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Abstract. We show that the fourth-order nonlinear ODE which controls the pole dynamics
in the general solution of equation P 2

I compatible with the KdV equation exhibits two re-
markable properties: (1) it governs the isomonodromy deformations of a 2× 2 matrix linear
ODE with polynomial coefficients, and (2) it does not possess the Painlevé property. We also
study the properties of the Riemann–Hilbert problem associated to this ODE and find its
large-t asymptotic solution for physically interesting initial data.
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1. INTRODUCTION

The study of relationships between the theory of isomonodromic deformations and the theory
of differential equations satisfying the so-called Painlevé property is a well-established branch of
the analytic theory of differential equations in complex domain (see below a brief summary of the
most important results obtained in this direction). One of the outputs of the present paper suggests
that the above mentioned relationship is less straightforward than was traditionally believed. We
illustrate the point with an example of a fourth-order ODE for a function a = a(t)

a′′′′ + 120(a′)3a′′ − 120a′a′′t− 200
3 (a′)2 − 40

3 aa′′ + 200
9 t = 0. P

(2,1)
I

This equation appeared in [42] in the study of pole loci of solutions to a degenerate Garnier

system. Our observation is that Eq. P
(2,1)
I governs isomonodromic deformations of a certain linear

differential operator with polynomial coefficients (see Eq. (1.5) below). However, this equation does
not satisfy the Painlevé property, since its general solution has third-order branch points of the
form

a(t) = a0 − (t− b)1/3 +O
(
(t− b)5/3

)
, b ∈ C (1.1)

(cf. [42]), where the location of the branch points depends on the choice of the solution (the so-called
movable critical singularities).

In spite of this somewhat surprising phenomenon, the method of isomonodromic deformations

proves to be almost as powerful in the study of solutions to the equation P
(2,1)
I as in the case of

classical Painlevé equations. Namely, it is possible to derive the large-t asymptotics of solutions
and, moreover, to describe the branching locus of a given solution in terms of a kind of a spectral
problem for a quintic anharmonic oscillator.

Equation P
(2,1)
I is of interest on its own. Namely, it describes the behavior of poles of solutions

to another fourth-order ODE

uxxxx + 10u2
x + 20uuxx + 40

(
u3 − 6tu+ 6x

)
= 0 (1.2)

usually denoted as P 2
I . It is the second member of the so-called PI hierarchy. The coefficients of

this equation depend on t as on a parameter. It is well known (see, e.g., [30]) that the equation
(1.2) is compatible with the Korteweg–de Vries (KdV) dynamics

ut + uux + 1
12uxxx = 0. (1.3)
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10 DUBROVIN, KAPAEV

The Laurent expansion of solutions u = u(x, t) to the system (1.2), (1.3) near a pole x = a(t) has
the form

u = − 1

(x− a(t))2
+O

(
(x− a(t))2

)
, (1.4)

where the function a(t) solves1 Eq. P
(2,1)
I . In this way, one associates a multivalued solution a(t)

to Eq. P
(2,1)
I with any solution to Eq. PI

2. The branch points (1.1) of a(t) correspond to the triple

collisions of the poles of solutions to the PI
2. Thus, the above mentioned isomonodromy realization

of Eq. P
(2,1)
I provides one with a tool for studying the KdV dynamics of poles of solutions to

the equation PI
2.

Particular solutions to the equation PI
2are of interest. We concentrate our attention on one

of them, namely, the one that has no poles on the real axis x ∈ R (see [3, 11, 12, 5] about the
importance of this special solution to Eq. PI

2). Such a solution u(x, t) exists [7] for any real t and it is
uniquely determined by its asymptotic behavior for large |x|. Using the developed techniques along
with the isomonodromic description [26] of the special solution to PI

2, we arrive at the asymptotic
description for large t of poles of this special solution.

Before proceeding to the formulation of main results, let us first briefly recall the basic notions
of the present paper, namely, the Painlevé property and the isomonodromic deformations. In the
description of the historical framework, we mainly follow the paper [21].

1.1. Painlevé Property

In 1866, L. Fuchs [14] showed that all the singular points of solutions to a linear ODE are among
the singularities of its coefficients and thus are independent of the initial conditions. In the nonlinear
case, the reasonable problem is to look for ODEs defining the families of functions, called the general
solutions, which can meromorphically be extended to the universal covering space of a punctured
Riemann surface with the punctures determined by the equation. In other words, the problem is to
find ODEs whose general solutions are free from branch points and essential singularities depending
on the specific choice of the initial data. This property is now called the Painlevé property, or the
analytic Painlevé property, and is obviously shared not only by linear ODEs but also by the ODEs
for elliptic functions.

In [15], L. Fuchs started the classification of the first-order ODEs polynomial in u and u′,
F (x, u, u′) = 0, with coefficients single-valued in x with respect to the Painlevé property. Poincaré
[34] and Painlevé [32] accomplished the analysis without finding new transcendental functions.

In [33], Painlevé revisited the L. Fuchs’ idea, extending the program of classification to second-
order ODEs of the form u′′ = F (x, u, u′) with F meromorphic in x and rational in u and u′. In
the course of classification of the 2nd order 1st degree ODEs modulo the Möbius transformation
[18, 24], 50 equations were found that pass the Painlevé α-test and thus are now called the Painlevé–
Gambier equations. It occurs that all these equations can be either integrated in terms of the classical
linear transcendents or elliptic functions or reduced to one of the six exceptional classical Painlevé
equations PI–PVI.

1.2. Isomonodromic Deformations

The monodromy group to a linear ODE was first considered by Riemann [37], Schwarz [40] and
Poincaré [35]. Apparently, it was L. Fuchs [16] who first set the problem of deformations for the
coefficients in a linear equation that leave the monodromy group unchanged. Namely, assuming
that solutions of a linear ODE depend on an additional variable, he obtained a system of first-order
PDEs that the solutions must satisfy.

A more modern treatment of isomonodromy deformations was developed by R. Fuchs in [17].
He has shown that the monodromy group of a scalar linear ODE with four Fuchsian singularities
at λ = 0, 1,∞, x and an apparent singular point at λ = u does not depend on the location x of the
fourth Fuchsian singular point if the location of the apparent singularity u depends on x according

1The connection of Eq. P
(2,1)
I with the KdV equation was not considered in [42].
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to a nonlinear 2nd order ODE. Later, Fuchs’ isomonodromic deformation equation was included as
the sixth Painlevé equation PVI into the list of the classical Painlevé equations.

In 1912, Schlesinger [39] generalized the Fuchs’ approach, finding the equations of the isomon-
odromic deformations for arbitrary linear Fuchsian ODEs, while Garnier [19] presented scalar
second-order linear ODEs with irregular singular points whose isomonodromic deformations are
governed by the lower classical Painlevé equations PI–PV. In 1980, Jimbo, Miwa, and Ueno [25]
extended Garnier theory to linear ODEs with generic irregular singularities.

1.3. Painlevé Property of the Isomonodromy Deformation Equations

It is interesting that to the date of the achievements mentioned above, the fact that these
equations possess the Painlevé property indeed was not proved rigorously even for the case of the
classical Painlevé equations. Thus, the term “Painlevé equation” loosely refers to various equations
among which we mention the higher-order ODEs in hierarchies associated with the classical Painlevé
equations, the higher-order ODEs in the classifications by Bureau [2] and Cosgrove [8] based on the
use of some Painlevé tests, as well as the differential, difference, q-difference, and elliptic-difference
equations found in the course of the study of the symmetries and geometry of the classical Painlevé
equations, see, e.g., [31, 38].

A general elegant approach to the Painlevé property of the equations of the isomonodromic
deformations was presented by Miwa [29] and Malgrange [28] in the early 80s of the last century
(recall that the direct proof of the Painlevé property of the classical Painlevé equations appeared
even later, see [22]). The approach by Miwa and Malgrange is based on the use of the zero curvature
representation and the Riemann–Hilbert correspondence. In fact, they have proved the analytic
Painlevé property of the isomonodromic deformation equations for arbitrary linear Fuchsian ODEs
and for equations with unbranched irregular singular points. In this respect, we also mention the
papers of Inaba and Saito [23], who developed an algebro-geometric approach to the geometric
Painlevé property of the isomonodromic deformations of the logarithmic and unramified irregular
connections, which also implies their analytic Painlevé property.

1.4. Outline of the Paper and Main Results

One can expect that the isomonodromy deformation equations for arbitrary rational connections
possess the Painlevé property. However, the näıve induction does not work. Namely, and this is our

first result, we show that the ODE (P
(2,1)
I ), which is polynomial in all variables, 4th order, and 1st

degree, governs the isomonodromic deformations of the following linear differential equation with
polynomial coefficients:

dZ

dλ
=

⎛
⎝ − 3

20
a′′ 1

30
λ4 + α3λ

3 + α2λ
2 + α1λ+ α0

1
30
λ− α3

3
20
a′′

⎞
⎠ Z. (1.5)

Here a = a(t), αk = αk(t), k = 0, 1, 2, 3, are some smooth functions.

Proposition 1.1. The monodromy2 of system (1.5) does not depend on t if and only if the
coefficients have the form

α3 =− 1

10
a′ + α0

3, α2 =
3

10
a′

2 − 6α0
3a

′ − t+ α0
2,

α1 =− 9

10
a′

3
+ 27α0

3a
′2 − 3[α0

2 + 60(α0
3)

2 − t]a′ + a− 40α0
3t+ α0

1,

α0 =− 9

20
a′′′ − 54

5
a′

4
+ 432α0

3a
′3 + 18

[
t− 330(α0

3)
2 − α0

2

]
a′

2
,

+ 3
[
a− 130α0

3t+ 10800(α0
3)

3 + 90α0
2α

0
3 + α0

1

]
a′ − 30α0

3 a

+ 2100(α0
3)

2t− 54000(α0
3)

4 − 900α0
2(α

0
3)

2 − 30α0
1α

0
3,

2Since the system (1.5) has only an irregular singularity at infinity, here isomonodromicity means independence of

t for the Stokes multipliers of the system, see below.
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where α0
1, α

0
2, α

0
3 are some constants, together with the following ODE for the function a = a(t):

aIV +
[
120a′

3 − 3600α0
3a

′2 + 120
(
α0
2 + 270(α0

3)
2 − t

)
a′

−40

3

(
a− 100α0

3t+ 6300(α0
3)

3 + 60α0
2α

0
3 + α0

1

)]
a′′ − 200

3
a′

2
+

200

9
t

+
4000

3
α0
3a

′ − 6000(α0
3)

2 − 200

9
α0
2 = 0.

(1.6)

After a change

t �→ t+ α0
2 − 30(α0

3)
2, a �→ a+ 10α0

3t− α0
1 + 40α0

2α
0
3 − 300(α0

3)
3,

the equation (1.6) reduces to the equation P
(2,1)
I .

So, our claim is that the equation (P
(2,1)
I ) describes the isomonodromic deformations of the

system (1.5); however, it does not possess the Painlevé property since it is satisfied by a 4-parameter
Puiseux series in powers of (t − b)1/3. Nevertheless, as we show, this equation can be effectively
analyzed using the isomonodromy deformation techniques developed during the last decades. In
particular, the ramification points t = b (see Eq. (1.1) above) can be determined by a kind of a
spectral problem for the quintic anharmonic oscillator

d2y

dλ2
= 1

30
U(λ) y, U(λ) = 1

30
λ5 − bλ3 + a0λ

2 + (360
49

b2 + 33
10
a9)λ− 230

21
a0b+

143
30

a11. (1.7)

Here a0, a9, a11 are the coefficients of the Puiseux expansion of a(t) (see Eq. (4.1) below). Namely,
the coefficients of the quintic polynomial must be chosen in such a way that the equation (1.7)
possesses solutions exponentially decaying on certain contours in the complex plane; for details, see
Remark 4.1.

In Section 2, we discuss the second member of the PI hierarchy, equation PI
2, as an equation that

describes the isomonodromic solutions to the KdV equation, and find a nonlinear ODE, equation

P
(2,1)
I , that controls its pole dynamics. In Section 3, we derive the above isomonodromic repre-

sentation for Eq. P
(2,1)
I presenting a regularization of the linear system for PI

2along its singularity

locus. In Section 4, we consider the Puiseux series solution for P
(2,1)
I and the singularity reduction

of the corresponding linear system at the branch points. In Section 5, we set the Riemann–Hilbert
problems for the previously introduced wave functions and discuss the existence and uniqueness
of their solutions. In Section 6, we present the asymptotic analysis of the Riemann–Hilbert prob-

lems corresponding to a physically interesting special solution of PI
2and P

(2,1)
I , implementing the

steepest-descent method introduced by Deift and Zhou. Our main result in that section is the
description of the large-t asymptotics of the singularity locus as a theta-divisor on a modulated
elliptic curve,

3x0 +
2
3
ξ1(x0) =

7
4
t−7/4

(
(n + 1

2
)ωa(x0) + (m+ 1

2
)ωb(x0)

)
,

where n ∈ Z, m ∈ Z+ and x0 = a(t)t−3/2, the function ξ1(x0) is determined by equations (6.6)–
(6.8), ωa(x0) and ωb(x0) are the period integrals (6.11) on the elliptic curve (6.10). In Section 7,
we find explicitly the pole dynamics of the special solution in a vicinity of the attracting point

x∗
0 = 2

√
5

9
√
3
,

a(m,n)(t) = 2
√
5

9
√
3
t3/2 + t−1/4(m+ 1

2
)

4√3
2 4√5

√
7
ln
(
t−7/4(m+ 1

2
) 311/4

2653/475/2e

)

+ iπ(n+ 1
2
)

4√3
4√
5
√
7
+O(t−7/2 ln2 t),

(1.8)

where m ∈ Z+ and n ∈ Z enumerate the points of the pole lattice. Thus, asymptotically for large
t → +∞, the poles of the special solution to PI

2 never collide. It would be interesting to study their
collisions for finite time. In Section 8, we briefly discuss our results and various open problems.
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2. LINEAR SYSTEM FOR PI
2AND ITS SINGULARITY LOCUS

2.1. Linear System for PI
2

The 4th-order 1st-degree polynomial ODE,

uxxxx + 10u2
x + 20uuxx + 40

(
u3 − 6tu+ 6x

)
= 0, (2.1)

usually denoted as PI
2, is the second member of the so-called PI hierarchy. This equation governs

the isomonodromy deformations of a linear polynomial ODE described by the system

Ψλ = AΨ, Ψx = BΨ, Ψt = CΨ, (2.2)

where the connection matrices are explicitly written using the generators of sl(2,C), σ3 =
(

1 0

0 −1

)
,

σ+ =
(

0 1

0 0

)
and σ− =

(
0 0

1 0

)
,

A = 1
240

{[
−4uxλ− (12uux + uxxx)

]
σ3 +

[
8λ2 + 8uλ+ (12u2 + 2uxx − 120t)

]
σ+

+
[
8λ3 − 8uλ2 − (4u2 + 2uxx + 120t)λ+ (16u3 − 2u2

x + 4uuxx + 240x)
]
σ−
}
,

(2.3a)

B = σ+ + (λ− 2u)σ−, (2.3b)

C = 1
6uxσ3 − 1

3 (λ+ u)σ+ − 1
3 (λ

2 − uλ− 2u2 − 1
2uxx)σ−. (2.3c)

Along with (2.1), which is the compatibility condition

[∂λ −A, ∂x −B] = 0

of (2.3a) and (2.3b), the system (2.3) also implies the KdV equation,

ut + uux + 1
12
uxxx = 0, (2.4)

and equations which follow from (2.1) and (2.4). The solutions of PI
2(2.1) compatible with the

KdV equation (2.4) are called the isomonodromic PI
2solutions to KdV.

2.2. Laurent Series Solutions to PI
2Compatible with the KdV Equation

As is known, equation PI
2 passes the Painlevé tests as being presented in the list by Cosgrove

[8] under the symbol F-V with y = −u and the parameters α = 240t, k = 240 and β = 0. See [41]
for a proof of the Painlevé property based on the Riemann–Hilbert correspondence.

Below, we are especially interested in the 4-parameter series solution to PI
2 with the following

initial terms (because PI
2 is polynomial in all its variables, the construction of the complete formal

series via a recurrence relation is straightforward),

u(x) = − 1

(x− a)2
+

∞∑
k=0

ck(x− a)k,

c1 = 0, c2 = 3(c20 − 2t), c4 = 30
7 a− 10c30 +

120
7 c0t,

c5 = 3− 3
2
c0c3, c7 = 12

7
(tc3 − c0), . . . ,

(2.5)

a, c0, c3, c6 are arbitrary.
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14 DUBROVIN, KAPAEV

This 4-parameter series is compatible with the KdV equation (2.4) if the coefficients c0, c3, c6
depend on t in a particular way described by the function a(t),

c0 = a′, c3 = 2a′′, c6 = − 1
3a

′′′ − 3(a′)4 + 12(a′)2t− 12t2, ( )′ =
d

dt
. (2.6)

In its turn, the pole position a(t) must satisfy the equation P
(2,1)
I ,

a(4) + 120(a′)3a′′ − 120a′a′′t− 200
3
(a′)2 − 40

3
aa′′ + 200

9
t = 0. (2.7)

Along with the pole dynamics, the function x = a(t) parametrizes the singularity locus for the
linear system (2.2), (2.3).

Remark 2.1. Equation PI
2 also admits a 3-parameter series solution,

u(x) = − 3

(x− ã)2
+

∞∑
k=2

c̃k(x− a)k,

c̃2 = − 6
7 t, c̃3 = 0, c̃4 = − 10

21 , c̃5 = −1, c̃7 = 0, c̃9 = − 50
147 t,

c̃10 = 2
13

(
− 50

1323 ã
2 + 11

7 c̃6t+
36
343 t

3
)
, c̃11 = − 20

441 ã, . . . ,

(2.8)

ã, c̃6, c̃8 are arbitrary, which, however, is not compatible with the KdV equation (2.4). Clearly it
corresponds to the triple collisions of the poles (2.5).

3. SINGULARITY REDUCTION IN THE LINEAR SYSTEM
FOR PI

2AND THE ISOMONODROMY PROPERTY OF P
(2,1)
I

3.1. Singularity Reduction

It is remarkable that the linear system for PI
2 can be regularized along the singularity locus

x = a(t).

Theorem 3.1. Let u(x) be the 4-parameter Laurent series solution (2.5) for equation PI
2. Then

the gauge transformation Z = RΨ with the gauge matrix

R(λ) =2
1
2σ3(λ− 2c0)

1
2σ3(x− a)−

1
2σ3 1√

2
(σ3 + σ1)

× (λ− 2c0)
− 1

2σ32
1
2σ3(x− a)−σ3 1√

2
(σ3 + σ1)(x− a)−

1
2σ3 , σ1 = ( 0 1

1 0
),

(3.1)

regularizes the connections ∂λ −A and ∂x −B along the singularity locus x = a(t) and, if

c0 = a′ and c3 = 2a′′,

it regularizes also the connection ∂t − C along the same locus.

Proof. The proof is straightforward by inspection.

Remark 3.1. The above gauge transformation is constructed as a sequence of so-called shearing
transformations. Namely, substituting the initial terms of the relevant Laurent series instead of u
into the matrix A, one finds the leading order singular term proportional to the sum −(x−a)−4σ−+
(x− a)−3σ3 + (x− a)−2σ+. Conjugation by (x− a)−σ3/2 “shares” the singularity order among the
off-diagonal entries. The matrix coefficient of the term of order O((x − a)−3) becomes nilpotent,
and its conjugation with 1√

2
(σ3 + σ1) turns it to the normal σ−-form. This brings the lower-order

singularities into play, and the procedure can be repeated.

Remark 3.2. As is known, singularity reductions exist also for the linear systems associated
with the classical Painlevé equations.

Conjecture 3.1. The singularity reduction exists for an arbitrary isomonodromy system.
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3.2. Isomonodromy Representation for P
(2,1)
I

The linear system for PI
2 regularized along its singularity locus x = a(t) yields the linear system

for equation P
(2,1)
I .

Theorem 3.2. Equation P
(2,1)
I controls the isomonodromy deformations of a linear matrix ODE

with the polynomial coefficients described by the system

Zλ = AZ, Zt = CZ, (3.2)

with the coefficient matrices

A = − 3
20a

′′σ3 +
(

1
30λ

4 + α3λ
3 + α2λ

2 + α1λ+ α0

)
σ+ + ( 1

30λ− α3)σ−,

α3 = − 1
10a

′, α2 = 3
10 (a

′)2 − t, α1 = − 9
10 (a

′)3 + 3a′t+ a,

α0 = 3aa′ − 27
4
(a′)4 + 9

5
t(a′)2 + 27

20
c6 +

81
5
t2,

C =
[
− 1

3λ
3 + β2λ

2 + β1λ+ β0
]
σ+ − 1

3σ−,

β2 = 2a′, β1 = 10t− 9(a′)2, β0 = 36(a′)3 − 60a′t− 10a. (3.3)

Proof. By inspection, the compatibility condition, At − Cλ + [A, C] = 0, yields

c6 = − 1
3a

′′′ − 3(a′)4 + 12(a′)2t− 12t2,

and
a′′′′ + 120(a′)3a′′ − 120a′a′′t− 200

3
(a′)2 − 40

3
aa′′ + 200

9
t = 0,

i.e., equations for c6 in (2.6) and P
(2,1)
I (2.7).

4. PUISEUX SERIES FOR a(t) AND THE SINGULARITY REDUCTION
OF THE LINEAR SYSTEM AT THE BRANCH POINT OF a(t)

It is easy to verify that equation P
(2,1)
I admits the formal series solution in powers of (t−b)1/3 with

the following initial terms (again, since the equation is polynomial in all variables, the recurrence
relation for its coefficients is straightforward),

a(t) =

∞∑
k=0

ak(t− b)k/3,

a1 = −1, a2 = a3 = a4 = 0, a5 = − 6
7
b, a6 = 0,

a7 = 10
21a0, a8 = − 3

2 , a10 = 0, a12 = − 135
49 b, . . . ,

(4.1)

b, a0, a9, a11 are arbitrary.
System (3.2), (3.3) is singular, however, it is regularizable at the branch point t = b of a(t):

Theorem 4.1. Let a(t) be the 4-parameter Puiseux series solution (4.1) for equation P
(2,1)
I .

Then the gauge transformation X = QZ, rational in λ and t, with the gauge matrix

Q(λ) =σ3

(
120
7 b− λ2

)− 1
2σ3

(t− b)
1
6σ3 1√

2
(σ3 + σ1)

× 2−σ3λ− 1
2σ3
(
120
7
b− λ2

) 1
2σ3(t− b)

1
3σ3 1√

2
(σ3 + σ1)

× λ
1
2σ3(t− b)

1
3σ32−

1
2σ3 1√

2
(σ3 + σ1)(t− b)

1
2σ3

(4.2)
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16 DUBROVIN, KAPAEV

regularizes the connection ∂λ −A at the branch point t = b.

Here σ1, σ2, σ3 are the Pauli matrices, σ1 =
(

0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
.

The new function X(λ) satisfies the linear matrix ODE equivalent to the anharmonic oscillator
equation (1.7), which does not admit any continuous isomonodromic deformation,

XλX
−1 =

(
0 1

30
U(λ) 0

)
, U(λ) = 1

30
λ5 − bλ3 + a0λ

2 + (360
49

b2 + 33
10
a9)λ− 230

21
a0b+

143
30

a11. (4.3)

Remark 4.1. The anharmonic oscillator equation (1.7) can be regarded as a stationary Schrö-
dinger equation. Thus, it is possible to introduce a scattering problem and to map the set of
parameters b, a0, a9, a11 to the set of the scattering data. Indeed, let us introduce the Jost solutions

ψ
(k)
± uniquely determined by the asymptotics

ψ
(k)
± �λ− 5

4σ3 1√
2

(
1

±1

)
e±θ, θ = 1

105λ
7/2 − 1

3 tλ
3/2 + xλ1/2,

λ → ∞, arg λ = π + 2π
7 k, k = 0,±1,±2,±3.

Here, we define λ1/2 on the λ complex plane cut along the positive part of the real line and choose

its principal branch. Then the incident wave ψ � ψ
(0)
− produces several reflected and transmitted

waves,

ψ = tkψ
(k)
− + rkψ

(k)
+ , arg λ = π + 2π

7 k, k = 0,±1,±2,±3,

where the coefficients tk and rk are called the transmission and reflection coefficients, respectively.
Only 4 of the 14 coefficients are independent. Indeed, there exist six relations of the form rk+1 = rk,
tk = tk−1, k = −2, 0, 2, which come from the preservation of the amplitude of the dominant solution
in the sectors arg λ ∈ [π + 2π

7
k, π + 2π

7
(k + 1)], k = −3, . . . , 2; the equation t0 = 1 normalizes

the amplitude of the incident wave; the two conditions t3 = r−3 = 0 mean that the solution is
subdominant as λ → +∞; the last condition r3 = it−3 means the continuity of this subdominant
solution across the positive part of the real line,

t3 = r−3 = 0, t0 = t−1 = 1, t2 = t1(= 0),

r1 = r0(= i), r−1 = r−2(= 0), r3 = r2 = it−2 = it−3(= i).
(4.4)

The four independent scattering coefficients, say, t1, r1, t−2, r−2, can be used to reconstruct the
parameters b, a0, a9, and a11 determining the potential U(λ).

In (4.4), the numbers in parentheses specify the values of the free transmission and reflection
coefficients corresponding to the triple collisions of the poles of the special solution to PI

2of our
interest, see below. Along the oscillatory directions, the wave function corresponding to this special

potential is given by the Jost solutions ψ
(k)
− (k = −1,−2,−3), iψ

(k)
+ (k = 1, 2, 3) and by the

sum ψ
(0)
− + iψ

(0)
+ as λ < 0. This implies another simple characterization of the potential of our

interest. Defining λ1/2 on the plane cut along the negative part of the real axis, the Schrödinger
equation ψ′′ = 1

30U(λ)ψ has the solution with the asymptotics ψ � λ−5/4e−θ uniform in the sector
arg λ ∈ (−π, π). The existence of a solution with this asymptotics is tantamount to vanishing of
four Stokes multipliers s±1 = s±2 = 0 (see below).

Below, however, we characterize X(λ) by adopting the Riemann–Hilbert problem instead of the
scattering problem.

Remark 4.2. Observe that the successive reduction of the number of the deformation param-
eters of the λ-equations depend on, namely, for the connection ∂λ − A, the space of deformation
parameters (t, x) is 2-dimensional, for ∂λ − A, the deformation parameter space reduces to the
1-dimensional space of t, and for ∂λ − 1

30σ+ − Uσ−, it is 0-dimensional.
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Remark 4.3. Along with the continuous isomonodromic deformations considered above, it is
possible to introduce discrete Poincaré-like isomonodromy mappings from one branch of a(t) to
another and from one point of the lattice (b, a(b)) to another.

Remark 4.4. It is natural to denote the above-listed connections by the symbols L
(2,2)
I , L

(2,1)
I ,

and L
(2,0)
I , respectively, to reflect explicitly the number of continuous deformation parameters

involved. The equations of the isomonodromic deformations are thus denoted by the symbols P
(2,2)
I

(same as PI
2), P

(2,1)
I , and P

(2,0)
I (the last equation is a Poincaré-like mapping of the lattice (b, a(b))).

5. RIEMANN–HILBERT PROBLEMS FOR L
(2,2)
I , L

(2,1)
I , AND L

(2,0)
I

The boundary Riemann–Hilbert (RH) problem consists in finding a piecewise holomorphic func-
tion by its prescribed analytic properties:

(i) asymptotics at some marked points;

(ii) discontinuity properties across a piecewisely oriented graph.

5.1. Asymptotics of the Canonical Solutions Ψk(λ), Zk(λ), and Xk(λ)

Each of the above linear matrix ODEs for Ψ, Z, and X has one irregular singularity at λ = ∞
and no other singular points. We introduce the formal series solutions that represent the asymptotic
behavior of the genuine solutions to these linear ODEs in the interior of particular sectors near λ =
∞.

Since all the canonical asymptotics differ from each other by the rational left diagonal multiplier,
it is convenient to unify the notation and distinguish all three cases introducing a parameter ν,

Φ
(ν)
k (λ) = λ

ν
4 σ3 1√

2
(σ3 + σ1)(I +O(λ−1/2))eθσ3 ,

θ = 1
105

λ7/2 − 1
3
tλ3/2 + xλ1/2,

λ → ∞, arg λ ∈ (− 3π
7 + 2π

7 k, π
7 + 2π

7 k), k ∈ Z,

ν ∈ {−1, 3,−5}, Φ(−1) = Ψ, Φ(3) = Z, Φ(−5) = X.

(5.1)

Here, the principal branch of the square root of λ is chosen.

Remark 5.1. Using (5.1) for the asymptotic solutions Zk and Xk, one has to take into account
the reductions x = a(t) for ν = 3 and t = b, x = a(b) for ν = −5. However, in what follows, using
(5.1) to set the corresponding RH problems, we assume that the exponential θ depends on arbitrary
complex deformation parameters t and x because it is not allowed to use the unknown values a(t)
and (b, a(b)) as the data in the RH problems formulated below. As the result, it is necessary to
remember that the solvability domains for the RH problems shrink to the lines x = a(t) for ν = 3
and to a lattice (t, x) = (b, a(b)) for ν = −5.

5.2. Stokes Multipliers

The canonical solutions differ from each other by the triangular right matrix multipliers called
the Stokes matrices,

Φk+1(λ) = Φk(λ)Sk, S2k−1 =

(
1 s2k−1
0 1

)
, S2k =

(
1 0
s2k 1

)
, (5.2)

moreover
sk+7 = sk, sk + sk+2 + sksk+1sk+2 = −i(1 + sk+4sk+5), k ∈ Z. (5.3)

Remark 5.2. Since the gauge transformations R(λ) and Q(λ) are rational, they do not affect
the Stokes matrices.

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 21 No. 1 2014



18 DUBROVIN, KAPAEV

Remark 5.3. The Stokes multipliers sk are first integrals of the equations P
(2,2)
I (2.1) and

P
(2,1)
I (2.7).

The solutions of the RH problems below are constructed using collections of canonical solutions
in the above-presented sectors so as to have uniform asymptotics in a vicinity of infinity. However,
the normalization of the RH problem is a rather subtle thing. To this aim, observe the prolonged
canonical asymptotics

1√
2
(σ3 + σ1)λ

1
4σ3Ψk(λ)e

−θσ3 =(I + u
2λσ1 +O(λ−3/2))eλ

−1/2d1σ3 , (5.4)

1√
2
(σ3 + σ1)λ

− 3
4σ3Zk(λ)e

−θσ3 =(I − 3a′

2λ σ1 +
1
λ2 (

9
4 (a

′)2 − 15
2 t)σ1 +O(λ−5/2))

× exp{λ−1/2d1σ3 + λ−3/2d3σ3 + λ−2d4I}, (5.5)

1√
2
(σ3 + σ1)λ

5
4σ3Xk(λ)e

−θσ3 =(I + 15b
2λ2σ1 − 15a0

2λ3 σ1 +O(λ−7/2))

× exp{λ−1/2d1σ3 + λ−3/2d3σ3 + λ−5/2d5σ3}. (5.6)

In the exponential factors on the above right-hand sides, the parameters dj can be expressed in
terms of the coefficients of the relevant equation. For instance, d1 in (5.4) is one of two Hamiltonians
of PI

2. However, these particular relations are not important for us at this stage.
Now, we have the following problem.

Riemann–Hilbert problem 1. For given complex values of the parameters x, t and sk, k ∈ Z,
satisfying (5.3), writing

θ = 1
105

λ7/2 − 1
3
tλ3/2 + xλ1/2, (5.7)

find the piecewise holomorphic 2 × 2 matrix function Φ(ν)(λ), ν ∈ {−1, 3,−5}, with the following
properties:

(1)

lim
λ→∞

1√
2
(σ3 + σ1)λ

− ν
4 σ3Φ(ν)(λ)e−θσ3 = I, (5.8)

moreover,

• there is a constant d1 such that

1√
2
(σ3 + σ1)λ

− ν
4 σ3Φ(ν)(λ)e−θσ3 = I + λ−1/2d1σ3 +O(λ−1); (5.9)

• if ν ∈ {3,−5}, then there are constants d1 and d3 such that

1√
2
(σ3 + σ1)λ

− 3
4σ32

1
2σ3Φ(ν)(λ)e−(θ+d1λ

−1/2)σ3 = I + λ−1c1 + λ−3/2d3σ3 +O(λ−2) (5.10)

with some constant matrix c1;
• if ν = −5, then there are constants d1, d3, and d5 such that

1√
2
(σ3 + σ1)λ

− 3
4σ32

1
2σ3Φ(ν)(λ)e−(θ+d1λ

−1/2+d3λ
−3/2)σ3 = I + λ−2c2 + λ−5/2d5σ3 +O(λ−3) (5.11)

with some constant matrix c2;

(2) ‖Φ(ν)(λ)‖ < const as λ → 0;
(3) on the union of the eight rays γ = ρ ∪

(
∪7
k=1γk−4

)
, where γk =

{
λ ∈ C : arg λ = 2π

7 k
}
,

k = −3,−2, . . . , 2, 3, and ρ =
{
λ ∈ C : arg λ = π

}
, all oriented towards infinity, the

following jump condition holds true:

Φ
(ν)
+ (λ) = Φ

(ν)
− (λ)S(λ), (5.12)

where Φ
(ν)
+ (λ) and Φ

(ν)
− (λ) are the limits of Φ(ν)(λ) on γ from the left and from the right,

respectively, and the piecewise constant matrix S(λ) is given by equations

S(λ)
∣∣
λ∈γk

= Sk, S2k = I + s2kσ−, S2k−1 = I + s2k−1σ+, (5.13a)

S(λ)
∣∣
ρ
= iσ1. (5.13b)
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iσ1

S3

S 2

S 1

0S

S−1

S−2

S−3

1Φ

3Φ

4Φ

−3Φ

−2Φ

−1Φ

0Φ

2Φ

Fig. 5.1. The jump contour γ for the RH problem 1 and canonical solutions Φj(λ),
j = −3,−2, . . . , 3, 4.

5.2.1. Uniqueness of the solution to the RH problem 1. The solution of the RH problem 1
is unique. Indeed, the scalar function detΦ(ν)(λ) is continuous across the set of rays γ and bounded
at the origin. Therefore, det Φ(ν)(λ) is an entire function, and, taking into account (5.8) and applying
the Liouville theorem gives det Φ(ν)(λ) ≡ −1. Assume for the moment that there are two solutions

of the RH problem 1, Φ(ν)(λ) and Φ̃(ν)(λ). Consider their ratio, χ(λ) = ( a b

c d
) = Φ̃(ν)(λ)(Φ(ν)(λ))−1.

It can readily be seen that χ(λ) is continuous across all the rays of the set γ and bounded at the
origin, and thus, χ(λ) is an entire function. Using (5.8) gives

lim
λ→∞

λ− ν
4 σ3χ(λ)λ

ν
4 σ3 = lim

λ→∞

(
a bλ−ν/2

cλν/2 d

)
= I.

Since all the entries a, b, c, d are entire functions in λ, the Liouville theorem yields the ambiguity

Φ(ν)(λ) �→ Φ̃(ν)(λ) = P (ν)(λ)Φ(ν)(λ), (5.14)

P (−1)(λ) = I + c0σ−, P (3)(λ) = I + (c0λ+ c1)σ+, P (−5)(λ) = I + (c0λ
2 + c1λ+ c2)σ−,

where cj are arbitrary constants. However, these ambiguities are eliminated using the asymptotic
conditions in (5.9), (5.10), and (5.11).

5.3. Solvability of the RH Problems 1 and the Malgrange Divisor

For given jump matrices, the set of points (x, t) at which the RH problem is not solvable
is referred to as the Malgrange divisor. It coincides with the zero locus of a Miwa holomorphic
τ -function and with the singularity locus of the isomonodromy deformation equation.

In what follows, it is convenient to articulate our assumptions on the singularities and critical

points of equations PI
2and P

(2,1)
I .

Conjecture 5.1. (1) Equation P
(2,2)
I has no movable singularities except for the movable poles

(2.5) satisfying (2.6), (2.7), and their triple collisions (2.8). (2) Equation P
(2,1)
I has no movable

singularities or critical points except for the branch points (4.1).

These assumptions mean that the smooth branches of the Malgrange divisor for the RH problem 1

with ν = −1 (corresponding to P
(2,2)
I ) are parameterized by equations x = a(t) and thus coincide
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(ν=−1)RHP for       is solvableΨ

RHP for      is solvable (ν=3)Z

RHP for      is solvable (ν=−5)X

(a  ,b)0

x=a  (t)

x=a  (t)

x=a  (t)

3

2

(x,t)

1

Fig. 5.2. The scheme of the Malgrange divisor and the domains of solvability for the RH
problems with ν = −1, 3,−5.

with the solvability set for the RH problem 1 with ν = 3 (corresponding to P
(2,1)
I ). Similarly, the

vertices of the Malgrange divisor of the RH problem with ν = −1 correspond to the branch points
t = b of a(t), and therefore, coincide with the solvability set of the RH problem with ν = −5.

In other words, Conjecture 5.1 implies the following remarkable properties of the domains of
solvability of all three RH problems:

(1) these domains are pairwise disjoint;
(2) all these domains together cover the deformation parameter space C× C 
 (t, x).

5.4. Normalized Inhomogeneous and Homogeneous RH Problems

In this section, we describe another interesting feature of the family of three RH problems.
Roughly speaking, any solution of the inhomogeneous RH problem with the bigger value of |ν|
allows one to construct infinitely many solutions of the homogeneous problems with the smaller
value of |ν|.

A precise formulation of this property requires some more accuracy. First of all, let us introduce
RH problems that are equivalent to the above ones, nonbranched, and normalized at infinity. To
this aim, write

λ = ζ4, Φ̂
(ν)
k (ζ) = 1√

2
(σ3 + σ1)ζ

−4νσ3Φ
(ν)
k (ζ4)e−θ(ζ4), (5.15)

and define the following piecewise holomorphic functions,

Φ̂(ν)(ζ) = Φ̂
(ν)
k (ζ), arg ζ ∈

(
π
14
(k − 1), π

14
k
)
, ν = −1, 3,−5. (5.16)

These functions solve the inhomogeneous RH problems on the union of rays

∪14
k=−13�k, �k = {ζ ∈ C : arg ζ = π

14k},

with a singular point at the origin and normalized to the unit at infinity. The corresponding
homogeneous RH problem differs from the inhomogeneous counterpart in the asymptotics of Φ(ν)(ζ)
that vanishes as ζ → ∞.

Slightly abusing our notation, we formulate the inhomogeneous and homogeneous RH problems
as follows.

Riemann–Hilbert problem 2. Find a piecewise holomorphic function Φ̂
(ν)
I (ζ) (Φ̂

(ν)
0 (ζ),

respectively), ν ∈ {−1, 3,−5}, with the following properties:

(1) limζ→∞ Φ̂
(ν)
I (ζ) = I (limζ→∞ Φ̂

(ν)
0 (ζ) = 0, respectively);
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(2) across the rays �k = {ζ ∈ C : arg ζ = π
14k}, k = −13, . . . , 13, 14, all oriented towards infinity,

the following jump conditions hold:

Φ̂
(ν)
+ (ζ) = Φ̂

(ν)
− (ζ)eθσ3Ske

−θσ3 , ζ ∈ �k, θ = 1
105ζ

14 − 1
3 tζ

6 + xζ2; (5.17)

(3) ‖ζνσ3 1√
2
(σ3 + σ1)Φ̂

(ν)(ζ)‖ < const as ζ → 0.

The following theorem holds.

Theorem 5.1. Any solution Φ̂
(3)
I (ζ) to the inhomogeneous RH problem 2 with ν = 3 yields

infinitely many solutions Φ̂
(−1)
0 (ζ) to the homogeneous RH problem 2 with ν = −1. Any solution

Φ̂
(−5)
I (ζ) to the inhomogeneous RH problem 2 with ν = −5 yields infinitely many solutions Φ̂

(ν)
0 (ζ)

to the homogeneous RH problem 2 with ν = 3,−1.

Proof. We prove the first part of the theorem. The proof of the second part is similar.

Consider a solution Φ̂
(3)
I (ζ) to the RH problem 2 for ν = 3. It has the asymptotics

Φ̂
(3)
I (ζ) = I +O(ζ−2), ζ → ∞,

Φ̂
(3)
I (ζ) = 1√

2
(σ3 + σ1)ζ

−3σ3
(
M0 +O(ζ4)

)
, ζ → 0, ζ ∈ ω0,

where M0 is a constant matrix, detM0 �= 0, and ω0 = {ζ ∈ C : arg ζ ∈ (0, π
14 )}. Then

Φ̂
(−1)
0 (ζ) = ζ−2N Φ̂

(3)
I (ζ), N = 1√

2
(σ3 + σ1)

(
0 p
0 q

)
1√
2
(σ3 + σ1), p, q = const,

has the same jump properties as Φ̂
(3)
I (ζ) and the asymptotics of the form

Φ̂
(−1)
0 (ζ) = O(ζ−2), ζ → ∞,

Φ̂
(−1)
0 (ζ) = 1√

2
(σ3 + σ1)ζ

σ3

(
0 p
0 qζ2

)(
M0 +O(ζ4)

)
, ζ → 0, ζ ∈ ω0.

Thus, Φ̂
(−1)
0 (ζ) is the solution of the homogeneous RH problem 2 with ν = −1.

6. LARGE-t ASYMPTOTICS OF A SPECIAL SOLUTION OF EQUATIONS PI
2AND P

(2,1)
I

In this section, we construct a large-t asymptotic solution to the RH problem 1 for ν = −1
and ν = 3 corresponding to a special solution of equation PI

2. This special solution u(x, t) has the

asymptotics u ∼ ∓ 3
√
6|x| as x → ±∞ and is real and regular on the real line for any t ∈ R. The

physical importance of this solution for t = 0 from the point of view of string theory was justified
in [3]. In [11, 12], this solution arose in the study of the universality problem of critical behavior of
solutions to Hamiltonian perturbations of hyperbolic PDEs.

The above-mentioned properties uniquely distinguish this special solution. In [26], the charac-
terization of this solution in terms of the Stokes multipliers of the associated linear system was
found,

s−2 = s−1 = s1 = s2 = 0, s−3 = s0 = s3 = −i. (6.1)

6.1. Large-t Asymptotic Spectral Curve for the Special Solution to PI
2

Assume that t > 0 is large and x ∈ C is such that

x0 := xt−3/2 = O(1) as t → +∞. (6.2)
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−2   3
2/9   5/3

x0

D D
D

0
+−

Fig. 6.1. The discriminant set for the special solution of equation PI
2. In the interior of the

domains D+ and D−, the asymptotics of the special solution has genus g = 0 and, in the
domain D0, it has genus g = 1.

Our starting point is the large-t asymptotics of the spectral curve, det(μ−t−5/4A(λ)) = 0, where
λ = t1/2ξ, i.e.,

μ2 = 1
900

ξ5 − 1
30
ξ3 + 1

30
x0ξ

2 + 1
30
D1ξ +

1
30
D0 = 1

900

5∏
k=1

(ξ − ξk). (6.3)

The asymptotic analysis of various degenerate solutions of PI
2 performed in [20] shows that the

topological properties of the asymptotic spectral curve are significantly different in the interior of
the domains D± and D0, see Fig. 6.1. For x0 ∈ D±, the spectral curve has genus 0,

μ2 = 1
900 (ξ − ξi)

2(ξ − ξj)
2(ξ − ξk), (6.4)

where the double branch points ξi, ξj and the simple branch point ξk satisfy the conditions

ξi,j = − 1
4
ξk ±

√
15− 5

16
ξ2k, ξ3k − 24ξk + 48x0 = 0,

and the ambiguity in the choice of the root of the cubic equation for the simple branch point ξk is
fixed by demanding that, for x0 ∈ R,

sgn(x0)�
(∫ ξi,j

ξk

μ(z) dz
)
> 0, x0 → ±∞.

The conditions above are consistent with the quasistationary asymptotic behavior of the special
solution to PI

2(2.1),

u(x, t) � t1/2v0, v30 − 6v0 + 6x0 = 0, v0 � − 3
√
6x0, x0 → ±∞, (6.5)

where the branch of 3
√
6x0 that is real on the real line is chosen.

Let us indicate some interesting points in the x0 complex plane.

At the point x0 = −2
√
3 = D0 ∩D− ∩ R, two double branch points of the asymptotic spectral

curve coalesce, so that ξ1,2,3,4 = −
√
3 and ξ5 = 4

√
3. Generically, at the asymptotically quadruple

branch point, the local solution of the RH problem can be approximated using the Garnier–Jimbo–
Miwa Ψ function for the second Painlevé transcendent PII[19, 25]. For the RH problem, we are
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studying, the relevant local approximate solution corresponds to the Hastings–McLeod solution to
PII[6].

At any x0 ∈ D+ (including boundary points), the spectral curve has one simple and two double
branch points. The precise asymptotic location of these branch points can be found for

x0 = 2
√
5

9
√
3
= D0 ∩D+ ∩ R, where ξ3 = − 4

√
5√
3
, ξ1,2 = −

√
5√
3
, and ξ4,5 = 3

√
5√
3
.

At this point, as well as at any point of D+ (including its boundary), the leading-order asymptotic
solution of the RH problem can be expressed in elementary functions, cf. [4] for the case of real
line.

Observe also the point x0 = 2
√
3 ∈ D+, where two double branch points coalesce. The asymptotic

branch points corresponding to this point are ξ3 = −4
√
3 and ξ1,2,4,5 =

√
3. Generically, the

quadruple degeneration corresponds to the occurrence of PII. However, for the RH problem in
question here, the relevant Painlevé function is trivial, and the asymptotic solution to the RH
problem remains elementary.

In the interior part of the domain D0, the large-t asymptotic solution to the RH problem is
constructed on the model elliptic curve,

μ2 = 1
900 (ξ − ξ1)

2(ξ − ξ3)(ξ − ξ4)(ξ − ξ5), (6.6)

where the branch points ξj , j = 3, 4, 5, are determined by the values of ξ1 and x0 as the roots of
the cubic equation

ξ3 + 2ξ1ξ
2 + (3ξ21 − 30)ξ + 4ξ31 − 60ξ1 + 30x0 = 0. (6.7)

The double branch point ξ1 is determined as a function of x0 ∈ D0 by the system of Boutroux
equations, see [27],

�
∫ ξ4

ξ3

μ(z) dz = 0, �
∫ ξ5

ξ4

μ(z) dz = 0, (6.8)

supplemented by the boundary conditions on D± ∩D0 described above.

Remark 6.1. As x0 approaches the real segment (−2
√
3, 2

√
5

9
√
3
), all asymptotic branch points

become real and satisfy the inequalities ξ3 < ξ1 < ξ4 < ξ5. Thus, the second equation in (6.8)

trivializes, while the first of these equations becomes the condition
∫ ξ4
ξ3

μ(z) dz = 0 obtained in [36]

in the analysis of the Whitham equations and used in [4] to study the same special solution on the
real line.

6.2. Steepest-Descent Analysis of the RH Problem

The strategy of the steepest-descent asymptotic analysis by Deift and Zhou [9, 10] of the RH
problem involves several standard steps: (1) a transformation of the jump graph to the steepest-
descent directions of a suitable g-function; (2) a construction of local approximate solutions (para-
metrices); (3) matching all the parametrices into a global parametrix; (4) a proof that the global
parametrix approximates indeed the genuine solution to the original RH problem.

Since all the above steps are well explained in the literature (see, e.g., [13]), we omit unnecessary
details below.

6.2.1. Transformation of the jump graph to the steepest-descent directions. According
to the steepest-descent strategy, we first transform the jump contour for each of the RH problems

to the steepest-descent graph for the exponential exp{
∫ ξ

μ(z) dz}, see Fig. 6.2.

Observe that, in the special case (6.1), s±2 = s±1 = 0, s0 = s±3 = −i, the jump graph depicted
on Fig. 5.1 can be transformed to that shown in Fig. 6.3, where

Σ− :=

(
1 0
−i 1

)
, Σ+ :=

(
1 −i
0 1

)
. (6.9)
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ζ

ζ
ζ
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4

3

Fig. 6.2. Typical anti-Stokes lines for the special solution of PI
2 as x0 ∈ D0, �x0 > 0.

1σi

1σi

Σ −
Σ −

−1

Σ +

Σ +
−1

Σ −

Σ +

Σ +
−1

Σ +

Σ +

Fig. 6.3. The jump graph for the RH problem in the special case s±2 = s±1 = 0, s0 =
s±3 = −i.

ξ
5

ξ
3

ξ
4

8

a

b

Fig. 6.4. The Riemann surface Γ and the basis of cycles a, b.

Model elliptic curve and Abelian integrals. The large-t asymptotics of Ψ(λ) corresponding
to the Stokes multipliers (6.1) is constructed on the Riemann surface Γ of the model elliptic curve

w2 = (ξ − ξ3)(ξ − ξ4)(ξ − ξ5), (6.10)

glued from two copies of the complex ξ-plane cut along [ξ5, ξ4] ∪ [ξ3,−∞), see Fig. 6.4.
Define the complete elliptic integrals

A,B =

∮

a,b

μ(ξ) dξ = 1
30

∮

a,b

(ξ − ξ1)w(ξ) dξ, ωa,b =

∮

a,b

dξ

w(ξ)
, τ =

ωb

ωa
, �τ > 0, (6.11)
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and Abelian integrals

g(ξ) =

∫ ξ

ξ5

μ(z) dz, U(ξ) =
1

ωa

∫ ξ

ξ5

dz

w(z)
. (6.12)

We define the integral g(ξ) on the upper sheet of the Riemann surface Γ cut along the sum of
intervals [ξ5, ξ4] ∪ [ξ4, ξ3] ∪ [ξ3,−∞).

The Boutroux conditions (6.8) imply
A,B ∈ iR. (6.13)

Observe the following properties of g(ξ) and U(ξ):

(1) as ξ → ∞,

U(ξ) = U∞ +O(ξ−1/2), U∞ = − 1
2
τ,

g(ξ) = ϑ+ g∞ +O(ξ−1/2), ϑ = 1
105

ξ7/2 − 1
3
ξ3/2 + x0ξ

1/2, g∞ = − 1
2
B,

(6.14)

(2) g(ξ) and U(ξ) are discontinuous across the polygonal line [ξ5, ξ4]∪[ξ4, ξ3]∪[ξ3,−∞) oriented
from ξ5 to infinity, moreover,

ξ ∈ (ξ5, ξ4) : g+(ξ) + g−(ξ) = 0, U+(ξ) + U−(ξ) = 0,

ξ ∈ (ξ4, ξ3) : g+(ξ)− g−(ξ) = −A, U+(ξ)− U−(ξ) = −1,

ξ ∈ (ξ3,∞) : g+(ξ) + g−(ξ) = −B, U+(ξ) + U−(ξ) = −τ.

(6.15)

6.3. The “External” Parametrix

In this subsection, following [13], we solve the permutation RH problem on the segments
[ξ5, ξ4]∪ [ξ3,−∞) whose solution gives a leading-order contribution to the solution of the above RH
problem.

Riemann–Hilbert problem 3. For given t � 1 and a complex value of the parameter x0,
find a piecewise holomorphic 2× 2 matrix function Φ(ν)(ξ) with the following properties:

(1) lim
ξ→∞

1√
2
(σ3 + σ1)ξ

− ν
4 σ3t−

ν
8 σ3Φ(ν)(ξ)e−t7/4ϑσ3 = I, (6.16)

where
ϑ = 1

105ξ
7/2 − 1

3ξ
3/2 + x0ξ

1/2; (6.17)

(2) across the union of segments (ξ5, ξ4) ∪ (ξ3,−∞) oriented as indicated, the following jump
condition holds true:

Φ
(ν)
+ (ξ) = Φ

(ν)
− (ξ)iσ1, ξ ∈ (ξ5, ξ4) ∪ (ξ3,−∞), (6.18)

where Φ
(ν)
+ (ξ) and Φ

(ν)
− (ξ) are limits of Φ(ν)(ξ) on the segments from the left and from the right,

respectively, see Fig. 6.3.

We do not impose any conditions on the behavior of Φ(ν)(ξ) at the points ξ = ξj , j = 3, 4, 5.
As the result, the solution of the model RH problem 3 is determined up to a left rational matrix
multiplier with possible poles at ξ = ξj , j = 3, 4, 5, and a certain asymptotics at infinity. Below,
we use this rational multiplier to prove or disprove the asymptotic solvability of the original RH
problem 1.

β-factor. Consider the principal branches of the functions βν(ξ),

β−1(ξ) = (ξ − ξ3)
−1/4(ξ − ξ4)

1/4(ξ − ξ5)
−1/4, (6.19)

β3(ξ) = (ξ − ξ3)
1/4(ξ − ξ4)

1/4(ξ − ξ5)
1/4 (6.20)
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both defined on the ξ complex plane with cuts along the polygonal line [ξ5, ξ4] ∪ [ξ4ξ3] ∪ [ξ3,−∞).
These functions solve the scalar RH problems:

(1) βν(ξ) = ξ
ν
4 (1 +O(ξ−1)), as ξ → ∞;

(2) the discontinuity of βν(ξ) across the oriented contour [ξ5, ξ4]∪ [ξ4ξ3]∪ [ξ3,−∞) is described
by the conditions

ξ ∈ (ξ5, ξ4) : β+
−1(ξ) = iβ−

−1(ξ), β+
3 (ξ) = −iβ−

3 (ξ),

ξ ∈ (ξ4, ξ3) : β+
−1(ξ) = β−

−1(ξ), β+
3 (ξ) = −β−

3 (ξ),

ξ ∈ (ξ3,−∞) : β+
−1(ξ) = iβ−

−1(ξ), β+
3 (ξ) = iβ−

3 (ξ).

(6.21)

The Riemann theta function and the Baker–Akhiezer functions. Introduce the function

hν(ξ) = t7/4(g(ξ) − g∞) + δν(U(ξ)− U∞), g∞ = − 1
2B, U∞ = − 1

2τ, (6.22)

where the parameter δν is defined by

δ−1 = −t7/4A, δ3 = −t7/4A+ iπ. (6.23)

This function hν(ξ) has the following obvious properties:

(1) as ξ → +∞,

hν(ξ) = t7/4ϑ+O(ξ−1/2); (6.24)

(2) hν(ξ) is discontinuous across the polygonal line [ξ5, ξ4] ∪ [ξ4, ξ3] ∪ [ξ3,−∞) oriented from ξ5
to infinity, moreover,

ξ ∈ (ξ5, ξ4) : h+
ν (ξ) + h−

ν (ξ) = t7/4B + δντ,

ξ ∈ (ξ4, ξ3) : h+
ν (ξ)− h−

ν (ξ) = −t7/4A− δν ,

ξ ∈ (ξ3,∞) : h+
ν (ξ) + h−

ν (ξ) = 0.

(6.25)

Using the Riemann theta function, Θ(z) =
∑

n e
πin2τ+2πinz, define the matrix function Φ

(BA)
ν (ξ),

Φ(BA)
ν (ξ) = (βν(ξ))

σ3 1√
2

⎛
⎝

Θ(U(ξ)+V +φν)

Θ(U(ξ)+ 1+τ
2 )

c1(ξ)
Θ(−U(ξ)+V +φν)

Θ(−U(ξ)+ 1+τ
2 )

c∗1(ξ)

Θ(U(ξ)+V +φν− 1+τ
2 )

Θ(U(ξ)) c2(ξ)
Θ(−U(ξ)+V+φν− 1+τ

2 )

Θ(−U(ξ)) c∗2(ξ)

⎞
⎠ ehν(ξ)σ3 . (6.26)

Here the parameters V , φν and the factors cj(ξ), c
∗
j (ξ) are defined by

V = − 1
2πi t

7/4(τA− B); φ−1 = 1+τ
2 , φ3 = 0;

c1(ξ) =
Θ( 1

2 )

Θ(V +φν− τ
2 )
, c∗1(ξ) =

Θ( 1
2+τ)

Θ(V +φν+
τ
2 )

if V + φν �= 1
2 + n+mτ,

c1(ξ) = β−2
−1(ξ)

ωaΘ( 1
2 )

2Θ′( 1+τ
2 )

, c∗1(ξ) = β−2
−1(ξ)

ωaΘ( 1
2+τ)

2Θ′(
1+τ
2 )

if V + φν = 1
2 ,

c2(ξ) =
Θ( τ

2 )

Θ(V +φν− 1
2−τ)

, c∗2(ξ) =
Θ( τ

2 )

Θ(V +φν− 1
2 )

if V + φν �= τ
2 + n+mτ,

c2(ξ) = β−2
−1(ξ)

ωaΘ( τ
2 )

2Θ′( 1+τ
2 )

, c∗2(ξ) = β−2
−1(ξ)

ωaΘ( τ
2 )

2Θ′( 1+τ
2 )

if V + φν = τ
2
, n,m ∈ Z.

(6.27)

It can be shown that det Φ
(BA)
ν (ξ) ≡ −1; the function Φ

(BA)
ν (ξ) (6.26) satisfies (6.16) and (6.18)

and thus is one of the solutions of the RH problem 3. Any other solution to this RH problem has
the form of a product

Ψ(BA)
ν (ξ) = Rν(ξ)Φ

(BA)
ν (ξ), (6.28)

where Rν(ξ) is rational with poles at ξ = ξj , j = 3, 4, 5, and satisfies the asymptotic condition
Rν(ξ) = I +O(ξ−1) as ξ → ∞.
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6.4. Local Solution of the RH Problem Near the Branch Points ξ = ξj, j = 5, 4, 3

As is well known, near single branch points, the relevant boundary-value problem can be solved
using the classical Airy functions, see, e.g., [13].

6.4.1. RH problem for the Airy functions. Define the Wronsky matrix of the Airy functions
[1],

Z0(z) =
√
2πe−iπ/4

(
v2(z) v1(z)
d
dz v2(z)

d
dz v1(z)

)
e−iπσ3/4, (6.29)

where
v1(z) = Ai (z), v2(z) = ei2π/3Ai (ei2π/3z). (6.30)

Along with Z0(z), introduce the following auxiliary functions:

Z−1(z) = Z0(z)(Σ+)
−1, Z1(z) = Z0(z)Σ−, Z2(z) = Z1(z)Σ+, Σ+ =

( 1 −i

0 1

)
, Σ− =

( 1 0

−i 1

)
. (6.31)

By construction [1],

Zj(z) =z−σ3/4 1√
2
(σ3 + σ1)(I +O(z−

3
2 ))e

2
3 z

3/2σ3 ,

z → ∞, z ∈ ωj =
{
z ∈ C : arg z ∈

(
−π + 2π

3 j, π
3 + 2π

3 j)
}
.

(6.32)

Assemble the piecewise holomorphic functions Z(j)(z), j = 5, 4, 3,

Z(j)(z) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Z−1(z)Gj , arg z ∈ (−π,− 2π
3
),

Z0(z)Gj , arg z ∈ (− 2π
3 , 0),

Z1(z)Gj , arg z ∈ (0, 2π
3 ),

Z2(z)Gj , arg z ∈ (2π3 , π),

(6.33)

where
G5 = G3 = I, G4 = iσ3.

Observing that the jump matrices of Z(j)(z) coincide with those across the lines emanating from
the node points ξj , j = 5, 4, 3, in Fig. 6.3, we are ready to construct the relevant local parametrices,

Ψ(j)
ν (ξ) = B

(ν)
j (ξ)Z(j)(z(j)(ξ)), j = 5, 4, 3, ν = −1, 3. (6.34)

Here B
(ν)
j (ξ), j = 5, 4, 3, are holomorphic in some finite neighborhoods of ξ = ξj matrices, and

z = z(j)(ξ) are changes of variables biholomorphic in some neighborhoods of ξ = ξj .

6.4.2. Determination of the local change z = z(j)(ξ). This biholomorphic change of vari-
ables has to be chosen so as to ensure that the global parametrix, see below, has small enough
jumps as t → +∞, namely, it must satisfy the condition

2
3 (z

(j)(ξ))3/2 = t7/4(g(ξ) − g(ξj)) + δν(U(ξ)− U(ξj)) + o(1), |ξ − ξj | = const.

The biholomorphic condition is satisfied with the choice

z(j)(ξ) = t7/6
(

3
2

∫ ξ

ξ̂j

μ̂(z) dz
)2/3

, j = 5, 4, 3, (6.35)

where μ̂(ξ) has the form (6.3), (6.6) with the branch points ξ̂j ,

μ̂2 = 1
900ξ

5 − 1
30ξ

3 + 1
30x0ξ

2 + 1
30 D̂1ξ +

1
30D̂0 = 1

900 (ξ − ξ̂1)
2(ξ − ξ̂3)(ξ − ξ̂4)(ξ − ξ̂5).
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(3)
(4)

(5)(BA)
Ψ Ψ

Ψ
Ψ

Fig. 6.5. The construction of the global parametrix.

The unique Abelian differential holomorphic on the elliptic curve ŵ2 = (ξ − ξ̂3)(ξ − ξ̂4)(ξ − ξ̂5) is

dÛ = 2
ω̂a

(
∂

∂D̂1
− ξ̂1

∂
∂D̂0

)
μ̂(ξ) dξ.

Thus, the 1-parameter deformation of the model degenerated curve that respects the degeneration
is generated by the vector field

∂
∂D = 2

ω̂a

(
∂

∂D̂1
− ξ̂1

∂
∂D̂0

)
. (6.36)

Finally, we find the elliptic curve satisfying the asymptotic conditions,

μ(ξ) + t−7/4 δν
w(ξ)

= μ̂(ξ) +O(t−7/2(ξ − ξj)
−3/2),

for |ξ − ξ1| > C1t
−7/8, |ξ − ξj | > Cjt

−7/4, Cj = const, j = 3, 4, 5,

ωa,b = ω̂a,b +O(t−7/2), τ̂ = τ +O(t−7/2),

A+ t−7/4δν = Â+O(t−7/2), B + t−7/4τδν = B̂ +O(t−7/2).

(6.37)

6.5. The Global Parametrix

The global approximate solution to the RH problem for Φ(ν)(ξ), ν = −1, 3, is a piecewise analytic

matrix function Ψ̃ν(ξ) defined as follows:

Ψ̃ν(ξ) =

{
Ψ

(j)
ν (ξ), ξ ∈ Cj ,

Ψ
(BA)
ν , ξ ∈ C\ ∪j Cj ,

Ψ(BA)
ν (ξ) = Rν(ξ)Φ

(BA)(ξ), Cj = {ξ ∈ C : |ξ − ξj | < r},
0 < r < 1

2 min
k �=j

|ξk − ξj |, k, j = 3, 4, 5,

(6.38)

see Fig. 6.5.
The exact solution is constructed using the correction function χ(ξ),

χ(ξ) = Ψ(ξ)Ψ̃−1(ξ), (6.39)

that satisfies the following RH problem:
(1) the limit

lim
ξ→∞

ξ1/2
(

1√
2
(σ3 + σ1)ξ

1
4σ3t

1
8σ3χ(ξ)t−

1
8σ3ξ−

1
4σ3 1√

2
(σ3 + σ1)− I

)
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Fig. 6.6. The jump contour γ for the correction function χ(ξ).

exists and is diagonal;
(2) across the contour γ shown in Fig. 6.6, the jump condition holds,

χ+(ξ) = χ−(ξ)H(ξ), where H(ξ) = Ψ̃−(ξ)S(ξ)Ψ̃
−1
+ (ξ).

To apply L2-theory to the latter RH problem [43], all jump matrices H(ξ) across the jump
contour γ in Fig. 6.6 must satisfy the estimate ‖H(ξ) − I‖L2(γ)∩C(γ) = o(1) as t → ∞. For the
infinite tails emanating from the circles, this fact holds because the relevant jumps are uniformly
exponentially small.

The jumps across the circles centered at the branch points ξj , j = 3, 4, 5, can be made small
as t is large if one adjusts the rational matrix Rν(ξ), ν = −1, 3, and the holomorphic matrices

B
(ν)
j (ξ), ν = −1, 3, j = 5, 4, 3, in an appropriate way. Omitting the straightforward (but tedious)

computations, we present the result,

V − 1
2
, V − τ

2
, V − 1+τ

2
�= n+mτ, n,m ∈ Z :

R−1(ξ) = t−
1
8σ3

(
1 1

ξ−ξ5
q(∞)

r(∞) 1 + 1
ξ−ξ5

q(∞)r(∞)

)
,

q(∞) = −ωa

2 (ξ5 − ξ4)
e2πiV (t)Θ(V + 1+τ

2 )Θ(V + τ
2 )Θ( 1

2 )Θ(0)

Θ(V + 1
2 )Θ(V )Θ( τ

2 )Θ
′( 1+τ

2 )
,

r(∞) − q(∞) =
2Θ(V )Θ(V + 1+τ

2 )Θ′( 1+τ
2 )Θ(0)

ωaΘ(V + 1
2 )Θ(V + τ

2 )Θ( 1
2 )Θ( τ

2 )
,

V = 1
2 : R−1(ξ) = t−

1
8σ3

(ξ − ξ5
ξ − ξ4

)σ3

,

V = τ
2 : R−1(ξ) = t−

1
8σ3 .

(6.40)

The relevant correction function satisfies the estimates

χ(ξ)− I =

{
O(t−7/24), |ξ| < const,

O(t−7/24ξ−1), |ξ| → ∞,
(6.41)

in the domain of the parameter x0 = xt−3/2 described by

|V − 1+τ
2 − n−mτ | > Ct−

7
24+ε, n,m ∈ Z, ε = const > 0. (6.42)
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ξ
4

ξ
5

ξ
3

8

L

Fig. 7.1. The contour for the canonical dissection of the elliptic curve Γ.

6.6. Large-t Asymptotics of the RH Problem 1(ν=3)

In contrast, the computation of the left rational multiplier Rν(ξ) for ν = 3 yields

R3(ξ) = t
3
8σ3I, (6.43)

together with the additional condition
Θ(V ) = 0, (6.44)

or, equivalently,
V = 1+τ

2 + n+mτ. (6.45)

In this case, the “external” parametrix is elementary,

Φ
(BA)
3 (ξ) = (β3(ξ))

σ3 1√
2
(σ3 + σ1)e

h3(ξ)σ3 , (6.46)

and the correction function χ(ξ) satisfies the estimates (6.41).

Remark 6.2. The above computation shows that, as t → +∞, the RH problem 1 is solvable
either with ν = −1 or ν = 3 for each value of the deformation parameter x, xt−3/2 ∈ D0. Thus,
there is no room for the solvability of the RH problem with ν = −5. Therefore, at least in the
large-t limit, the special solution to PI

2 has no triple pole collisions and the corresponding solutions

to P
(2,1)
I have no branch points. The relevant Malgrange divisor consists of smooth branches only.

7. ASYMPTOTIC DISTRIBUTION OF POLES

To compute the large-t asymptotic distribution of poles of the special solution to PI
2, we use

the phase shift given in (6.45) and the definition of V in (6.27),

1
2πi t

7/4(τA− B) = n+ 1
2 + (m+ 1

2 )τ. (7.1)

Using the canonical dissection of the Riemann surface, the difference ωbA − ωaB is expressed in
terms of a single contour integral over the contour L depicted in Fig. 7.1,

ωbA− ωaB = ωa

∮

L
U(z)μ(z) dz.

Inflating the contour L, we transform it to a contour encircling the infinite point, which is a branch
point of the curve. Then, expanding the integrand at infinity and using the residue theorem, we
find

τA− B =

∮

L
(U(z) − U∞)μ(z) dz = − 8πi

7ωa
(3x0 +

2
3ξ1), (7.2)

and the distribution formula for poles (7.1) yields

3x0 +
2
3ξ1 = 7

4 t
−7/4

(
(n+ 1

2 )ωa + (m+ 1
2 )ωb

)
. (7.3)
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Since ξ1 is determined by x0 via the Boutroux equations (6.8), equation (7.3) determines the

position of the pole, x
(n,m)
0 = xn,mt−3/2, as a transcendent function of two integers (n,m). As

t → +∞, the particular pole x
(n,m)
0 approaches the attracting point satisfying the equation

ξ1(x0) = − 9
2x0. (7.4)

7.1. Quasistationary Solutions of Equation P
(2,1)
I

Although it is not known how to solve the transcendent equation (7.4), the problem of finding
the attractor to the pole distribution is significantly simplified by observing that the pole attractors

correspond to the quasistationary solutions of equation P
(2,1)
I ,

a(t) = a∞t3/2(1 +O(t−ε)), ε > 0. (7.5)

Substituting (7.5) into P
(2,1)
I (2.7), we find an algebraic equation for the parameter a∞,

a4∞ − 236
243a

2
∞ + 160

2187 = 0, (7.6)

with the roots a∞ ∈ {± 2
√
5

9
√
3
,± 2

√
2

3 }. However, only one of the roots, namely,

a∞ = 2
√
5

9
√
3
, (7.7)

is consistent with the above properties of the large-t asymptotic spectral curve for the special

solution of PI
2. The linearization of equation P

(2,1)
I at the 0-parameter power-series solution with

the coefficient (7.7) of the leading-order term has four linearly independent solutions. Two of them

are exponential, ∼ exp[±i2
√
2

3
(5
3
)3/4 4

7
t7/4], and we set them aside. Two other solutions of the

linearized equation, ∼ t−1/4 and ∼ t−1/4 ln t, are relevant to our quasistationary behavior of the
poles. Using them, we form the 2-parameter series

a(t) = t3/2
∞∑
k=0

(t−
7
4 ln(t−

7
4 ))kak(t), ak(t) =

∞∑
l=0

aklt
− 7

4 l, a00 = 2
√
5

9
√
3
,

a10, a01 ∈ C are arbitrary,

a20 = − 3
√
15

784 a210, a11 = − 3
√
15

392 (a01 − 2a10)a10,

a02 =
3
√
3(

√
15−50a2

01+200a01a10+3130a2
10)

7840
√
5

,

a30 = 1467
307328

a310, a21 = 27
307328

(163a01 + 861a10)a
2
10,

a12 = 27
9834496

(1907
√
3√
5
+ 5216a201 + 55104a01a10 + 233392a210)a10,

a03 = 9
3073280 (1630a

3
01 + 25830a201a10 + 218805a01a

2
10 + 788362a310)

+ 9
√
3

49172480
√
5
(28605a01 + 258143a10), . . .

(7.8)

Let us relate the free parameters a01, a10 in (7.8) to the integers n and m in (7.3). Recall that,
along the boundary ∂D+, two branch points ξ4 and ξ5 of the asymptotic spectral curve coalesce.
Namely, if t → +∞, then the limiting values corresponding to the attracting point are

x∗
0 = 2

√
5

9
√
3
, ξ∗3 = − 4

√
5√
3
, ξ∗1,2 = −

√
5√
3
, ξ∗4,5 =

√
15. (7.9)
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The asymptotic behavior of the branch points in the model elliptic spectral curve compatible with
the expansion (7.8) is given by

ξ1 = ξ2 = −
√
5√
3
+ 3

4 (a01 + 7a10 + a10 ln(t
−7/4))t−7/4 +O(t−7/2 ln2 t),

ξ3 = − 4
√
5√
3
− 6

7

(
a01 + 4a10 + a10 ln(t

−7/4)
)
t−7/4 +O(t−7/2 ln2 t),

ξ4,5 =
√
15∓

√
6

4
√
15
√
a10 t

−7/8

− 9
28

(
a01 + 11a10 + a10 ln(t

−7/4)
)
t−7/4 +O(t−21/8 ln2 t).

(7.10)

The asymptotic behavior of the periods ωa,b, as ξ5 − ξ4 → 0, has the forms

ωa = 2πi√
ξ4−ξ3

(1− ξ5−ξ4
4(ξ4−ξ3)

+O((ξ5 − ξ4)
2)),

ωb =
2√

ξ4−ξ3
ln ξ5−ξ4

16(ξ4−ξ3)
+O((ξ5 − ξ4) ln(ξ5 − ξ4)), ξ5 − ξ4 → 0.

(7.11)

Thus, for large t,

ωa = iπ 2 4√3√
7 4√5

(1 +O(t−7/8)),

ωb = −
4√3

√
7

4 4√5
ln t+ 2 4√3√

7 4√5
ln 33/2

√
−a10

23/273/2 4√15
+O(t−7/8 ln t), t → +∞.

(7.12)

Finally, the coefficients a10 and a01 determining the asymptotic series for a(t) (7.8),

a(t) = 2
√
5

9
√
3
t3/2 + t−1/4

(
a01 + a10 ln(t

−7/4)
)
+ · · · ,

follow, using the asymptotic formula (7.3),

a10 ln(t
−7/4) + a01 + · · · =

(
− 2

√
5

9
√
3
− 2

9
ξ1
)
t7/4 + 7

12
((n + 1

2
)ωa + (m+ 1

2
)ωb)

= − 1
6
a10 ln(t

−7/4)− 1
6
a01 − 7

6
a10 (7.13)

+ 7
12
(n+ 1

2
)iπ 2 4√3√

7 4√5
+ 7

12
(m+ 1

2
)

4√3
4√5

√
7

[
ln(t−7/4) + ln 33a10

2572
√
15

]
+ · · ·

Equating coefficients at ln(t−7/4), we find a10 = a
(m,n)
10 ,

a
(m,n)
10 = (m+ 1

2
)

4√3
2 4√5

√
7
, m ∈ Z+, (7.14)

while the constant terms yield the family of values of a01 = a
(m,n)
01 ,

a
(m,n)
01 = (m+ 1

2
)

4√3
2

4√
5
√
7
ln
[
(m+ 1

2
) 311/4

2653/475/2e

]
+ iπ(n + 1

2
)

4√3
4√
5
√
7
, m ∈ Z+, n ∈ Z. (7.15)

Formulas (7.14) and (7.15) with (7.8) yield the asymptotic formula (1.10) for a(m,n)(t), which

implies that the poles of the special solution to PI
2 in the vicinity of the attracting point x∗

0 = 2
√
5

9
√
3

form a regular lattice with slowly modulated intervals and a boundary formed by the line of poles
corresponding to the values m = 0 and n ∈ Z. In particular, the interval between the two rightmost
vertical lines of poles is given by

a(0,n)(t)− a(1,n)(t) = −t−1/4 4√3
2 4√5

√
7
ln
[
t−7/4 317/4

2753/475/2e

]
+O(t−2 ln2 t).

Note that the boundary ∂D+ formally corresponds to m = − 1
2 , n ∈ R, and the distance between

the first vertical line of poles and ∂D+ is

a∗(t)− a(0,n)(t) = −t−1/4 4√3
4 4√5

√
7
ln
[
t−7/4 311/4

2753/475/2e

]
+O(t−2 ln2 t).
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8. PROBLEMS AND PERSPECTIVES

We have presented and studied equation P
(2,1)
I , which is, to our best knowledge, the first exam-

ple of a differential equation that controls the isomonodromy deformations of a linear ODE with
rational coefficients and does not possess the Painlevé property. At the first glance, its existence
contradicts the theorem by Miwa and Malgrange. However, this is not the case. The absence of the

Painlevé property in P
(2,1)
I is related to the fact that the domain of solvability of the corresponding

RH problem in the 2-dimensional complex space with the coordinates (t, x) is restricted to the Mal-
grange divisor of PI

2, i.e., to the set of complex lines (t, a(t)), which may intersect. Actually, this
fact provides us with important information on the nontrivial analytic structure of the Malgrange
divisor for PI

2 which forms a Riemann surface with infinitely many sheets and third-order branch
points.

Along with this, the discovery of equation P
(2,1)
I provides us with a new wide field of research.

For instance, it is interesting to explore the possibility of existence of similar equations associated
with other isomonodromic solutions of KdV or other integrable PDEs like the nonlinear Schrödinger
or Pohlmeyer–Lund–Regge equations.

Other interesting problem not discussed above is the structure on P
(2,1)
I induced by the singu-

larity reduction of the Hamiltonian structure on PI
2(and, in the case of a successful extension of

the singularity reduction methodology to the hierarchies associated with other Painlevé equations,
the structures induced by the Weyl symmetries).

Finally, we mention the problem of characterizing initial data to PI
2 (and other isomonodromy

deformation equations) whose singularity reductions do not have branch points. In the PI
2 case,

we conjecture that its special solution considered above does not have merging poles for any t, and

therefore, the relevant solution of P
(2,1)
I does not have branch points. If this conjecture is true, it

can serve as another characteristic property of this special solution.
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of the Painlevé I Equation,” Nonlinearity 20 (5), 1163–1184 (2007).
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28. B. Malgrange, “Sur les déformations isomonodromiques, I : singularités régulières, in Séminaire ENS,”
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