system of coordinates (r1(u), . . . , rn(u)) exists such
that the coefficient matrix of the system (3.8) becomes diagonal A = diag(λ1(r), . . . , λn(r))

in the new coordinates

ri
t + λi(r)ri

x = 0, i = 1, . . . , n. (3.11)

Thus, the new coordinates are Riemann invariants of the hyperbolic system (3.8).
The integrability test of a Hamiltonian hyperbolic system can be formulated with the help

of the classical Haantjes torsion [20] that in the present situation takes the following form [13].

Theorem 3.3. The hyperbolic system (3.8) is integrable iff the following conditions hold true:

Hijk := (hipqhjrhks + hjpqhkrhis + hkpqhirhjs)habη
paδqbsr = 0, 1 � i, j, k � n.

(3.12)

Here

hij := ∂2h

∂ui∂uj
, hijk := ∂3h

∂ui∂uj∂uk

δijkl := det

(
ηik ηil

ηjk ηjl

)
.

The torsion (3.12) is a rank 3 antisymmetric tensor. So the conditions of the theorem
become nontrivial starting from n � 3.

Densities f (u) of the first integrals H
f

0 = ∫
f (u) dx of the hyperbolic system (3.8) have

to be determined from the system of linear PDEs (3.3). Vanishing of the Haantjes torsion
(3.12) provides the compatibility conditions for this overdetermined system. For a given
Hamiltonian density h(u) satisfying (3.12) the solutions to (3.3) form a linear space of first
integrals of the system (3.8). They can be parametrized by n arbitrary functions of one variable.

The commutativity (3.3) admits the following simple interpretation. The Hamiltonian
flow

ui
s = Bi

j (u)uj
x, Bi

j (u) = ηis ∂2f (u)

∂us∂uj
(3.13)

generated by any solution to (3.2) is an infinitesimal symmetry of the hyperbolic system (3.8):

∂

∂s

∂ui

∂t
= ∂

∂t

∂ui

∂s
, i = 1, . . . , n. (3.14)

Equation (3.3) states that the coefficient matrices A = (
Ai

j (u)
)

and B = (
Bi

j (u)
)

commute at
every point v. Since the eigenvalues of the matrix A are pairwise distinct, the centralizer of A

is commutative. Hence

Theorem 3.4. First integrals of the form (3.2) of a Hamiltonian hyperbolic system commute
pairwise.

The diagonal coordinates (r1, . . . , rn) are also Riemann invariants for any commuting
flow (3.13) and (3.14). Moreover, metric (2.9) becomes diagonal in the new coordinates

ds2 =
n∑

i=1

η2
i (r)(dri)2. (3.15)

8
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Thus, Riemann invariants (r1, . . . , rn) define an orthogonal curvilinear system of local
coordinates in the pseudo-Euclidean space with metric (2.9). The linear space of commuting
Hamiltonians for the hyperbolic system (3.11) coincides with the space of functions f (r)

satisfying the following property: the covariant Hessian of the function f (r) is a diagonal
matrix

∇i∇j f (r) = 0 for i �= j. (3.16)

Here ∇ is the Levi-Civita connection for the metric ds2.
Denote

K0 ⊂ Gloc (3.17)

the linear space of all first integrals of the form H
f

0 = ∫
f (u) dx of an integrable system of

hyperbolic PDEs. It is a commutative subalgebra in the Lie algebra of local Hamiltonians.
Let us remind the following standard definition.

Definition 3.5. A commutative subalgebra in a Lie algebra is called maximal if any element
of the Lie algebra commuting with all elements of the subalgebra belongs to the subalgebra.

Theorem 3.6. The first integrals of an integrable system of hyperbolic PDEs form a maximal
Abelian subalgebra in the Lie algebra of local Hamiltonians.

The proof of this theorem4 is based on the following.

Lemma 3.7. Let a local Hamiltonian F = ∫
f (u, ux, . . . , u

(m)) dx commute with all
Hamiltonians in K0. Then the variational derivatives δF/δuj (x) do not depend on the
jets

ui,k = ∂kui

∂xk
,

∂

∂ui,k

δF

δuj (x)
= 0, k = 1, . . . , 2m, i, j = 1, . . . , n.

(3.18)

Denote by K the commutative Lie algebra of first integrals of the perturbed system (3.5).
It is easy to see that this subalgebra is maximal as well. Consider the linear map (sometimes
also called the dispersionless limit)

K → K0

F = F0 + εF1 + ε2F2 + · · · �→ F0 ∈ K0.
(3.19)

Theorem 3.8. The map (3.19) is an isomorphism.

Corollary 3.9. For any N-integrable Hamiltonian PDE (3.5) there exists a linear differential
operator

DN = D[0] + εD[1] + ε2D[2] + · · · + εND[N]

D[0] = id, D[k] =
∑

b
[k]
i1...im(k)

(u; ux, . . . , u
(k))

∂m(k)

∂ui1 . . . ∂uim(k)

deg b
[k]
i1...im(k)

(u; ux, . . . , u
(k)) = k, k � 1,

(3.20)

defined on the common kernel of linear operators

hjkη
ij ∂2

∂vi∂vl
− hjlη

ij ∂2

∂vi∂vk
, k, l = 1, . . . , n, (3.21)

4 A somewhat different approach to completeness of the Lie algebra K0 is discussed in section 5 of [29].

9
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such that for any two solutions f (u), g(u) to equations (3.3) the Hamiltonians

H
f

N :=
∫

DNf dx, H
g

N :=
∫

DNg dx (3.22)

satisfy {
H

f

N ,H
g

N

} = O(εN+1). (3.23)

Here m(k) is an integer. It is easy to see that

m(k) �
[

3k

2

]
.

Operator (3.20) is called the D-operator of an integrable Hamiltonian PDE (3.5). It is
defined up to Im ∂x .

Example 3.10. The perturbed Hopf equation (2.17) is five-integrable for an arbitrary choice
of the functional parameters c(u), p(u) [11]. Indeed, the first integrals of the unperturbed
system have the form

F0 =
∫

f (v) dx

for an arbitrary function f (v). Define deformed functionals by the formula

F =
∫

Dc,pf dx,

where the D-operator D5 ≡ Dc,p (see [12] for details) transforming the first integrals of the
unperturbed system to the first integrals (modulo O(ε6)) of the perturbed one:

Dc,pf = f − ε2

24
cf ′′′u2

x + ε4

[(
pf ′′′ +

c2f (4)

480

)
u2

xx

−
(

cc′′f (4)

1152
+

cc′f (5)

1152
+

c2f (6)

3456
+

p′f (4)

6
+

pf (5)

6

)
u4

x

]
. (3.24)

It is an interesting open problem to prove existence and uniqueness, for a given pair of
the functional parameters c(u) �= 0, p(u), of an extension to all orders in ε of the perturbed
system (2.17) in order to obtain an integrable PDE. So far the existence of such an extension
is known only for some particular cases including the following.

• KdV: c(u) = const, p(u) = 0. For the choice c(u) = 1
24 the D-operator can be represented

[13] in terms of the Lax operator and the fractional derivative ∂
1/2
u f (u) of the function

f (u)

Df = 1√
2

res(∂1/2f )(L)

L = ε2

2
∂2
x + u(x).

(3.25)

• Volterra lattice

εut = eu(x+ε) − eu(x−ε)

has c(u) = 2, p(u) = − 1
240 .

• Camassa–Holm equation

ut − ε2utxx = 3
2u ux − ε2

[
uxuxx + 1

2u uxxx

]
(3.26)

has c(u) = 8u, p(u) = 1
3u.

10
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Summarizing, integrable systems of Hamiltonian PDEs of the form (3.5) are parametrized
by the following:

• orthogonal systems of curvilinear coordinates in the pseudo-Euclidean space with metric
(2.9). Any such system defines a maximal commutative Lie algebraK0 of local functionals
with the densities given by solutions to to the linear system (3.16);

• a D-operator acting on solutions to (3.16). It defines a deformation of the commutative
Lie algebra K0.

So far we only know very few particular examples of D-operators. For a particular subclass
of integrable biHamiltonian PDEs it can be proven that a deformation of the commutative
Lie algebra K0 can depend on at most n arbitrary functions of one variable called central
invariants of a strongly non-degenerate semi-simple biHamiltonian structure [15]. Some
partial improvements are available for the particular case of curvilinear orthogonal coordinates
given by the so-called canonical coordinates on a semi-simple Frobenius manifold [17]. The
general classification of D-operators remains an open problem even in the case n = 1.
Equation (3.16) is empty in this case, so a D-operator must act on the space of arbitrary
smooth functions f (u).

4. Solving integrable PDEs

We begin with considering formal perturbative solutions

ui(x, t; ε) = ui
0(x, t) + ε ui

1(x, t) + ε2ui
2(x, t) + · · · , i = 1, . . . , n, (4.1)

to a system of integrable Hamiltonian PDEs of the form considered in the previous section.
The functions

vi(x, t) := ui
0(x, t), i = 1, . . . , n,

must solve the leading-order hyperbolic system

vi
t = Ai

j (v)vj
x . (4.2)

(We use different notations v = v(x, t) and u = u(x, t) for the dependent variables of the
unperturbed/perturbed systems resp. for a convenience later on.) The generic solution to an
integrable hyperbolic system (4.2) can be found by the following procedure, due to Tsarev
[29].

Definition 4.1. A solution v = v(x, t) to (4.2) is called monotone at the point (x0, t0) if

∂ri(v(x, t))

∂x
|x=x0,t=t0 �= 0 for all i = 1, . . . , n. (4.3)

Here r1(v), . . . , rn(v) are Riemann invariants of the integrable hyperbolic system (4.2).
All monotone solutions can be obtained as follows. Let F0 = ∫

f (v) dx be any first
integral of the hyperbolic system, i.e. the function f (v) satisfies equations (3.3). Denote

Bi
j (v) = ηis ∂2f (v)

∂vs∂vj

and consider the following system of n2 equations:

x · id + tA(v) = B(v)

A(v) = (
Ai

j (v)
)
, B(v) = (

Bi
j (v)

)
.

(4.4)

11
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Since the matrices A(v), B(v) are simultaneously diagonalizable, only n of equations (4.4) are
independent. Let v0 ∈ M be such a point that equations (4.4) become valid identities after the
substitution (x → x0, t → t0, v → v0). Assume that the conditions of the implicit function
theorem hold true at the point (x0, t0, v0). Then a smooth vector-function v = v(x, t) such
that v(x0, t0) = v0 is uniquely defined from the system (4.4) for sufficiently small |x − x0|,
|t − t0|.
Theorem 4.2. Under the above assumptions the vector-function v(x, t) defines a monotone
solution to the hyperbolic system (4.2) on some small neighbourhood of the point (x0, t0).
Moreover, all monotone solutions to (4.2) can be obtained by the above procedure.

Example 4.3. For n = 1 one recognizes the well-known method of characteristics for
representing solutions to the Hopf equation

vt + vvx = 0

in the implicit form

x = vt + f (v).

The function f (v) is determined by the Cauchy data

f (v(x, 0)) ≡ x.

Example 4.4. The focusing nonlinear Schrödinger (NLS) equation

i εψt + 1
2ε2ψxx + |ψ |2ψ = 0 (4.5)

can be reduced to the form (3.5) by the substitution

u = |ψ |2, v = ε

2i

(
ψx

ψ
− ψ̄x

ψ̄

)
. (4.6)

The resulting system

ut + (uv)x = 0

vt + vvx − ux = ε2

4

(
uxx

u
− 1

2

u2
x

u2

)
x

(4.7)

is Hamiltonian with the Poisson bracket

{u(x), v(y)} = δ′(x − y), {u(x), u(y)} = {v(x), v(y)} = 0

and the Hamiltonian

H =
∫ [

1

2
(uv2 − u2) +

ε2

8u
u2

x

]
dx. (4.8)

The leading-order system

ut + (uv)x = 0

vt + vvx − ux = 0
(4.9)

is of elliptic type since the eigenvalues λ± = v ± i
√

u of the coefficient matrix

A =
(

v u

−1 v

)

are complex conjugate (observe that u = |ψ |2 > 0). The above procedure is applicable; it
locally represents generic solutions to (4.9) in the implicit form

x = vt + fu

0 = ut + fv

}
, (4.10)

12
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where f = f (u, v) is a solution to the linear PDE (3.3):

fvv + ufuu = 0. (4.11)

Let us now proceed to the study of the subsequent terms of the perturbative expansion
(4.1). In principle they can be recursively determined by solving linear inhomogeneous
equations of the form

∂ui
m+1

∂t
− ∂x

(
Ai

j (v)u
j

m+1

) = F i
m(v; u1, . . . , um), i = 1, . . . , n, m � 0. (4.12)

The discrepancies F i
0(v), F i

1(v; u1) can be determined by the direct substitution of the formal
series (4.1) into the perturbed system

∂ui

∂t
= ηij ∂x

[
δH0

δuj (x)
+ ε

δH1

δuj (x)
+ ε2 δH2

δuj (x)
+ · · ·

]
= Ai

j (u)uj
x + O(ε). (4.13)

However in many cases there exists a universal perturbative solution to the system (4.13)
written in the form (4.1) with

ui
k = F i

k (v; vx, . . . , v
(mk)), k � 1, (4.14)

where F i
k (v; vx, . . . , v

(mk)) is a rational function in the jet variables vx, vxx, etc. The values of
these rational functions must be defined on any monotone solution v(x, t) to the unperturbed
system. The explicit form of these functions does not depend on the choice of a particular
solution. The advantage of such a representation of the perturbative solution is in its locality;
the values of the perturbed solution and of its derivatives at a given point (x0, t0) depend only
on the germ of the unperturbed solution at this point.

Example 4.5 ([11]). The canonical transformation

v �→ u = v + ε{v(x),K} +
ε2

2
{{v(x),K},K} + · · ·

= v +
ε2

24
∂x

(
c
vxx

vx

+ c′vx

)
+ ε4∂x

[
c2

(
v3

xx

360v4
x

− 7vxxvxxx

1920v3
x

+
vxxxx

1152v2
x

)
x

+ cc′
(

47v3
xx

5760v3
x

− 37vxxvxxx

2880v2
x

+
5vxxxx

1152vx

)
+ c′2

(
vxxx

384
− v2

xx

5760vx

)

+ cc′′
(

vxxx

144
− v2

xx

360vx

)
+

1

1152

(
7c′c′′vxvxx + c′′2v3

x

+ 6cc′′′vxvxx + c′c′′′v3
x + cc(4)v3

x

)

+ p

(
v3

xx

2v3
x

− vxxvxxx

v2
x

+
vxxxx

2vx

)
+ p′vxxx + p′′ vxvxx

2

]
+ O(ε6) (4.15)

generated by the Hamiltonian

K = −
∫ [

1

24
εc(v)vx log vx + ε3

(
c2(v)

5760

v3
xx

v3
x

− p(v)

4

v2
xx

vx

)]
dx + O(ε5) (4.16)

transforms any monotone solution to the Hopf equation

vt + vvx = 0

to a solution to the perturbed equation

ut + uux + ε2∂x

{
1

24

(
2cuxx + c′u2

x

)
+ ε2

[
2puxxxx + 4p′uxuxxx + 3p′u2

xx

+
(
2p′′ − 1

288cc′′′) u2
xuxx − 1

1152 (c′c′′′ − ccIV )u4
x

]}
+ O(ε6) = 0, (4.17)

13
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equivalent to the generic perturbation (2.17). In this formula c = c(v), p = p(v). The same
substitution transforms any monotone solution v(x, s) to the equation

vs + f ′′(v)vx = 0

with an arbitrary f (v) to a solution to the perturbed equation

us + ∂x

δHf

δu(x)
= 0, Hf =

∫
hf dx

hf = f − ε2

24
cf ′′′u2

x + ε4

[(
pf ′′′ +

c2f (4)

480

)
u2

xx (4.18)

−
(

cc′′f (4)

1152
+

cc′f (5)

1152
+

c2f (6)

3456
+

p′f (4)

6
+

pf (5)

6
− cc′′′

3456
f ′′′

)
u4

x

]

five-commuting with (4.17) for an arbitrary function f (v).

Construction of the perturbed solutions in the form (4.1), (4.14) is based on the theory of
quasitriviality transformations for Hamiltonian PDEs [15, 17].

Definition 4.6. The substitution

v �→ u = v +
∑
k�1

εkFk(v; vx, . . . , v
(mk)), i = 1, . . . , n, (4.19)

is called a quasitriviality transformation for the commutative Lie algebra of perturbed
Hamiltonians if for any H

f

0 [v] = ∫
f (v) dx ∈ K0, Hf [u] = ∫

f (u) dx + O(ε) ∈ K one
has

Hf

⎡
⎣v +

∑
k�1

εkFk(v; vx, . . . , v
(mk))

⎤
⎦ = H

f

0 [v]. (4.20)

In other words, substitution (4.19) transforms all perturbed Hamiltonian densities to the
unperturbed ones, modulo total derivatives. Inverting substitution (4.19) one obtains a practical
recipe for computing the perturbed Hamiltonians from the unperturbed one.

If all terms of expansion (4.19) are differential polynomials, then the substitution is a
generalized Miura transformation. In this case the perturbed Hamiltonian system together
with all its symmetries is equivalent to a hyperbolic system. Such perturbations are called
trivial. The properties of solutions to trivially perturbed hyperbolic systems essentially do not
differ from those for the unperturbed systems.

The existence of a quasitriviality transformation for biHamiltonian integrable PDEs
has been established in [15]. In the scalar case n = 1 the existence of a quasitriviality
transformation was proven in [22] in a very general situation, even without assuming a
Hamiltonian structure. For more specific properties of quasitriviality transformations of
Hamiltonian scalar PDEs see [23].

Remark 4.7. The perturbative solutions studied in this section are formal power series in ε.
It is an interesting open problem to prove that for sufficiently small |t − t0| these series are
asymptotic expansions for actual solutions to the perturbed system (4.13) provided analyticity
in ε on the right-hand side of the system.

14
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5. Critical behaviour of solutions and universality

The solutions to the dispersionless systems (4.2) locally represented in the implicit form (4.4)
typically have only finite lifespan. Extending such a solution in x and t from the original point
one arrives at points where the implicit function theorem assumptions fail to be true for the
system (4.4). At such a point (x0, t0) the solution tends to a finite limit v0 while the derivatives
vx, vt blow up. These points of weak singularities of solutions to hyperbolic systems are called
critical points or points of gradient catastrophe.

Example 5.1. Let us consider the solution to the Hopf equation

vt + vvx = 0

with a monotone decreasing initial data φ(x)(x). For small |t | the solution can be determined
from the equation

x = vt + f (v), (5.1)

where f (v) is the function inverse to φ(x). The point of gradient catastrophe is determined
from the system

x0 = v0t0 + f (v0)

0 = t0 + f ′(v0) (5.2)

0 = f ′′(v0).

This is an inflection point on the graph of the solution v(x, t0). Let us add the genericity
assumption

κ := −f ′′′(v0) �= 0 (5.3)

(for a monotone decreasing function f ′′′(v0) � 0). Near the point of catastrophe for t < t0
the graph of the solution can be approximated by the cubic curve

v(x, t) � v0 + κ−2/3V (κ[x − x0 − v0(t − t0)], κ
1/3(t − t0)), (5.4)

where V(X, T) is the real root of the cubic equation

X = V T − 1
6V 3. (5.5)

Note that the root is unique for all X ∈ R for T < 0.

Example 5.2. Solutions to the dispersionless limit

ut + (uv)x = 0

vt + vvx + ux = 0
(5.6)

of the defocusing NLS equation

iε ψt +
ε2

2
ψxx − |ψ |2ψ = 0 (5.7)

(cf example 4.4 above) can be found from the system

x = vt + fu

0 = ut + fv

}
, (5.8)

where f = f (u, v) is a solution to the linear PDEs (3.3):

fvv − ufuu = 0. (5.9)

15
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The Riemann invariants

r± = v ± 2
√

u (5.10)

are real in this case; at a generic critical point only one of them breaks down. Let us assume that
the Riemann invariant r+(x, t) remains smooth at the critical point (x0, t0) while the second
invariant r−(x, t) has a generic gradient catastrophe at this point. Then the coordinates of the
critical point and the limiting values (u0, v0) of the dependent functions can be determined
[12] from the system

x0 = v0t0 + f 0
u

0 = u0t0 + f 0
v

f 0
uv − 1√

u0
f 0

vv = 0

f 0
uvv − 1√

u0
f 0

vvv − 1

4u0
f 0

vv = 0.

Here, as above we denote

f 0
u = fu(u0, v0), f 0

uu = fuu(u0, v0), etc.

For t < t0 the solution can be approximated by the graph of the canonical Whitney singularity

x+ � αr̄+

x− � βr̄+r− − γ
r̄3
−
6

,
(5.11)

where

x± = (x − x0) +
(
u0 + 1

2v2
0 ± v0

√
u0

)
(t − t0) (5.12)

are the characteristic variables at the critical point

r̄± = r± − r±(u0, v0). (5.13)

The coefficients α, β, γ depend on the choice of the solution (see details in [12]).

Example 5.3. The critical points (x0, t0, u0, v0) of solution (4.10) to the dispersionless limit
of the focusing NLS equation (4.7) are determined from the system

x0 = v0t0 + fu(u0, v0)

0 = u0t0 + fv(u0, v0)

fuu(u0, v0) = fvv(u0, v0) = 0, fuv(u0, v0) = −t0.

(5.14)

The critical point is called generic if

f 0
uuv := fuuv(u0, v0) �= 0. (5.15)

Note that the Riemann invariants of the dispersionless system (4.9) are complex conjugate.
At the critical point both of them have a ‘gradient catastrophe’. Near the generic critical point
for t < t0 the solution can be approximated by a complex square root function

(u − u0) + i
√

u0(v − v0) � −eiψ
[√

r2(t − t0)2 + e−iψ(S + iX) + r(t − t0)
]

(5.16)

with

X = 2r
√

u0[(x − x0) − v0(t − t0)], S = −2ru0(t − t0)

reiψ = [
f 0

uuv + i
√

u0f
0
uuu

]−1
.
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The branch of the square root is obtained by the analytic continuation of the positive branch
from the positive real half-axis.

We study the behaviour of a generic perturbed solution near a critical point of the
unperturbed one. For brevity we will call it a critical behaviour.

In what follows it will be assumed that the dispersionless limit (4.2) is integrable, i.e.
the eigenvalues of the coefficient matrix Ai

j (v) are pairwise distinct (but not necessarily real)
and the system admits Riemann invariants that may occur in complex conjugated pairs. For
example, any generic system with n � 2 enter in this class.

In contrast, we do not assume integrability of the perturbed Hamiltonian system. The idea
of universality of critical behaviour for solutions to Hamiltonian PDEs first suggested in [11]
states that the leading term of the asymptotic expansion of a perturbed solution near the critical
point of the unperturbed one is essentially independent from the choice of a generic solution
and, moreover, independent from the choice of a generic Hamiltonian perturbation. This
leading-order term is described, up to simple affine transformations of independent variables,
by certain particular solutions to Painlevé equations and their generalizations.

Example 5.4. For a generic Hamiltonian perturbation (2.17) of the Hopf equation the
conjectural universality type is given by the following formula [11]:

u(x, t) = v0 + γ ε2/7U

(
x − x0 − v0(t − t0)

α ε6/7
,

t − t0

β ε4/7

)
+ O(ε4/7), (5.17)

where α, β, γ are some nonzero constants and U = U(X, T ) is the real smooth solution to
the so-called P 2

I equation (also called the fourth-order analogue of the Painlevé-I)

X = T U −
[

1

6
U 3 +

1

24
(U ′2 + 2UU ′′) +

1

240
UIV

]
, U ′ = dU

dX
, etc. (5.18)

The existence of such a solution has been proven by Claeys and Vanlessen [8]. It satisfies the
boundary conditions

U ∼ − 3
√

6X, |X| → ∞.

Conjecture (5.17) was proven by Claeys and Grava [5] for the particular case of analytic
solutions to the KdV equation in the soliton-free sector.

The proof of (5.17) for more general class of perturbations remains open. We also expect
the same special function U(X, T) to be involved in the description of critical behaviour of
solutions to more general systems of Hamiltonian PDEs near a point of gradient catastrophe
of one of the Riemann invariants of the unperturbed system, for example, for defocusing NLS,
see [12, 13] for a more extensive discussion of this conjecture.

We do not discuss in the present paper the behaviour of solutions to the KdV equation on
the boundary of the oscillatory zone. Important results in this direction bave been obtained in
references [6, 7].

Example 5.5. Let us now consider the critical behaviour in the situation of a simultaneous
gradient catastrophe of a pair of complex conjugated Riemann invariants r+(x, t), r−(x, t) =
r∗

+(x, t) of the dispersionless limit (4.2). In this case another special function conjecturally
enters into the asymptotic description of the critical behaviour. This function W = W(Z) of
a complex variable Z is defined as a particular solution to the Painlevé-I equation

WZZ = 6W 2 − Z. (5.19)

This particular solution was discovered by Boutroux in 1913 [3]; it is called the tritronquée
solution. It is uniquely characterized by the following property: the number of poles of this
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solution in the sector

|argZ| <
4π

5
− δ (5.20)

is finite for any positive δ.
A stronger property of the tritronquée solution was conjectured in [14]: we expect the

tritronquée solution to be analytic in any sector of the form (5.20). This conjecture remains
open; further arguments supporting this conjecture have been presented in [26–28]. The main
motivation of the analyticity conjecture proposed in [14] was in the following asymptotic
formula describing the critical behaviour of solutions to the focusing NLS equation. It can be
written in a simple form considering the complex Riemann invariant r+(x, t). Near the critical
point the following asymptotic formula was conjectured in [14]

r+(x, t) = r+(u0, v0) + γ ε2/5W
( x+

αε4/5

)
+ O(ε4/5)

x+ = x − x0 +

(
u0 +

1

2
v2

0 + iv0
√

u0

)
(t − t0).

(5.21)

The complex constant α depending on the choice of a particular solution is such that the
argument of the function W belongs to the analyticity sector (5.20).

The proof of the asymptotic formula (5.21) remains an open problem, although there are
further supporting arguments proposed in [2]. The main difficulty in the proof of (5.21) for
solutions to the focusing NLS equation is in the asymptotic analysis of the scattering data for
the non-self-adjoint Zakharov–Shabat operator playing the crucial role in the inverse spectral
transform for the focusing NLS equation.

We expect that the same tritronquée solution describes the critical behaviour for more
general Hamiltonian perturbed PDEs near a point of a simultaneous gradient catastrophe of a
pair of complex conjugated Riemann invariants.

Let us compare the Hamiltonian critical behaviour with the one known [19] from the study
of dissipative perturbations of hyperbolic PDEs. Let us consider a nonlinear heat equation

ut + a(u)ux = εuxx. (5.22)

Here as above ε is a positive small parameter; a(u) is an arbitrary smooth function. Let
v = v(x, t) be a generic solution to the equation

vt + a(v)vx = 0 (5.23)

with a monotone decreasing initial data defined for x ∈ R defined for t < t0 (let t0 be positive).
Let us assume that at the critical point (x = x0, t = t0) the solution has a generic gradient
catastrophe, i.e. the graph of the function v(x, t0) has a non-degenerate inflection point at
x = x0. Denote v0 = v(x0, t0) and put a0 = a(v0). Then, near the point of catastrophe the
solution to the Cauchy problem

u(x, 0; ε) = v(x, 0)

to the nonlinear heat equation admits the following asymptotic expansion:

u(x, t; ε) = u0 + γ ε1/4�

(
x − x0 − a0(t − t0)

α ε3/4
,

t − t0

β ε1/2

)
+ O(ε1/2), (5.24)

where �(ξ, τ ) is the logarithmic derivative of a Pearcey integral

�(ξ, τ ) = −2
∂

∂ξ
log

∫ ∞

−∞
e− 1

8 (z4−2z2τ+4zξ) dz. (5.25)
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Here α, β, γ are some nonzero constants depending on the choice of the solution. Note that
the function �(ξ, τ ) is a particular solution to the Burgers equation

�τ + ��ξ = �ξξ . (5.26)

For ε → 0 solution (5.24) tends to a discontinuous function (shock wave).
We see that the leading term of the asymptotic expansion of the (5.24) is essentially

independent on the choice of a generic solution. It will be of interest to derive a similar
asymptotics (5.24) for more general dissipative perturbations

ut + a(u)ux = ε
[
p(u)uxx + q(u)u2

x

]
+ O(ε2), p(u) > 0 (5.27)

of the transport equation (5.23).

Remark 5.6. The assumption of integrability of the dispersionless limit is essential for the
formulation of the universality conjectures. In order to go beyond the integrable case the
nature of weak singularities of a generic hyperbolic system with n � 3 components has to be
clarified. To the best of our knowledge, no general picture describing the local structure of
singularities is available so far.

Due to volume limitations we do not consider here the behaviour of perturbed solutions
of certain Hamiltonian PDEs near the boundary between the regions of regular and oscillatory
behaviour. We refer the reader to the papers [1, 6].

In the present paper we did not touch the theory of Hamiltonian PDEs with more than
one spatial dimension. This is an immense domain of researches; the observations of the
recent papers [4, 21, 24, 25] can perhaps be boiled down to make future foundations of the
multi-dimensional theory.
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