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Abstract. The problem of general dissipative regularization of the quasilinear transport
equation is studied. We argue that the local behavior of solutions to the regularized equation
near the point of gradient catastrophe for the transport equation is described by the logarith-
mic derivative of the Pearcey function; this statement generalizes a result of A. M. Il’in [12].
We provide some analytic arguments supporting the conjecture and test it numerically.
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1. INTRODUCTION

In this article we address the problem of shock formation in a general dissipative regularization

up + a(u)uy = € [b(w)uz, + c(u)ul] + &% [br (W) tgrs + 1 (W) tgruy + di(u)ul] + ... (1)
of the quasilinear transport equation
ut +a(u)u, =0, a'(u) #0, u,z€R (2)

Here ¢ is a small positive parameter, and the coefficient b(u) does not vanish. In this study, we
were inspired by the Universality Conjecture of [3] concerning the universal shape of dispersive
shock waves at the point of phase transition from the regular behavior to the oscillatory one. This
universal dispersive shock profile is described in terms of a particular solution of a generalization
of the Painlevé-I equation (the importance of this particular solution in 2D quantum gravity and
in the theory of Korteweg—de Vries equation was also observed in [9, 1, 14]). The universality
conjecture for solutions to the Korteweg—de Vries equation with analytic initial data was proved in
[2]. Further numerical evidences supporting the universality conjecture of [3] can be found in [4].
Another starting point for the present research was a remarkable result of A. M. Il'in (see [12] and
the references therein) describing the asymptotics of the generic solution to the equation

g + a(U)Uy = € Ugy (3)

at the point of shock formation in terms of the logarithmic derivative of the so-called Pearcey
integral (see below the precise formulation of I'in’s asymptotic formula). Both in dispersive and
dissipative cases, the leading term of the asymptotic formula is essentially independent, up to few
constants, on the choice of both a particular generic solution and a particular generic perturbation.

Our main goal is to generalize II'in’s universality result from the equations (3) to the more
general case of equations of the form (1). In the present paper, we present a conjectural form of
such a generalization and describe results of numerical experiments supporting its validity.

The paper is organized as follows. In Sec. 1, we explain simple arguments suggesting that, for
sufficiently small €, the solutions to the perturbed equation (1) can be approximated by solutions
to the nonlinear transport equation (2) up to the time of gradient catastrophe of (2). To save the
space, we omit the terms of order €2 and higher in our formulas; the contribution of these terms to
the asymptotic expansions is of higher order anyway. We then proceed to a precise formulation of
the dissipative universality conjecture (see Conjecture 3 below) which describes the leading term
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2 DUBROVIN, ELAEVA

of the asymptotic expansion at the point of shock formation. We also give heuristic motivations for
this main conjecture. In the last section, we present results of numerical experiments supporting
the main conjecture. To this end, we begin with the standard Burgers equation, in order to test the
numerical codes based on the finite-element analysis. After this, we proceed to a particular case of
generalized Burgers equation, comparing the numerical solution with the asymptotic formula.

Acknowledgments.

This work is partially supported by the European Research Council Advanced Grant FroM-
PDE, by the Russian Federation Government Grant No. 2010-220-01-077 and by PRIN 2008 Grant
“Geometric methods in the theory of nonlinear waves and their applications” of Italian Ministry of
Universities and Researches. The authors thank A. M. II'in for stimulating discussions.

1. CRITICAL BEHAVIOR IN THE GENERALIZED BURGERS EQUATION

Consider the following class of nonlinear PDEs depending on a small parameter £ > 0:
up + a(u)uy = € [b(w)ugy + c(u)u2] . (4)

The coefficients a(u), b(u), and c(u) are smooth functions, and a’(u) # 0. This class of equations
is invariant with respect to arbitrary changes of the dependent variable of the form u +— @ = f(u),
f'(u) # 0. Using these transformations, one can reduce (4) to one of the following two normal
forms:

U 4wty = € [b(u)ug, + c(u)u?] (5)

ur + a(u)u, = e b(u)ug,. (6)

We study solutions u = u(z,t;€) to the Cauchy problem
u(z,0;¢) = F(z) (7)

with e-independent smooth initial data. In the particular case of b(u) = 1 and ¢(u) = 0, one arrives
at the generalized Burgers equation

g + a(U)Uy = € Ugy, (8)

which was thoroughly studied by A. M. Il'in (see the book [12] and the references therein). Let us
briefly summarize the main results of [12].

For simplicity, the initial data function F'(z) is assumed to be monotone on the entire real line

xz € R. The first issue is the comparison of the solution u(z,¢;¢) to the Cauchy problem (4), (7)

with the solution v = v(z,t) to the inviscid equation obtained by equating e to 0 equipped with
the same initial data,

vy + a(v)v, =0, v(z,0) = F(x). (9)

The solutions asymptotically coincide on finite intervals of the z axis for sufficiently small time,
|u(z,t;e) —v(x,t)] = 0as e = 0+, z € [z1, z2], for 0 < ¢ < ¢;. However, the lifespan of the solution
v(z,t) is finite, due to nonlinear steepening, if the function a (F(z)) is monotone decreasing on
some interval of the real axis. In this case, the solution to the inviscid equation is defined only on

the interval [0,¢o] where -
to = min (—1/([a (F(2))].)) (10)

Assuming the minimum in (10) attained at an isolated point z = z( to be non-degenerate, one
arrives at a point of gradient catastrophe of the solution v(z,t), i.e., the limit

t—)tlol,H%<t0 v(xo,t) =: vy (11)

exists, but the derivatives v, (x,t) v¢(x,t) blow up at the point (zg,%o). Thus, the solution u(z,t;¢)
to the Cauchy problem (4)—(7), if exists, cannot be approximated by the inviscid solution. For the
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ON THE CRITICAL BEHAVIOR IN NONLINEAR EVOLUTIONARY PDES 3

equation (9), a correct asymptotic formula can be found in [12]. In the present section, we derive
a suitable modification of this asymptotic formula and present some heuristic arguments justifying
its validity. In the next section, we also give numerical evidences supporting our conjectures.

Let us begin with recollecting some basics from the method of characteristics to solve the inviscid
equation (9). For ¢ < ty, the solution to the inviscid equation can be represented in the following
implicit form:

z = a(u)t + f(u) (12)
where the function f(u) is inverselto the initial data v(x,0),
 (0(z,0)) = = (13)

Let (xg,t0) be the point of gradient catastrophe of the solution. As above, denote by vy = v(zg, to)
the value of the solution at the point of catastrophe. The triple (xq,to,vo) satisfies the following
system of equations:

To = agtg + fo, 0 = agto + f5, 0=agto + f{- (14)

"

Here and below, we use the notation ag = a(vo), fo = f(v), af = (da(v)/dv) ag =

v=wgp’
(dza(v)/ dvz)v:vo, etc. In the subsequent considerations, we always assume that

ay # 0. (15)

The genericity assumption
k= —(1/6)(ag'to + fo") # 0 (16)

ensures that the graph of the solution v(z, () has a nondegenerate inflection point at z = (. Such
a solution is said to be generic. The generic solution can locally be approximated by a cubic curve.
For our subsequent considerations, this well-known statement can be presented in the following
form (cf. [3]).

Lemma 1. Near the point of gradient catastrophe, a generic solution (12) to the inviscid equa-
tion (9) admits the representation

v(z,t) = vy + kM35(z,1) + O (k2/3) : kE—0, t<to, (17)
__x—x —ao(t —to) ; =1
z= ’ , t= R (18)
where the function 5(ZT,t) for t <0 is given by the (unique) root of the cubic equation
T=ayol— Ko (19)

The proof can readily be obtained by substituting (17), (18) into the implicit equation (12) of

the method of characteristics and then by expanding with respect to the small parameter k/3.
Observe that the uniqueness of the root of the cubic equation (19) for ¢ < 0 is ensured by the
condition

agk > 0, (20)

which holds due to monotone decreasing of the superposition a (v(z, ty)).

Remark 2. Note that the cubic equation (19) has a unique root for ¢ > t; as well provided

that .
|Z] 2 (a’

'If the initial data function is not globally monotone, then the representation (12) works on every interval of
monotonicity.
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4 DUBROVIN, ELAEVA

This observation also readily implies the existence and uniqueness of a solution v(z,t) to (9) for
sufficiently small ¢ — £, > 0 outside a cuspidal neighborhood

|z — 20 — aog(t — o)
(t —to)3/2

< C for some positive constant C' (22)

of the point of catastrophe.
We are now in a position to formulate the main statement of the present paper.

Conjecture 3. Let v(x,t) be the solution to the inviscid equation (9) with a smooth monotone
initial data v(z,0) defined on R x [0,tg) and let v have a gradient catastrophe at the point (xzq,to)
satisfying (15) and (20). Assume that the smooth function b(u) satisfies the condition

bg := b(?)o) > 0. (23)

Then

1) for sufficiently small € > 0, there exists a unique solution u(xz,t;e) to the generalized Burgers
equation (4) with the same e-independent initial condition u(z,0;e) = v(z,0), z € R defined on
R x [0,t9 + d(e)) for some sufficiently small 6(g) > 0;

2) outside a cuspidal neighborhood of the point of catastrophe, the solution u(x,t;e) can be approz-
imated by the inviscid solution v(z,t) |u(z,t;e) — v(z,t)| = O(e).

For arbitrary X and T, the limit

U ($0 + aoBe?T + a e’/ ¢, —i—ﬂel/zT) — g

El_1>r(1§1+ popvE =:U(X,T) (24)
exists, where
o= (sbay ™) B = (eboas )" 9 = (ban~ap ™) (25)

Moreover, the limit depends neither on the choice of solution nor on the choice of the e-terms in the
generalized Burgers equation (4) and is given by the logarithmic derivative of the Pearcey function

_ 9 > —é(24—222T+4ZX)
UX,T) = 2aXlog/ e dz. (26)

— 00

A somewhat stronger version of the last statement of the Main Conjecture can be given in the
form of the following asymptotic formula:

T —x9g—ag(t—1 t—1
u(z, t;€) :v0+761/4U< 00[63?4( 0),681/2) +(9(51/2), (27)

which is expected to be valid on some neighborhood of the catastrophe point. For the particular case
b(u) =1 and ¢(u) = 0, the asymptotic formula (main3) coincides with that obtained by A. M. II'in
(see [12]).

Let us add few heuristic motivations for the Main Conjecture. First, consider a small-time
behavior of the solution u(z,t;€). Since the function v(z,t) satisfies (4) modulo terms of order e,
one can seek a solution to the generalized Burgers equation in the form of a perturbative expansion

u(z,t;€) = v(z,t) + v (2,t) + 20 (z,t) + ... The terms of the expansion are to be determined
from linear inhomogeneous equations (for details, see [12]). For example, the first correction can be

found from the PDE vgl) + (a(v)v(l))m = b(v)vze + c(v)v2. Instead, one can apply the method of
the so-called quasitriviality transformations [5, 13] finding a universal substitution

. o (4k—2) 1 .
vHu:v—i—Zekfk(U’vmvm’ 3,;32 log [v.]) (28)
k>1 Uz
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ON THE CRITICAL BEHAVIOR IN NONLINEAR EVOLUTIONARY PDES 5

transforming any monotone solution of the inviscid equation (9) to a formal asymptotic solution
to the perturbed equation (4). Here fi(v;vg,Ver,. . .,v**=2) log |v,|) are some polynomials in the

variables vy, Vg, ..., v*2) log |v,:| whose coefficients are smooth functions of v. They satisfy
the following homogeneity condition:

Ix (v; AUy, A20gg, ..., A2 (30=2) 0 |vx|) =\*=2 (00, Van,s - - - , 0 =2) Jog lvz]), k=1, (29)
for any A\ # 0. An advantage of the perturbative expansion written in the form (28) is the locality

principle, namely, changing the unperturbed solution within a small neighborhood of a point (z*,t*)
does not change the value of the perturbed solution outside the neighborhood.

For convenience of the reader, let us explain the computational algorithm for the derivation of
the perturbative expansion (28). For simplicity, consider a perturbed equation of the form

up + Uty =& P(u; U, Ugg, - - . ), (30)

where ®(u;uy, Ugy,...) 18 a smooth function of its variable polynomial in the jets u,, u.., etc.
Represent (30) as an equation for the function z(u,t) inverse to u(z,t),

xt:u—6xu<I>(u;1/xu,—xuu:ﬁ;3,...). (31)

The clue is in the following statement (see [13]) describing the perturbative solution to (31).

Lemma 4. Define the function V(u; Ty, Tyy,---) by the rule

U (U3 Tyy Tggy - -+ ) = /xuq)(u; 1/zy, —xuumgg,...)d:ﬁu. (32)
Then the function
z(u,t) = 2O (u,t) — ez (u, t) (33)
such that
x£0> =u, 2= \Il(u; w&o),wq%), e ), (34)

satisfies the perturbed equation (31) modulo terms of order 2.

The proof is immediate because the higher u-derivatives of z(®) do not depend on ¢, namely,
0/0t 0"z Jou™ = o™ Jou™ 0z JOt = 6y 1 for m > 1.

Inverting the series (33) gives the desired algorithm.

Corollary 5. Let v = v(z,t) be a solution to the PDE vy +v v, = 0 satisfying v, # 0. Then the
function

1
u:v—i—evx\I/(v;—,—vﬂ,...) (35)

(%

satisfies the perturbed equation (30) modulo terms of order £2.

For the particular case of the generalized Burgers equation (4), the first terms of the quasitrivi-
ality expansion read

b vy, ca —ba"

u:v—e[———FTvmlogh;ﬂ] +0(e%). (36)

It would be of interest to rigorously justify that, for sufficiently small ¢, the above algorithm
produces an asymptotic expansion of an actual solution to the generalized Burgers equation.
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Consider now the solution to (4) in a neighborhood of the point of catastrophe. After a change
of variables in (4),

T — 20— ag(t —to) = 34z, t—ty = e/, u— vy = e/q, (37)
one arrives at the equation
U + ayii gy = boligz + O (sl/‘*) . (38)
Another substitution. _
r=aX, t=pT, u=+vU, (39)

reduces the leading term of (38) to the standard form of the Burgers equation Ur + U Ux = Uxx
provided that the constants «, 3, and 7y satisfy the constraints

By p

The Burgers equation is solved by the Cole-Hopf substitution U(X,T) = —29/0X logW (X, T),
where W = W (X, T) solves the heat equation W = Wx x. The Pearcey function

W (X,T) :/ "3 (1 -2 T X) g

— o0

clearly satisfies the heat equation. We claim that, using this function in the substitution u =
—ZW%W(X ,T), one arrives at a correct asymptotic expression for the function @ near the point
of catastrophe,

T =aput — k> + O('/4) (41)

(cf. (19) above). Indeed, rescaling the integration variable ( = /%2, we represent the expression
for @ in the form

= —204763/43105;/ e~ ER g,
or e
where 1 . -
. t) = = 4_2 2_—0 4 T — Tog— Qg — 1y ' 42
siGint) = g (¢4 =215 e o (42)

For ¢ < ty, the phase function has a unique minimum at the point ¢y = (o(z,t); this minimum is
determined by the cubic equation

ad
g

Applying the Laplace formula to the Pearcey integral

oo 3T, 2 STy
/ o~ e 2VTE Sl g g )

— 00 3<g _ t—Bto

z — o — ag(t — to) = = (t —to) Co — (. (43)

and using the obvious formula 9S ((o(z,t);z,t)/0x = (o(z,t)/(2a), one arrives at the expansion

4= ye % (1+ O (g)). The substitution into the cubic equation (43) yields (41) provided that
the constants «, 8, and + satisfy another constraint,

ay”? = k. (44)

This, together with the constraints (40), gives (25).
RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 19 No. 4 2012



ON THE CRITICAL BEHAVIOR IN NONLINEAR EVOLUTIONARY PDES 7

2. SOLVING NUMERICALLY THE GENERALIZED BURGERS
EQUATION. COMPARISON WITH THE ASYMPTOTIC FORMULA

In order to test the numerical algorithms, we begin with the standard Burgers equation. First,
consider the Cauchy problem for the inviscid equation

us + uty, =0, u(z,0) = F(x). (45)
At the point of catastrophe, one has 1
To = ag + F(ag)to, to= " F{ag)’ ug = F(ag), F"(ap) =0 (46)

(cf. (14) above). For the particular choice of the initial data F(x) = 1/(1 + 2?), the point of the
catastrophe can be located as follows:

g = \/g, to = 8\/5/9, Ug = 3/4 (47)

For t > tg, the solution to the Cauchy problem is close to a discontinuous one. Indeed, as is well

known (see, e.g., [15]), the limit as € — 0 of a smooth solution to the Burgers equation
Up + Uy = EUgy (48)

is described by a discontinuous function on the (z,t)-plane. The curve of discontinuity z = s(t) of
the limiting function is referred to as the shock front (the solid line on Fig. 1). We shall try to find
a numerical solution to the Cauchy problem in a neighborhood of the shock front and compare it
with Il’in’s asymptotic formula. Let us explain the algorithm used to find the shock front.

Fixing a point ¢t = t*, we select an array of values {z!} in some neighborhood of the curve
z = s(t). We evaluate the function v = u} at the points (¢*,z}), applying Il'in’s asymptotic
formula and using Maple to compute the Pearcey function.

Fig. 1. Shock front.

To find the shock front (see [15]), we use the Rankin-Hugoniot conditions
dr 1

5 = 5(Fla1) + Flaz)), (49)
where a;(t) and a3 (t) are determined by the equations of characteristics
z(t) = a1+ F(a1)t, =z(t) = a2 + F(a2)t. (50)

Differentiating (50) with respect to ¢ and taking into account (49), one arrives at a system of

differential equations for the functions z(t), oy (IQ( ar)l(iLaﬁv%t),) | Flay) — Flas)
a2 ai ay) — t'laz
dr/dt = (1/2)(F F da/dt = ———————= day/dt = - ————"~ 1
$/ ( / )( (a']-) + (a'2))7 a']-/ 2 1+F’(a1)t ? a'2/ 2 1 +F’(a2)t (5 )
The initial data for these equations have the form
ai(to) = ao, az(to) = ao, z(to) = wo, (52)

where g, to, and ug are given by (46).
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If the solution to the Cauchy problem (51)-(52) can be represented in an explicit analytic form,
then the shock front can also be computed explicitly. Otherwise, system (51)-(52) can be solved
numerically. Note that, at ¢ = ¢y, one faces an “indeterminate form” %. It can be resolved with
the help of asymptotic expansions of the functions z(t), a1(t), and as(t) near the point ¢t = t,. If

a1(t) < ap < ax(t) for t > ty, then, for the characteristics a1(¢) and ax(t), we have

"an)2 1/2 (ag)? 1/2
w@=0- (2 -w) L w@=wr (0 ew)

The expansion of z(t) near ¢t = g is of the form
z =z + F(ag)(t — to)- (54)

Thus, to solve the Cauchy problem (51)—(52), we solve the system of differential equations (51),
where we set t = to + At. Here At is the time step. We use the asymptotic values (53) and (54) as
the initial data, i.e.,

2Fl 2 1/2 2Fl 2 1/2
al(to +At) = ag— <F””(7(C;00))At> R CQ(t—i—At) = agp+ <F””(7(C;00))At> R ZE(t0+At) = X —|—F(a0)At.

In order to control the computation, the following identity is used (see, e.g., [15]):
al

%(Fl(al) + Fy(as)) (a1 — as) :/ F(a)da.

a2

Finite element analysis

To solve the standard Burgers equation (48), we use the finite element method (see [6-8, 10,
11]) realized in the package FreeFem++ [11]. Since this package, strictly speaking, is not designed
for solving spatially one-dimensional problems, one can reformulate the original problem in the 2D
form by considering solutions depending on one spatial variable only. Assume that the 2D domain
has the rectangular form, Q@ = {(z,y) : 0 <z < L,,0 <y < L, }, of the size L, x L, and L, > L,.

We impose the no-flux boundary conditions at y = 0 and y = L, but do not specify the values
of u at x+ = 0 and x = L,, assuming that the boundary values of u are fixed at some fictitious

boundary of a wider region,
ou du

dt z=0,L, ( )

on|,—o. L,
Here n is the exterior normal to the boundary 092 and d/dt = 0/0t + ud/0x.
In the numerical experiments, we use the following initial data:
1

72 (56)

“|t=0 =

For the time approximation, the semi-explicit Euler scheme is be used. To this end, we multiply
the equation by a test function 6, integrating the resulting expression over the domain €2,

um+1 —ym
// <70 + umu?"'lH) dxdy = // eu™ 0 dxdy,
Q T Q

or, taking into account the boundary conditions, write

m+1 _ ,m
// (ue 4 umug‘"‘l@ + gu;n+19I> dxdy = / H%ds. (57)
Q T o an

Problem (57) in the weak formulation, along with the initial conditions (56), is solved by means
of the FreeFem++ package.

Comparison of the numerical solution with I'in’s asymptotic formula near the shock front z =
s(t) for t = 1.54 and € = 0.01 is shown on Fig. 2. The solid line shows the numerical solution obtained
by the finite-element method, while the dashed line corresponds to the asymptotic solution (27).
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u(z)
1A

0.8
0.6
0.4

0.2

0 T T T T T T
6 -4 -2 0 2 4 6

Fig. 2. Comparison of a numerical solution to Burgers equation with I’in’s asymp-
totic formula for ¢ = 0.01.

In(ur — up)
) P
-2.5
-3 — —z=174

———-x =177
r=1.78

Fig. 3. Numerical estimate of the truncation error in the asymptotic formula.

On the right-hand part of the figure, the region near the catastrophe point zg, to, ug (see (47)) is
zoomed in.

In Fig. 3, the difference between the asymptotic solution u; given by (27) and the numerical
solution uyp is shown in the logarithmic scale. The evaluation of u; and up is carried out for ¢* =
1.54, z* = {1.74,1.75,1.76,1.77,1.78}, and ¢ = {0.0025,0.005,0.0075,0.01, 0.025,0.05,0.075,0.1}.
The average slope is 0.5175, with the expected value 0.5.

During the computation, we control the total mass as a function of time. With the boundary
conditions under consideration, the total mass is a conserved quantity. Thus, the conservation
of the total mass is a good test for the quality of numerical simulations. The results for ¢ =
{0.1,0.01,0.0025} are shown in Fig. 4. On the interval [0, 1.8] with ¢ = 0.1, the relative error is
0.0024, for € = 0.01, the relative error is 0.0006, while, for e = 0.0025, it drops to 0.0006.

Generalized Burgers equation

Let us now proceed to a particular example of the generalized Burgers equation (4),
g + uty, = e(Ully )y (58)

completed by the boundary conditions (55) and the initial data (56). As in the case of the standard
Burgers equation (48), the semi-explicit Euler scheme is used for the time approximation. The

variational reformulation J?lf the problem along with the boundary conditions reads
m+1l _ ,m 0
// (uﬁ + w1 4 6umu;,n+19I> dzdy = / 02 s (59)
Q T oa On

The numerical solution of the problem (58) (in the weak formulation) with the initial data (56) is
computed with the help of the FreeFem++ package.

As above, let us compare the results of the numerical simulations with the predictions given
by the asymptotic formula (27). In Fig. 5, the solid curve shows the numerical solution, while the
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)s - ce=0.1
| e —0.01
o] e o~ 00025

2.7 — T
0 04 08 1.2 1.6 2t

! I ! I ! I

Fig. 4. Testing the conservation of the total mass.
u(z) u(x)
1 A | 14
0.8 0.8
0.6 0.6

0.4 1 0.4

0.2 0.2 7

Fig. 5. Comparison of a numerical solution to the generalized Burgers equation
with the asymptotic formula (27) for £ = 0.01.

In(ur — up)

-2.6 4 //

2.8 ]

3 ]
=174

32 =1.75
=1.76

-34 =177
=1.78

-3.6

-4.5 -4 -3.5 -3 -2.5  In(e)

Fig. 6. Numerical estimate of the truncation error in the asymptotic formula (27)
for solutions to the generalized Burgers equation.

dashed curve is the graph of the asymptotic solution (27). On the right-hand part of the figure, a
neighborhood of the point of catastrophe g, tg, ug is zoomed in.

In Fig. 6, the difference between the asymptotic formula u; and the numerical solution up is
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shown in the logarithmic scale, for the values of (z, t,€) given by t* = 1.54, z* = {1.74,1.75,1.76,1.77,1.78 } |}
and € = {0.01,0.025,0.05,0.075,0.1}. One can observe the average slope of 0.5221, against the ex-
pected value 0.5.

In(ur — up)
-2.6 4 //
2.8 ] /
3 ]
— —x=174
321 — =z =1.75
............. = 1.76
-34 ———p =177
r =178
-3.6
45 4 3.5 -3 25  In(e)

Fig. 7. Testing conservation of the total mass for the numerical solution to the
generalized Burgers equation (58).

As above, we have used the conservation of the total mass (which holds for our particular case
(58) of the generalized Burgers equation) as a test for the validity of the numerical scheme. The
results are shown on Fig. 7 for the values ¢ = {0.1,0.01}. On the interval [0, 1.8], for £ = 0.1, the
relative decay is 0.0025; for € = 0.01, it drops to 0.0044.
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