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Simple Lie algebras, Drinfeld-Sokolov hierarchies, and multi-point
correlation functions

Marco Bertola, Boris Dubrovin, Di Yang

Abstract

For a simple Lie algebra g, we derive a simple algorithm for computing logarithmic derivatives of
tau-functions of Drinfeld—Sokolov hierarchy of g-type in terms of g-valued resolvents. We show, for the
topological solution to the lowest-weight-gauge Drinfeld-Sokolov hierarchy of g-type, the resolvents
evaluated at zero satisfy the topological ODE.
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1 Introduction

1.1 Simple Lie algebra and Drinfeld—Sokolov hierarchy

Let g be a simple Lie algebra over C of rank n, with the Lie bracket denoted by [-,-]. Let ad : g — gl(g)
be the adjoint representation of g. We denote by h, h" the Coxeter and dual Coxeter numbers [40] of g,
and m; =1<mg <...<mu_1 <my, =h—1 the exponents. Denote (:|-) : g x g — C the normalized
Cartan—Killing [14] form

1
(x|y) == Wtr (ady - ady), Vz,y€g. (1.1.1)
Fix a Cartan subalgebra h C g, and let A C h* be the root system. We choose a set of simple roots
II={o,...,a,} Ch* Then g has the root space decomposition
g= ho @ Ja-
aEN

For any o € A, denote by H, the unique element in h such that (H,|X) = a(X), VX € bh. The
normalized Cartan—Killing form induces naturally a bilinear inner product on h* :

(a|B) = (Ho|Hg), Ya,Beb”.
Denote by E; € gq,, Fi € 9—q,, Hi = 2H,, /(a;]a;) the Weyl generators of g. They satisfy
[Ei, Fi] = Hi 64, [Hi, Ej] = Agj Ej,  [Hi, Fj] = — Ay F}

where (A;;) denotes the Cartan matrix associated to (g,II), and d;; is the Kronecker delta. Here and
below, free Latin indices take integer values from 1 to n unless otherwise indicated.

Let 6 be the highest root w.r.t. II; recall that (6|0) = 2. We choose E_y € g_g, Ey € gy, normalized
by the conditions (Eyp|E_p) =1 and w(E_p) = —Ey, where w : g — g is the Chevalley involution. Let

n
I,:=) E (1.1.2)
i=1
be a principal nilpotent element of g. Define
A=1,+\E_,. (1.1.3)

Denote by L(g) = g ® C[A\, \"!] the loop algebra of g. The Lie bracket [-,-] and the Cartan—Killing
form B(-,-) extend naturally to L(g). We have

L(g) = Kerady @ Imady, Kerady L Imady. (1.1.4)
Recall that the principal gradation on L(g) is defined by
degA=nh, degFE;,=—degF;=1, i=1,...,n.

Observe that
degA = 1.



This gradation is of course also defined on g = g® 1. With the principal gradation, the loop algebra L(g)
and the simple Lie algebra g decompose into direct sums of homogeneous subspaces L(g)’, ¢/, j € Z :

h—1
Lie)=PLe’ o= P ¢
JeL j=—(h—1)

We will denote the projection onto the nonnegative subspace by (e)* : L(g) — >_ >0 L(g)?, and onto the
negative subspace by (e)~. It is known [39] that Kerady C L(g) admits the following decomposition

Kerady = EB(CAJ" Aj e L(g)’, j € E,
jeEE
[AZ‘,A]'] =0, Vi,j € E.

Here, E := | |, (m; + hZ). We choose normalizations of A;, j € E satisfying

Atk = Am, X, k€ Z, (1.1.5)
(Ama|Amb) = h"?ab A (1.1.6)

Here and below,
Nab = Oa-+bn+1- (1.1.7)

Since A € L(g)!, we fix the normalization of A; such that
A=A
It is useful to notice that A,,,, a =1,...,n have the form [43]
Ay =Ly + XK., L, €™, Kpy—p € g™ ", Ly, #0, Ko —p # 0.

In [19], Drinfeld—Sokolov associate to g an integrable hierarchy of Hamiltonian evolutionary PDEs,
known as the Drinfeld—Sokolov (DS) hierarchy of g-type. Let us briefly review their construction in the
form suitable for subsequent considerations. Denote by b = g=" a Borel subalgebra of g, and n = g<¥ a
nilpotent subalgebra. Let

L=0,+A+q(x), q(z) € b. (1.1.8)
Definition 1.1.1. The basic resolvents Ry, a =1,...,n of L are defined as the unique solutions to
[L,R.] =0, R,cAT@g((\™)), (1.1.9)
Ro(N;q,quy .. .) = Ay, + lower order terms w.r.t. deg, (1.1.10)
(Ra(Ni 4, Gas - -) [ Ro(Ni Qs s - ) = Rtgap A (1.1.11)

Here and below, A? denotes the ring of differential polynomials in q, namely, an element of A% is a
polynomial in the entries of q, 4z, Gog, - - - -

Existence and uniqueness of the basic resolvents will be shown in Prop.2.2.3.
The DS flows for the b-valued function ¢ = ¢(z,T), T = (T,g)Zié" are evolution PDEs

dq
T}

= [4(¢: 92, Gzas - - ) (1.1.12)



for some b-valued differential polynomials f; defined by the following Lax representation

oL
aTg

_ [(A’“Ra)+, ,c] C a=1,....nk>0. (1.1.13)

Here (o) stands for the polynomial part in A\. These flows are well-defined and pairwise commute [19];
they form the pre-DS hierarchy.

Consider transformations of the dependent variable ¢(z) — ¢(x) of the pre-DS hierarchy induced by
gauge transformations of the form

L=0,+A+q(zx) = L =W L =0, + A+ §(z) (1.1.14)

for an arbitrary smooth n-valued function N(z). A crucial point of the Drinfeld-Sokolov construction is
the following statement.

Lemma 1.1.2. The gauge transformations (1.1.14) are symmetries of the pre-DS flows of (1.1.13). In
particular, they map solutions to solutions.

In our approach the proof of this simple but important statement easily follows by observing that the
basic resolvents R, of the gauge-transformed operator £ satisfy

Ra(X:d, Gy, ...) = W@ RN ¢, gy .. .), a=1,...,n. (1.1.15)

The DS hierarchy is obtained from (1.1.13) by considering suitably chosen gauge invariant functions
g™ (see below for more details).

1.2 From resolvents to tau-function

We start from defining tau-functions of an arbitrary solution ¢(x,T) of the pre-DS hierarchy. Then we
verify its independence from the choice of the gauge with respect to the transformations of the form
(1.1.14).

Definition 1.2.1. Define a sequence of functions Qg j:p.0 = Qa kb 0(¢ 4z, ---) € Al a,b=1,...,n, k,{,>
0 by means of the generating function expression below

_ o . 1.2.1
N i

> Qukve  (Ra(N) | Ry(p)) Mo\ + mpp

k>0
We call Q.0 the two-point correlation functions.

Lemma 1.2.2. The two-point correlation functions Qg i.p¢ satisfy the following properties

Qa,k;b,é S .Aq, ka;b’g = le;fhlﬁ Ya,b=1,...,n, k;,€ >0, (1.2.2)
8T,%Qa,k;b,f = aTIng’g;c’m = 8Tl}>Qc,m;a,ka VCL, b, c= 1, R N k,@, m > 0. (1.2.3)

Lemma 1.2.3. For an arbitrary solution q(x,T) to (1.1.13), there exists T = 7(x, T) such that

0?log T

it = Qak; . T),qu(2,T),... 1.2.4
IToT! kb ((z,T), qz(2, T),...) ( )
or or

dr 9Ty (1.2.5)



The proofs are provided later in the paper.
In view of (1.2.5) we will henceforth identify x with —T}} for 7(z, T). So we will use the short notation

7 = 7(T). Note that the scalar function 7(T) advocated for in Lemma 1.2.3 is uniquely determined by
the solution ¢(z, T) only up to a factor of the form

n
exp | do + Z Z do 1y |, do, dg 1 are arbitrary constants. (1.2.6)
a=1k>0

Definition 1.2.4. We call 7(T) the tau-function of the solution q(x,T) of the pre-DS hierarchy.

Definition 1.2.5. For an arbitrary solution to the pre-DS hierarchy, let T(T) be a tau-function of this
solution in the sense of Definition 1.2./. The N-point correlation functions of 7(T) are defined by

>>DS aNlOgT

ky * e kn

((Tarks - - Tankn

From (1.1.15) it easily follows

Lemma 1.2.6. The tau-function of a solution to the pre-DS hierarchy is invariant, up to a factor of the
form (1.2.6), with respect to the gauge transformations (1.1.14).

Thus 7(T) will also be called tau-function of the solution ¢“** of the DS hierarchy corresponding to a

gauge-fixed Lax operator. The usual procedure [19] to fix the gauge is by choosing a subspace V C b
transversal to the adjoint action of the nilpotent subgroup so that ¢®*"(x) restricts to a V-valued function
(see below).

1.3 Main results

For any a = 1,...,n introduce the following differential operator depending on a parameter A
87“]?
Vai(A) = T (1.3.1)
k>0
For a given N > 1 and a collection of integers aq,...,an € {1,...,n}, we define the following
generating series of N-point correlations functions by
Fah---ﬂN ()‘17 o AN T) =Va, ()‘1) T VGN ()‘N) IOgT(T)' (1'3'2)

Observe that, for N > 2 the correlation functions (1.2.7) depend only on the solution ¢(z,T) of the
pre-DS hierarchy. Our goal is to derive an explicit expression for these generating functions for N > 2 in
terms of the defined above basic resolvents.

For any N > 2 define a cyclic-symmetric N-linear form B : g x --- x g — C by
B(z1,...,zn) =tr(adg, o---oadyy), Vai,...,oN € g. (1.3.3)

Theorem 1.3.1. For an arbitrary solution q°®*(T) to the DS-hierarchy, let T(T) be a tau-function of
this solution. Then VN > 2, we have

B (R (As ), o B (A T) )

1
Fal,...7aN(A17"'7)‘N;T):_ Z N
2NhY £ [T sy = Asj0)
May A1+ Mg, A2
—ON2 Taya EM — A2)22 (1.3.4)

where RE“™(N), a = 1,...,n denote the basic resolvents of L := 0, + A(\) + ¢°®". In particular,
VN >2,Vay,...,ay € {1,...,n}, we have Fy, . an(A1,...,AN;T) € Aqmn[[/\l_l, - ,/\J_Vl]].



The partition function. We now consider a particular tau-function that we shall call the partition
function: it will be denoted by Z(t) where the new time variables t differ from the original T by a rescaling
(see eq. (1.3.6)). This particular tau-function is uniquely specified up to a multiplicative constant by the

following string equation
n n
0z 1 b 0z
Z ZtZ—l—l@ T3 Z Nabtoto Z = ol (1.3.5)
a=1k>0 k a,b=1 0

(see details in Section 4.2 below). Here, the time variables ¢} and T} are related by

0 0 (—1)F
—— =Cakmas Cak = , a=1,....n, k>0 (1.3.6)
T NS T

where (-)y denotes the Pochhammer symbol, i.e. (y)e:=y(y+1)---(y+£—1).

Theorem 1.3.2. Let the subspace V := Kerad;_ C g be the lowest weight gauge (see eq. (3.1.1) for the
definition of I_), and L the associated Laz operator. Let RS*™, a =1,...,n be the basic resolvents of
L4 For the Drinfeld-Sokolov partition function Z, define My(\) = AR R™(\;t = 0). Then for any
a€{l,...,n}, My(\) satisfies the topological ODE of g-type

—h
M =k[M,A], K= (\/—h) = di)\’ (1.3.7)
Observe that, as A — oo, the solutions M, (\) admit the expansions
M, =\~ [Arn, + lower degree terms w.r.t. deg], a=1,...,n.

Thus, M, coincide with the basis of regular solutions to the topological ODE constructed in [8].

1.4 Applications to the FJRW theory
Let f: C™ — C be a quasi-homogeneous polynomial, i.e. there exist positive integers d,nq,...,n, s.t.
f(zMxy, ..., 2" ) = 2% f(z1,...,2m), VzeC.

The weight of x; is defined to be ¢; = %4, i = 1,...,m. In general the gradient of f vanishes at the
origin and hence the zero level-set f~1(0) is a singular variety and defines a “singularity” in the sense of
singularity theory [3]. The function f is called non-degenerate if the choice of weights ¢; is unique and
x = 0 is the only singularity of f. Let G4 (or Gjnaz) denote the maximal diagonal symmetry group of f,
which is the subgroup of Aut(f) consisting of diagonal matrices v such that f(yx) = f(z). It is easy to

see that the matrix ' '
J = diag(e2mq1, e ,627”‘1’”) € Gy.

Let G be a subgroup of Gy containing (.J). Let n be the dimension of the Fan-Jarvis-Ruan cohomology
ring [28] associated to (f, G). Fan-Jarvis—Ruan associate with the pair (f, G) a certain generalized Witten
class, called the Fan—Jarvis—Ruan—Witten class

Ag:g(al,...,aN) € H*(Mgyn), a=1,...,n,i=1,...,N

such that incorporation of these cohomological classes to M% N gives rise to a cohomological filed theory
[46, 28]. The FJRW invariants are defined by

k k G
(Talkl e TaNkN>§7G = / 11 T TJZ)NN : Ai]c,N(al’ cee ,(IN)
a,N

where ¢;, t = 1,..., N are i-classes.



Definition 1.4.1. The partition function Z5C of FJRW invariants is defined by

1 n
Iel G
Zf’ (t) = exp E _N' E g <Ta1k1 e Ta]\r]'i?1\7>i;/c7 t21 e tzx

¢;N>0" " ai,...an=1ki,..kny>0

Now we consider an important subclass of singularities, called simple singularities. They are classified
by the ADE Dynkin diagrams [1, 2]. In particular, we consider

Ay f=a" k>1; Dy: f=2""14+24% k>4
Fe: f=a%+y% Er: f=a3+xy> Es: f=a%+1°.
We are also interested in the mirror singularity of Dy [28], denoted by D;{:
D,{: f=a""ty+4? k>4
The maximal diagonal symmetry groups Gy of the above polynomials will be denoted by G4, , Gp,, G DT

and Gg,,n=26,7, 8.

Theorem-ADE ([28, 29]). The following statements hold true

A. The partition function ZA4»G(t), n > 1 with G = (J) = G, is a particular tau-function of the
Drinfeld—Sokolov hierarchy of A,-type satisfying the string equation (1.3.5).

D. The partition function ZP~C(t), n > 4 with n even and G = (J) is a particular tau-function of
the DS hierarchy of D,-type satisfying (1.5.5).

D’. The partition function ZP+C(t), k > 4 with G = Gp, 15 a particular tau-function of the DS
hierarchy of Ask_s-type satisfying (1.3.5).

D”. The partition function ZDrTwG(t), n > 4 with G = GD;{ 1s a particular tau-function of the DS
hierarchy of Dy, -type satisfying (1.5.5).

E. The partition function ZP»G(t), n = 6,7,8, with G = (J) = Gg, is a particular tau-function of
the DS hierarchy of E,-type satisfying (1.3.5).

Summarizing, the partition function Z*GXk (t) with X = A, D, DT, or E is a particular tau-function of
the DS hierarchy of Xg—type satisfying (1.5.5).

In the case that f = 2" with G = (J) = Gy, the FJRW invariants (74,4, - - - TaNkN>§’G coincide with
Witten’s r-spin correlators. The statement A of Theorem-ADE justifies Witten’s r-spin conjecture [52],
which was first proved by Faber—Shadrin—Zvonkine [27]; see “Theorem r-spin” below.

For convenience of the reader let us recall in more details the definition of Witten’s r-spin correlators.
For a given N > 1let 1 <aq,...,any <7 be integers satisfying the following divisibility condition

ay+...+ay—N—-(29g—-2)=mr, mecZ. (1.4.1)

Then for any algebraic curve C' of genus g with IV marked points x1, ..., zx there exists a line bundle
T over C such that
T =Ke®0((1—a)z)®...00 (1 —an)ry). (1.4.2)



Here K¢ is the canonical class of the curve C. Moreover, for a smooth C' there are 29 such line bundles.
A choice of such an “r-th root” of the bundle (1.4.2) defines a point in a covering of the moduli space.
After a suitable compactification this covering is denoted by

p: M;{;f(al,...,a]v) —>M97N. (1.4.3)

For a point (C,z1,...,2x,7T) in the covering space denote V = H'(C,T). It defines a vector bundle
Y — m;,/;;(al, ...,ay). Put

1

ew(ag,...,ay) = P (e (V) € H2m—g+1) (Mgn), ai,...,an =1,...,r

where e (VV) is the Euler class of the dual bundle VY. The cohomological class cy (a1, ...,an) is called
the Witten class [52, 27, 37, 49, 48]. The r-spin intersection numbers are defined by

<’7’a1p1 o TaNpN>T spin. _ cw(al, o ,aN) 1/){)1 o qﬁ\}v (1.4.4)
g
Mg N

r—spin

g are zero unless

The numbers (T4, p; - - - Tanpy)

1 1 -2
i R +TT(g—1)+/<;1+...+/<:N:3g—3+N. (1.4.5)

r r
The so-called Vanishing Aziom conjectured in [37] and proven in [49, 48] tells that the Witten class
vanishes if any of a;, 7 = 1,..., N reaches r. Hence, below, we only consider the case of aq,...,an
belonging to {1,...,r —1}.
For computing Witten’s r-spin correlators, we use the theorems 1.3.1,1.3.2 for a particular tau-
function along with the following result.

Theorem r-spin ([52, 27]). The partition function of r-spin intersection numbers

. 1 n .
r—spin __ E E E r—spin,ai an
Z (t) = exp M <Ta1k1"’TaNkN>g tkl tkN
gN>0"""a1,..,an=1ki,..kn>0

is a particular tau-function of the DS hierarchy of Ay -type, n =r — 1 satisfying (1.3.5).

In [44], Liuv-Ruan—Zhang introduced cohomological field theories with finite symmetry, associated with
simple singularities and certain symmetry groups, and with a I'-invariant sector, where I' is the group
of automorphisms of the Dynkin digram. These theories are proved to be related to the DS integrable
hierarchies associated to the non-simply laced simple Lie algebras.

Theorem-BCFG ([44]). The partition function of the I'-invariant sector of DZH, Aoy 1, Eg FJRW the-
ory with Gae 1S a particular tau-function of the Drinfeld-Sokolov hierarchy of By, Cy,, Fy-type satisfying
(1.3.5); the partition function of the Z/3Z-invariant sector of (Dy,(J)) FJRW theory is a particular
tau-function of the Drinfeld-Sokolov hierarchy of Ga-type satisfying (1.3.5).

Note that the common feature of Theorem-ADE and Theorem-BCFG claims that the partition func-
tion of FJRW invariants associated to a simple singularity with a symmetry group (possibly also with an



invariant sector) is a tau-function of the DS hierarchy of g-type, where g is a simple Lie algebra. We call
these numbers the FJRW invariants of g-type, denoted by

FJRW —g

<Ta1k1 T TaNk?N>g , or simply by <Ta1k1 T TaNkN>g-

As before, let n denote the rank of g. For a given N > 1 and for a collection of integers aq,...,ay €
{1,...,n}, we define the following generating functions of N-point FJRW invariants of g-type

maz

1 — h )k +1
FEFTBW (A1, A o= (5T V=R)N Z H Tag —chz-i-l (Tarka - Tawkn )y (146)
9ok >0 I= 1< = Z) R

Here £ := (V—h) "
Combining the results of Theorems 1.3.1 and 1.3.2 with the statements of Theorem-ADE and Theorem-
BCFG we arrive at the following formula for the FJRW invariants of g-type.

Theorem 1.4.2. Let g be a simple Lie algebra and n the rank of g. Let My = My(N\), a=1,...,n be
the generalized Airy resolvents of g-type, which are the unique solutions to

M’ = [M,A], (1.4.7)

subjected to

My(N) = A~ [Ap, (\) + lower degree terms w.r.t. deg].

Here, h is the Cozeter number and mg, a = 1,...,n are the exponents of g. Then the generating functions
(1.4.6) for the N-point FJRW invariants of g-type have the following expressions

deJRW e
d\ ()\) - _thB<E—97M ()‘)> +ATR 6&,717 N =1, (1.4.8)

FFJRW (/\1 )\N) _ 1 Z B (Masl ()\51)7'..,MasN ()\SN))

at,...,a PR N
' 2N b SESN Hj:l()‘sj o )\5j+1)
_May _Mag
AL "Xy " (may M+ g, Aa)

) aia 1 2 L 2 N > 2. 1.4.9
N2 Taas ()\1 — )\2)2 ) = ( )

Egs. (1.4.7)—(1.4.9) are equivalent to the proposed formulae in [8] (eq. (4.2.9) of the current paper).

In particular, for given integers r > 2, N > 1 and a given collection of indices a1, ..., ay belonging
to {1,...,r — 1}, define

N (_1)kl (%)ke—i-l

<Ta1k1 cee TaNkN>T_Spin- (1410)

ths’fﬂv(/\lw"’)‘l\f) — (/{T-L \/_—T)N Z

1 ay
- < 4+ky+1
k1,....kn>0£=1 (’{TJrl AZ) r

Here x = (\/—7‘) ~". Note that we have omitted the genus labelling in the notation of correlator, since it
can be obtained from the degree-dimension matching (1.4.5).

Theorem 1.4.3. Letn =r — 1, g = slp41(C), A=>"" | Eiiy1+ AEpy11, and let M; = M;(X) be the
basis of generalized Airy resolvents of g-type, uniquely determined by the topological ODE

M' = [M,A], (1.4.11)



subjected to

o = A" [A? + lower degree terms w.r.t. deg]

Then the N-point functions (1.4.10) of r-spin intersection numbers have the following expressions
dFT—spin
a

— W =~ (Ma)na(A) + ans N =1, (1.4.12)
A Tr <Ma81 (Asy) .- M, (ASN)>
at,...,a 1y s AN) = 737 N
1 N N geSN H]:l()\sj - )\sj+1)
_a _a
AP h(a1/\1+a2/\2)
—ON2 Nayar ———— : N >2. 1.4.13
N2T,12 ()\1_)\2)2 - ( )
Example 1.4.4 (r = 2). Witten’s 2-spin invariants coincide with intersection numbers of 1¥-classes over
My [51, 42, 27]. So Thm. 1.4.3 with the choice r = 2 recovers the result of [7, 55]
(2p1 + 1)” - (QPN + 1)” _2p1+3 _2pN+3
PIEDY IRy WAL Ty
920 p1,....pn>0 My
1 1
1 Te(M(Ary) -+ M (A PVEDWEID V=D
:_Nz r(N( ) ( N))_N21 )\2 (}\1‘2 2)7 N>2
reSn Hj:l(AT] - /\Tj+1) ( L= 2)
where — 691
i 2 DR sy LRI W G
M = 5

g=0 969- g' )\_39
6g+1 (6g—1!y — (69—5
_22210 631 (9gﬁg-g)! AT3H 2 Zg 1 969— e
For N =1, it follows easily from (1.4.12) the well-known formula

A~ 39+2
L(g—-1)!

<T39_2> = W fOT’ g 2 1.
Example 1.4.5 (r = 3)

We obtain from Theorem 1.4.3 that the only nontrivial one-point correlators
have the following explicit expressions

[ e -

M3m72,1

1

66m—4 (m

SO
/ ()¢8m 2 _ 1

T e, "
mSm,l

For N > 2, Witten’s 8-spin correlators can be computed from the formulae

i1 i
F3—spin( ) /\N) B _i Tr (Misl ()\81) oo MisN ()‘SN)) B 5N2 . )\1 h /\ (Zl /\1 + iy /\2)
21,eeyl 9t - 1112
1 ! N sESN H;'V:I()‘Sj - )\5j+1) ()‘1 )\2)
with explicit formulae of My(\) given in Appendiz A

Organization of the paper

In Sect. 2 we introduce the definition of tau-function and prove Thm 1.3.1
In Sect. 3 we define the essential series of g. In Sect. 4, we prove Thm. 1.3.2
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2 Tau-function of Drinfeld—Sokolov hierarchy

2.1 Fundamental lemma

Let g be a simple Lie algebra of rank n, L(g) its loop algebra. Fix h a Cartan subalgebra of g. We denote
by p¥ € b the Weyl co-vector of g, which is uniquely determined by the following equations

ai(pY) =1, i=1,...,n. (2.1.1)

Here a; € h*, i =1,...,n are simple roots. We define the principal grading operator gr on L(g) by

gr = h)\i +ad,v.

dA
It follows that dega = j € Z iff gra = ja, Ya € L(g). Decompose
L(g) = P L), acL(g) < gra=ja, jEL

JEL
Va € L(g), we will denote the principal decomposition of a by
a = Z alll, all e L(g)’.
JEL
The following lemma is elementary but it will be frequently used.

Lemma 2.1.1. Let z,y be any two elements in g = g®1 satisfying grx = k1 x, gry = key. If k1+ky # 0,
then we have (x|y) = 0.

Proof. Suppose k1 # 0. By definition, gr x = k; = implies [p¥,x] = k1 z. So we have

(@) = 10"l |y) = (e ) = (e ly) = 2]y ~0.

The lemma is proved. O

Lemma 2.1.2 (fundamental lemma, [19]). Let ¢ = q(z) be a b-valued smooth function, where b := g=0.
Let £ = 0y + A+ q(x). Then there exists a unique pair (U, H) of the form

U = ZU[_M()\;(]; Gz ---) € A?®@Imady, (2.1.2)
k>1

H = > HU(\gg,...) € AY®Kerady, (2.1.3)
JeEEL

where Im, Ker are taken in g(A\™')), and E, := {j > 0|j € E} such that

e UL =9, + A+ H. (2.1.4)

11



Proof. Eq.(2.1.4) is equivalent to
e Vo, o0el +e2du (g+AN) =0, +A+H.

More explicitly this reads

> (— J
ol (e A —asw (2.1.5)
= J! j+1

Comparing components with principal degree —k of both sides of (2.1.5) we obtain
HI7H 4 [U[‘k‘”,A} N </\; UYL uE g, oYy, L ,8x(U[‘k])> . k>0, (2.1.6)
Here, Gy, € L(g), k > 0. Moreover, entries of G}, are polynomials in the entries of
g, UYL uER g, (o), L o, (TR

whose coefficients are polynomials in A. The proof proceeds by induction on the principal degree. First,
for k=0 eq. (2.1.6) reads

70 [U[—u , A} — g, (2.1.7)

Observe that an element x € g has zero principal degree iff x € h. So gl belongs to h. Let us show that
h C Imadp. This is equivalent to orthogonality

(x|Apm,) =0 forany ze€bh, a=1,...,n (2.1.8)

Indeed, by Lemma 2.1.1, any element y € g of nonzero principal degree is orthogonal to §). It remains to
recall that any A,,, has the form A,,, = L,,, + A K,,,,—», where L, and K,,, _j belong to g and have
nonzero principal degree. This proves orthogonality (2.1.8). So we have H!% = 0. Noting that the map
adp : Imady — Imad, is invertible, and we have

u-i = adxl(q[o]) € Imadj. (2.1.9)
The second step of the induction clearly follows from eq. (2.1.6) and the decomposition

L(g) = Kerady @ Imad,.
The lemma is proved. O

Example 2.1.3. Looking at equation (2.1.5) with principal degree —1, we have
1
(-1 _ |yl-2] — Z |yl (—1] -1y _ (gyl=1 40 (—1]
H [U ,A]—Z[U ,[U ,AH—}-@C(U ) [U ,q }—l—q .

Since U2 is assumed to be orthogonal to Kerada, this equation uniquely determines HI=Y and U=2
as indicated in the above proof.

2.2 g-valued resolvents
Definition 2.2.1. Let ¢ = q(z) € b. An element R € A ® g((A™1)) is called a resolvent of L if
£, R] = 0. (2.2.1)

The set of all resolvents of L is denoted by M, called the resolvent manifold.

12



Lemma 2.2.2 ([19]). We have
M = eV (Kerady),

where we note that the kernel is taken in L(g), namely, Kerady = @jeE CA;.

Proof. Lemma 2.1.2 reduces the problem to considering the resolvent manifold of 0, + A + H. So, let us
look at the following equation for Ry € A9 ® g((A™1)) :
[Ri,0, + A+ H] = 0.
Decompose ' ‘
Ry = RE¥" + R RN ¢ A7® Kerady, R¥' € A?® Imad,.

It follows that N '

ORY" n ORY

ox ox

The RHS of the above equation is in the image of adp, so we have

= [RP, A+ H].

ker
algg =0, (2.2.2)
&f = [Ry" A+ H]. (2.2.3)

Equation (2.2.2) implies that R]f{e" can only depend on A. The rest is to show that Rz” must vanish. If
it does not vanish, then there exists an integer d such that

d
im im, |t im,[d
Ry =S Ry Ry 2o,

1=—00

Noting that deg H < 0, then looking at the highest degree term on both sides of eq. (2.2.3) we obtain

im,[d] | _
AR <o

So we have Rzn’[d} = (. This produces a contradiction. The lemma is proved. O

Proposition 2.2.3. Ya =1,...,n, there exists a unique solution to the following system of equations
[L,R]=0, ReA’®g(A")), (2.2.4)
R(X\;q,qz,-..) = A, + lower order terms w.r.t. deg, (2.2.5)
(Ra(Ni ¢, Gos - --) [ Ro(X5 4, Gas - 2)) = Bonap A (2.2.6)
This unique system of solutions Ry, ... R, is called in Sect. 1 the basic resolvents of the operator L.

Proof. The existence follows from the fact that eV (A,,,) is a solution, where (2.2.6) is due to (1.1.6),
and (2.2.5) is due to (2.1.2). The uniqueness follows from Lemma 2.2.2. O

Corollary 2.2.4. Let U be defined as in Lemma 2.1.2. Then the basic resolvents R, satisfy
R, = eV (A,,,), a=1,...,n.

Definition 2.2.5. Define Py, ink := \F Ry = €0 (A, 1hk), a=1,...,n, k>0.
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The pre-DS hierarchy can be written as

oL
aTyg

= [(Pmy+kn)+ L], a=1,...,n, k>0.

As customary in the literature, we will sometimes write T} as Ty, 4xh, a = 1,...,n,k > 0.

Lemma 2.2.6. Vi,j € E., we have

OP;
aTZ = [(Pi)—l-v Pj]a (2‘2‘7)
oAb+ 9P+ , N
OT] 8TZ + [(Pl)-i-7 (PJ)+] =0. (2.2.8)
Proof. Using the fundamental lemma 2.1.2 we have
oL
o7, — [(P)w L] = [3Tz (P)+, L] =0 = [8Ti+5i,ax+A—|—H]:0

where S; := Y77, (k+1) adk <8U> e~ [(P;),]. Clearly, S; takes values in A? ® L(g). Decompose

S; = Sker 4 gim Sker ¢ A9 @ Kerady, SI™ e A?®Imady.

Then we have

8H—aslker_
O _ 98 . (suA+H =0 = | om= o =0
oT,  ox S [Sim A + H).

Using the same argument as in the proof of Lemma 2.2.2 we find from the above equation for S™ that
S;™ must vanish. So S; belongs to A? ® Kerad,. On another hand,

oP,
oT;
Hence eq. (2.2.7) is proved. Clearly eq. (2.2.7) implies eq. (2.2.8); this is because

Lhs. of eq. (2.2.8) = [(F))+, Pil4+ — [(P)+, Pjl+ + [(P)+, (Py)+] = 0.

=[(P), Bl & [0n,—(F)+, Pl=0 < [0, =5, Aj]=0.

O
Lemma 2.2.7. Va=1,...,n we have
V() Rat) = BRI g, R, Qui= Coet(Ru(). ). (229)
Proof. We have
Ore Ry( k
va()\) Rb(ﬂ) — Z TAkfl — Z [(M Ra(/;\i?:iv Rb(lu’)]
k>0 k>0
regopR“( e Ralp) g, Ry(p)]
- Z = et
k>0
o 1 Belr). Bl
20/ =1 Jju<ppl<ny - A= p)(p— 1)
— DR [coet(, (). 0. Bu(]
O
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2.3 Two-point correlation functions

Recall that in Def. 1.2.1, the two-point correlation functions €2 1., , was defined by

Z Qagpe  (Ra(N)[Ro(p) . bma)\ + mpp (2.3.1)
Rl 01 — 2 a IRV "
S Nt (A=) (A=n)
Lemma 2.3.1. Def. 1.2.1, i.e. the above formula (2.3.1) is well-posed.
Proof. Noting that!
Ry(A) — R

Ry(p) = Ry(N) + By(N) (1 — A) + (11— \)2 Oy (%ﬂ’)(“)) (232)

and using egs. (1.1.6) we have
(Ra(A) | Ro() hA — (Ra(N) | Ry(N)) Ry(A) — Ry ()
w2 T TR R“(A)‘(% A—p ’

Wl

In the above formulae, prime, , denotes derivative w.r.t. the spectral parameter. Since R,(\) =
O\Y), a =1,...,n, it follows that the third term in the above identity has the form as the l.h.s. of
(1.2.1). Therefore it remains to show

. h A (Ra(N) | Ry, () . Mma + mpp
ab - — Tlab
(A —p)? A—p (A —p)?

has the form as the Lh.s. of (1.2.1). We will actually prove the above expression vanishes. Indeed,
9 (Ra(N) | BYN) = ([Ra(N). A + al | BYN) + (Ra(N) [[RE(N) A +q] + Ry, A]) =0, (2.33)

Here we have used the ad-invariance of the Cartan—Killing form and the commutativity between resol-
vents. Noting that R, € A7® g((A™!)), we find that (2.3.3) implies that (R,(\) | Rj()\)) does not depend
on ¢, ¢z, ¢z, - - -, i.6. it is just a function of A. Hence

(Ba(0) | BYN) = (RaN) | BN 0120 = (A [ A,) -

The second equality uses (2.2.6). To compute (A, ]A’mb), as before, write

Ay = Loy, + ANKppo—pyy  Lim, € 9™, Kppy_pn € g™ " a=1,... n.
Using Lem. 2.1.1 we have
(Ama ‘A;’I’Lb) = (Lma ’Kmb_h) N
Note that (Ay, | Am,) = Nap b A implies that
(Limg | Kmy—n) + (Lmy, | Ko —n) = Nap b (2.34)

The commutativity [As,,, Am,] = 0 implies that

[Kma_h7 Lmb] + [Lma,7 Kmb_h] = O

"We would like to thank Anton Mellit for bringing our attention to the useful formula (2.3.2).
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Applying (p" |-) to the above equation and using the ad-invariance of (-|-) we have

([p", Ko=) | L) + (07, L) | Kny—n]) =0 = (ma = h) (Kg—n | L, ) + ma (L, | Ky —])

Combining egs. (2.3.4) and the above equation we obtain

(Lma ’Kmb—h) = Tab My, Va,b=1,...,n

Hence hA (R (A)|R,(>\)) mA—Fm
Mlab B - b — Nab a bH =0.
(A= p)? A— 1 (A —p)2
The lemma is proved.
Proposition 2.3.2. The following formulae hold true
Qakbo
Z NerL T Ro(N) | Qb) — by,  a,b=1,...,n.
k>0
In particular, we have
a Sla,k;1,0
Z Aot T Ry(N)|E_g) = Na1, a=1,...,n.
k>0

Proof. Taking in (2.3.1) the residue w.r.t. u at u = oo we obtain (2.3.6). Noticing that
Ri(n) =pE_g+ I + terms with principal degree lower than 1

we must have Q1 = Coef(R;(u), u') = E_g. This proves (2.3.7).

2.4 Tau-function: Proof of Lemmata 1.2.2, 1.2.3

= 0.

(2.3.5)

(2.3.6)

(2.3.7)

We are ready to introduce our definition of tau-function. We begin with the proof of Lemma 1.2.2.

Proof of Lemma 1.2.2. First of all we have
v Soiwe B FBow) | madtmon _ Bl | BalV) | moi+mad
L N w2 T2 P A TR YE

B Z Dpksae Z D pa.k
- k+1)64+1 1 N\k+1
k>0 P k>0 P

where we have used the symmetry property of 7y, and (:|-). It follows Qg .0 = Qp 20,k
Secondly, we have

Ore Qak;pe Qo kibe
kgzm;(] gm-i—l/\k—i-l (41 k;o /\k—i-l (41
(Ve(&) Ra(N) | Rp(p)) N (Ra(N) | Ve(€) Rp(p))
(A —p)? (A —p)?
([Re(§); RaW)] [ Bo(p)  ([Qes Ra(N)] | Rp(p))
(A=) - N) (A —p)?

(Ra(/\) | [Rc(£)7 Rb(:u)]) _ (Ra(/\) | [Qm Pb(/‘)]) )

O e A= p)?
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Clearly the two terms with negative signs give a zero contribution due to the ad-invariance of the Cartan—
Killing form. The remaining two terms simplify to

([Rc(é),Ra(A)]le(u))< 1 )Z_([RC(E),Ra(A)]IRb(u))
(A —p)? E-X E—p A=) p—=E =N~

So we have

o SN T ) (= (€ -2

T §<9Tc Qa kip,0) ([Re(€), Ra(M)] | Ry (1))

This gives also

FIgHEL T (=) (=DM =€)

Z 87“@ c,m;b Z) ([Ra(/\)a Rc(&)] | Rb(:u))
2k
k,£,m>0
Hence
Ore, (Qak;p,0) = Ore (e mspe) (2.4.1)
due to skew-symmetry of the Lie bracket. The lemma is proved. O

Proof of Lemma 1.2.3.  Thirdly, we show the compatibility between (1.2.5) and (1.2.4), namely, to

show that
Mt Oap L

oTLo Ox
Taking ¢ = 1,m = 0 in the already proved identity (2.4.1) we have

O (Q1,00,0) = Op1 (ks b)-

(2.4.2)

Hence (2.4.2) is equivalent to
ONobe  Oakpe

orek oz
Now we make a generating function: the above identity is equivalent to

Z ag%szz T 8Q§§H .
k0
We have
_ RHS = B(amia(_z)ua})lzb(w)) B(Ra((zz)_,alz)ﬁ;b(w))
_ B(Ra(2), Az) + gl Bs(w)) | B(Ra(2), [By(w), A(w) +g])
(z —w)? (z —w)?
_ BAGE) +4q, [By(w), Ra(2)])  B(A(w) + 4, [Ry(w), Ra(2)])
(z —w)? (z —w)?
_ BA(z) = Aw), [Ry(w), Ra(2)])
(z —w)? '
Recall that
A(z) =11+ zE_y, Aw) =11 +wE_y.
So we have
_RHS — B((z—w)E_yg, [Ry(w), Ra(2)]) _ B(E_y, [Rb(w%Ra(Z)]).

G - w)? (= - w)
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On another hand, we have

LHS = V(2) ZQl,o;bJU)_l_l
l
= V() [B(E-p, Ry(w)) + const]
= B(E-¢,V(z) [Ry(w)])
= DB BN | oy, (@0 Bw)

Z—w

w

We note that the second term of the last expression must be zero because
deg Qo +h <m, = [E_p,Qa] = 0. (2.4.3)

The lemma is proved. U

Hence we have arrived at our definition of tau-function, i.e. Def. 1.2.4. In the next subsection, we will
prove the gauge invariant property of our definition.

2.5 Gauge invariance

The change of the Lax operator
L=, +A+qzx) = L=eWoL=0,+A+Gx), N(z)en (2.5.1)

is called a gauge transformation g — §. It will also be convenient to deal with the infinitesimal form of

(1.1.14), L= L + 6L,

ON (z)
or

Let éa, a=1,...,n be the basic resolvents of L. Tt is not difficult to verify that Va =1,...,n, R, =
NG R,

0L = [N(x),L] = [N(z),q(x) + I+] — (2.5.2)

Lemma 2.5.1. The gauge transformations (1.1.14) are symmetries of the pre-DS hierarchy.

Proof. We have to prove the commutativity

oo _ooc
0s 0T 0T Os
between the j-th flow of the pre-DS hierarchy

oL )
ﬁ:[(Pj)Jraﬁ}, JEEY
J

and the flow given by the infinitesimal gauge transformation

oL
N,
55 — VL]
for some n-valued function N = N(z). Using (1.1.15) we derive
OP;
N, P;
2. = V. Bl

So, after simple calculations with the help of the Jacobi identity we compute the difference between the
mixed derivatives
0 oL 0 oL

o = o = [N, B, — [N, (P)
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The two-point correlation functions ﬁmk;b,g, k,¢ > 0 associated to L are defined by

Z ﬁa,k;b,é (Ra()\) ‘ Rb(:u’)) 0 ma/\ + mpu (2 5 3)
k1041 — )2 — Ylab — 2 -
o N (A=n) (A=n)
Lemma 2.5.2. Va,b € {1,...,n}, k,£ >0, we have ﬁmk;b,g = Qq kb t-
Proof. (Ra(\) | o)) = (213 Ry(A) | €256 Ry (1)) = (Ra(N) | By(12) O
In a similar way one can easily prove that ¥ N > 2 the correlation functions ((To,, - - - Tayky )2 are
gauge invariant.

Now we are ready to prove Lemma 1.2.6.
Proof of Lemma 1.2.6. The lemma easily can be proved by applying Lem. 2.5.2 and Def. 1.2.4. U

Due to Lemma 1.2.6 it is clear that ¥ N > 3 the correlation functions ((Ta,; - - - Tayky ))2° are gauge
invariant.
2.6 Gauge fixing and Drinfeld—Sokolov hierarchy
We consider in this section a particular family of gauges [19, 5, 23].
Definition 2.6.1. A linear subspace V C b is called a gauge of DS-type if b =V @ [I+,n].
Let V be a gauge of DS-type. The fact that ad;, : n — b is injective implies dim¢ V = n. Write

v= P v, Vcyg.
j==(h—1)
Denote b/ = bNg’/. We have b/ = VI @ [I,,677!), j = —(h—1),...,0. Clearly, V-1 = CE_4. Noticing
that for j = —(h —1),...,0, the dimension dim b’ can be different from dim b/~! 4ff —j is an exponent
of g [47, 19], we find that V7 is a null space unless (—35) is an exponent. Thus
n
V=PV, dimeV,=1
a=1

where non-zero elements in V, have principal degree —m,. We now take a basis {X',..., X"} of V

satisfying deg X% = —my,. It has been proved in [19] that for any Lax operator £ = 9, + A + ¢g(x), there
exists a unique n-valued function N°*(z) such that

ednean@) £ — 9, 4 A 4 ¢°¥(x) =: L,  for some V-valued function ¢°". (2.6.1)
Write ¢“@ = > we X = (w1, ..., w,). The DS-flows of ¢°*", or say of w,, can be written as
aqam k aeNcan _Ncan
— | (x R“””) L c|. 2.6.2
orTy [( o )4 } + [ Ty ¢ ( )

A priori the RHS of (2.6.2) has a dependence in ¢, as we can see from the second term that it contains
flow of components of n. However, Lem. 2.5.1 says that the gauge transformation is a symmetry of the
pre-DS hierarchy. So RHS of (2.6.2) depends only on ¢“*", i.e. w,, a = 1,...,n satisfy equations of the

form
Oow,

a7 = Gabk (€6 02" ), k20, (2.6.3)
k
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Definition 2.6.2. Equations (2.6.3) are called the DS hierarchy of g-type associated to V.

Let R.™ be the basic resolvents of £°", and QZ"IIZM the two-point correlations functions of £, i.e.

) Qokve _ (BE™ (V)| RE™ (1) MaA + mpp
A

k1,041 IRV — Nab —5 (2.6.4)
k,£>0 H (A—n) (A—p)

Corollary 2.6.3. Let 7(T) be a tau-function of the DS hierarchy. The following formulae hold true

2)
% —Qen . Yab=1,....n k>0
k l

Proof. By gauge invariance of two-point correlation functions. O

We also call 7(T) a tau-function of the solution ¢*®*(T) = (w!(T),...,w"(T)).

2.7 Proof of Theorem 1.3.1

The proof will be almost identical to the proof for the case g = Aj case [7]. Let V be any gauge of
DS-type. Fix X!, ..., X" a basis of V satisfying deg X% = —m,,.

Lemma 2.7.1. Let L = 9, + A + ¢“™™, ¢ => ", w, X For every a=1,...,n a solution to

Lo, R =0, R™ e AV ® L(g),

R\ w; wy, wag, . ..) = A, + lower order terms w.r.t. deg,

R™(X;0;0,...,0) = A, (2.7.1)
exists and is unique. Here w = (wy,...,wy,).
Proof. The lemma is a particular case of Prop.2.2.3. O

Proof. of Thm.1.3.1. For any permutation s = [s1,...,sp] € Sp, p > 2, define

P
1
P(s) = — H SV sy = gy -
j=1""%

Sj+1
We first prove the generating formula of multi-point correlation functions of a solution of the pre-DS

hierarchy, then we use the ad-invariance of B for the gauge-fixed case.

Let £ = 0, + A+ g(x), g(z) € b be a linear operator, R, the basic resolvents of £. For an arbi-
trary solution g(z, T) to the pre-DS hierarchy (1.1.13), let 7(T) be the corresponding tau-function, and
Fo, ...any(T), N > 1 the generating series of N-point correlations functions of 7(T).

We now use mathematical induction to prove formula (1.3.4) with R replaced by R. For N = 2,
the formula is true by definition. Suppose it is true for N = p(p > 2), then for N = p + 1, we have

Fa17~~~7ap+1 ()‘17 s 7/\p+1§ T) = Vorp+1 (/\p+1) Fa17~~~7ap()\17 ceey >‘;D§ T)
B (Ra,,(\)s -5 oy O0s,)
?:1()‘83' - )\5j+1)

Rea, 1 (Ap+1)
. 1 Z zp: B <Ra31 (Asl)v R [);jiii_;:: + QaerlaRasq (Asq)] Y 7Ra3p ()‘Sp)>
a 2hVY p H?:l()\sj - )\Sj+1) .

s€Sp q=1

1

= T2 Vo Q1) D
s€Sp
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Recall that the elements @, € g were defined in eq. (2.2.9). Now we observe that the terms containing
the commutator with Q,,,, sum up to zero due to the ad-invariance of B, namely due to the formula

p
> (X1 A X Xgi, -, Xp) =0, VX1, X, AEg.
g=1

Thus we are left with

B (Raw, (A1) -+ Raey, sy )s By )y By (s, )5 Ry (0,

/\p+1 - /\sq

p
- thpz Z;

s€Sy q=

B (Rasl (A31)7 ctt Rasq71 (Asq71)7 Rap+1 (/\p+1)7 RCVSq (Asq)7 e 7Rasp (Asp)>

Ap+1 — Asyy

- )\Sqfl)

Il
[\)
Z| =
s
3
V)
~—
[~
~
v
<

Sy
=)

Ocp+1 Ap+1), aéq ()\Sq)7 s 7Ras,, ()\Sp)7 Rasl (Asp)s-- -5 Ra, 1 (A5q71)>

o1 — X)) Opr1 — As, 1)
- 2h\/ ZZPp+1Sq7"'7sp731,...78p_1])

q=1 seS,

B (Rap+1 Apr1)s Ras, sy -+ Ry, (N )s Raray (M1 )s - s R,

1
= 557 2 PUp+ 18D B (Ray i), Ry O)o- o B (0,))
s€Sp

q—

L O,)

q

For any gauge V of DS-type, there exists a unique n-valued smooth function N(z) such that

eadN(””)ﬁ — [ean
Observing that Ea = 2N @ R, and using the Ad-invariance of B we obtain

B (R (). B2 (M)

asq Qs pny

2N hY Hg 1()‘ _)\Sj+1)

S Mg, A1+ Mao A2
— ON2 TNajas ()\1 _ )\2)2

Fa17___7aN()\17. .. 7)\]\7":[‘) = — Z

seSN
Finally, Fo, . ax (A1, A T) € AT AT ,/\J_Vl]] due to Lem. 2.7.1. The theorem is proved. O
Corollary 2.7.2. For an arbitrary solution ¢“*" to the DS hierarchy of g-type associated toV let T be a

tau-function of this solution. The following formulae hold true

DS
Ta,kTo can can
E —<< )\k+01>> = (RS™(N) | Q5™) — Napy mp,  a,b=1,...,n. (2.7.2)
k>0
In particular, we have

7-(1 T DS can
S Wk (R (3) | Bog) . a=1,....n (2.7.3)
k>0
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Proof. Taking in (1.3.4) with N = 2 the residue w.r.t. p at g = oo we obtain (2.7.2). To show (2.7.3),
we only need to notice that for b = 1, Coeff(R$* (1), ut) = E_g. Indeed,

RE™ () = NE_g+ Iy + ...

Here, the dots denote terms with principal degree lower than 1 which contain no more A\'-power. O

More explicitly, let (U™ H™) be the unique pair associated to £°". Note that
RE™ = edveen Ay, (2.7.4)
Also note that Eq. (2.1.2) implies that U™ must have the following decomposition

Uern = Z uean \—k, U™ en, U €g, k> 1.
k>0

Hence we have
QL™ = Coeff(RE™ (), ) = ™06 Kpy—hy, b=1,...,n. (2.7.5)

Before ending this section, we consider taking a faithful irreducible matrix realization 7 of g. Let
be the unique constant satisfying

(a|b) = x Tr(w(a)w(b)), Va,beg. (2.7.6)
For simplicity we will write 7(a) just as a, for a € g. Similarly as Thm. 1.3.1 we have

Proposition 2.7.3. Let V be a gauge of DS-type, L™ the gauge fized Lax operator (2.6.1), and RS™, a =

1,...,n the basic resolvents of L. For an arbitrary solution ¢°“*(T) to the DS hierarchy associated to
V, we have
F, (A Ay;T) : > Tr BT As1) - Ball (Asy) SN Nayay =2 AL+ May A2
al,...,aN 1y+++3AN; = - N — ON2']ajaz — 2
x-N s€SN Hj:l(/\sy‘ o /\Sj+1) (A1 = A2)
(2.7.7)

Remark 2.7.4. The r.h.s. of (1.3.4) and the r.h.s. of (2.7.7) coincide. However, this does not mean
the summands coincide with each other.

2.8 An algorithm for writing the DS-hierarchy

Let V be any gauge of DS-type, {X',..., X"} a basis of V s.t. deg X% = —m, and let

LM =0 b A+ g (@), () = D wale) X°.

a=1
Recall that there exists a unique n-valued function N°"(x) s.t.

eadN“‘mﬁ — [ean

Denote by R:*, a = 1,...,n the basic resolvents of £L°*". The corresponding DS-hierarchy will be defined
as in (2.6.2). Although we know that RHS of (2.6.2) depends only on ¢“*", ¢5*", ..., the second term of
RHS of (2.6.2) contains evolution of general components in n.

So the following question is under consideration:

n

For any given gauge V, can we write down the DS-hierarchy for ¢° using only the information of

R 7

Let us give a positive answer to this question by using our definition of tau-function.
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1. Compute the basic resolvents R:*, a =1,...,n.

2. Calculate the Miura transformation w, — 7, from eq. (2.7.3). Recall that the normal coordinates
are defined by 7, := ((14,071,0)) .

3. Calculate ((7)74,0))7 from eqgs. (2.7.2). Note that the DS-flows for the normal coordinates r, are

org

oTb:k = _8w <<Tb7ka170>>st a, b= 17 sy 1, k > 0. (281)

The r.h.s of egs. (2.8.1) are differential polynomials in w. Substituting w, +— 7, in the r.h.s. of
egs. (2.8.1) we obtain the DS hierarchy for r,.

4. Substitute the inverse Miura transformation to the DS hierarchy for r, we obtain the DS hierarchy.

3 Computational aspect of resolvents

3.1 The lowest weight gauge

Recall that there is a particular choice of a gauge of DS-type [5], called the lowest weight gauge. Let us
review its construction. Write the Weyl co-vector as p¥ = Y"1 | z; H;, z; € C and define

n
I_=2) a;F, (3.1.1)
i=1

Then Iy, 1_,pY generate an sly(C) Lie subalgebra of g:

L) =Le, [V 1) =—I, [L,1]=2" (3.12)
According to [43, 5] there exist elements v!,...,y" € g such that

Kerad; = Spanc{y',...,7"}, [pY,7] = —m "
Since v € CE_y we could and will normalize it to be
V" =E_g. (3.1.3)
The subspace Kerad;_ C b is a gauge of DS-type, which is called the lowest weight gauge. Denote by
L =0y + A+ ¢“"(x)

the gauge fixed Lax operator associated to Kerad; , where ¢“"(z) := Y 0| uq () v*.

Definition 3.1.1. The functions u,, a = 1,...,n are called the lowest weight coordinates.

3.2 Extended principal gradation

Definition 3.2.1. Define the extended principal degree by the following degree assignments

deg®0, =1, deg®A=h, (3.2.1)
deg®u; =m; + 1, (3.2.2)
degE; =1, deg°F,=-1, i=1,...,n. (3.2.3)
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It is easy to see that, if a € L(g)’ then deg®a = dega = j. Namely, the extended principal degree
coincides with the principal degree for any loop algebra element. In particular,

deg®~' = —m;, deg® adhvi =—m; + j, j=0,...,2m,. (3.2.4)
Lemma 3.2.2. For the gauge-fixed Lax operator L, we have deg® L™ = 1.

Let (U™, H®™) be the unique pair associated to £, and R5"™ the basic resolvents.

Lemma 3.2.3. The following formulae hold true
deg® U™ =0, deg® H“" =1, deg®R;" = m,, a=1,...,n. (3.2.5)
Proof. By using the recursion procedure (2.1.6) and by the mathematical induction. O

Corollary 3.2.4. The N-point (N > 2) generating series of correlation functions Fy, _ an(A1,...,An;T)
are homogenous of degree —Nh + Zévzl Mg, w.r.t. the extended principal gradation.

3.3 Essential series of the Drinfeld—Sokolov hierarchy

Recall that the simple Lie algebra g admits the lowest weight decomposition [5]
n
2maq
g= @ £ £% = Spanc{~?, adr, ~*,... ,adIT v}
a=1

where each £ is an sl(C)-module w.r.t. the slo(C) Lie subalgebra generated by I, I_,2p", called a
lowest weight module. It is then clear that any g-valued function R(\) can be uniquely written as

n 2mg
R(\) = 2_:1 Z:O Kam(X) ad 7"

Theorem 3.3.1. Let L = 0y + A+ ¢“" = 0y + A+ >0, ug Y™ be a Lax operator associated to the
lowest weight gauge. Let R € A" ® g((A™1)) be any resolvent of L. Write

n n 2m;—1
2m; 1 i
R = Z Riadi ™y + Z Z Kim ad, " (3.3.1)
—1 i=1 m=0

We have 1) Vi€ {1,...,n}, m €{0,1,...,2m; — 1}, K;;,, has the following expression
n 2m;—m ' '
Kim=7, ), (S?,e,o + /\8?1,1) 9, (R;),

j=1 =0

where the coefficients S?éO’ sgg | belong to A“, and they do not depend on the choice of the resolvent.
2) The ODE [L", R®"™] = 0 is equivalent to n scalar linear ODEs for Rq,..., Ry,
3) The following formulae hold true for the degrees of the coefficients (3.5.1) of the basic resolvents

deg®Ry.i = mg —my, deg® Kg.im =mg+m;—m, t,a=1,...,n;m=0,...,2m; — 1. (3.3.2)
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Proof of Thm.3.3.1  Write

n  2m;
R\ usug,...) = Z Z Kim(\usug, .. .) ad?iyi, Kiom, = Ri.
i=1 m=0

Substituting the above expressions into (2.2.4) we obtain

n 2m; n  2m; n  2m;
ZZaKm m +ZZK”” 1ad1+7 + A" +Zum,22[(lmad]+7 0. (3.3.3)
i=1 m=0 i=1 m=1 i=1 m=0
Introduce the lowest weight structure constants c?}j s by
n 2m;
[, ad?ﬁ’yi] = ZZ Clijs ad?yyj, iLwi=1,...,n,m=0,...,2m,. (3.3.4)
j=1s=0

Substituting (3.3.4) into (3.3.3) we obtain

n leakf n  2m;
D2 gy a0 ) Kimoyadfy!

i=1 m=0 i=1 m=1

n n 2m; n 2mj

DD DD wKim iy adiy’ =0 (3.3.5)

¢=1 i=1 m=0 j=1 s=0
where uy = ug + A9y, It follows that

n n  2m;

K ; .
Kjo1+ JS+ZZZ U Kimcglis =0,  j=1,...,n,s=0,...,2m;. (3.3.6)
¢=1 i=1 m=0

Here K; _; := 0. Noting that the structure constant Cpijs Ar€ Z€TO unless

0<m=m;+my+s—mj<2m,. (3.3.7)
Hence we obtain
0K; . _ Fmet .
Kjo1=— axjs— ST i Kinrmgrs—m, e, =10, s=0,...,2m;. (3.3.8)

2,i=1

miz\mlJﬁsfmj\

Define an ordering for pairs of integers {(j,s)|j =1,...,n,5s=0,...,2m;} : we say (ji,s1) > (Jj2,52), if
s1 > sg, or 51 = sg and j; < j2. Noting that K o, := R; we can use (3.3.8) to solve out Kj ;1 in terms
of R; and their z-derivatives starting from the largest pair (j,s — 1) = (n,2m, — 1) to the smallest pair
(j,8 — 1) = (n,0). This proves Part 1) of the theorem.

Taking s = 0 in (3.3.8) we obtain the system of ODEs for Ry,...,R,, which proves Part 2).
Formulae (3.3.2) follow from Lemma 3.2.3 and eq.(3.3.1), which proves Part 3). O

Definition 3.3.2. We call Ry;1,- .., Ran the essential series of the DS hierarchy of the g-type.

Using the same argument as in [8], the essential series R, never vanishes.

Definition 3.3.3. We call R, the fundamental series of the DS hierarchy.
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4 Proof of Theorem 1.3.2

4.1 Relation between normal coordinates and lowest weight coordinates
The concept of normal coordinates was introduced in [26]; see also [24].
Definition 4.1.1. We call v, := <<Ta70T170>>DS the normal coordinates of the DS hierarchy.

Recall that
Ay (N) = Lop, + AN, Lo, € g™, Ky, _p € g™

Using the commutativity between A,,,,...,A;,, along with the normalization (1.1.6) we have

[Lings L, ] = 0, [Kny—ns Komy—n] = 0, (4.1.1)
[Kma_h7 Lmb] + [Lma,7 Kmb_h] = O

and
(Limg | Kmy—1) = Nabmp, Va,b=1,... n. (4.1.3)

Note that L,,, = Iy, we have in particular
I+, Lpy,]=0, Ya=1,...,n. (4.1.4)
Therefore the elements L,,, are the highest weight vectors of the lowest weight module £%, i.e.
L, = const - ad?T“’ya, const # 0.
Lemma 4.1.2. The lowest weight vectors ¥* can be normalized such that
(| Ly,) = 1. (4.1.5)

Proof. We know that different irreducible representations of sly(C) are orthogonal w.r.t. to (-|-) and,
hence, the nondegeneracy of (-|) implies the nondegeneracy of its restriction to each irreducible repre-
sentation. Note that

(v*ad} Ly,)=—I-|[y%ad¥ 'L, ]) =0, VEe{l,...,2m,}.

So (¥*| Ly, ) # 0 since otherwise we obtain a contradiction with the nondegeneracy of (-|-). Hence for
a=1,...,n—1, we can normalize v* such that (y* | L,,,) = 1. Particular consideration must be addressed
for 4™, since we have already defined 4" = E_gy. Taking in (4.1.3) a = n, b = 1 we obtain

(L, ’Km1—h) =1 = (Lm, ’E—G) =1,
which finishes the proof. O

From now on we fix a choice of 7!, ..., " satisfying (4.1.5). Then Lemmata 2.1.1,4.1.2 imply
(4| Luny) = 3. (4.16)

Note that for D,, with n even, eq. (4.1.6) is valid with a suitable choice of A2 /24

According to Cor. 3.2.4 and Thm. 1.3.1, ({74 x71,0)) are differential polynomials in u, homogeneous of
degree
mg + 1+ kh

w.r.t. to deg®. In particular, we have
deg®r, = mg + 1, a=1,...,n.

We arrive at
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Lemma 4.1.3. There exists a Miura transformation uw — r of the form

Ta = CqUq + Pylug, ... uq—1], a=1,....n (4.1.7)
for some non-zero constants c,, where P, are differential polynomials in uy,...,uq—1 satisfying
deg® Py[ug, ..., uq—1] = mg + 1. (4.1.8)

Remark 4.1.4. For D,, with n even, Lemma /.1.3 is valid with a suitable choice of 42, 4"/2+1.
Remark 4.1.5. The inverse Miura transformation has the form

Uy = ¢ g 4+ Po([r1, - - -, Ta1]), (4.1.9)
thanks to the triangular nature of the transformation (4.1.7).

Lemma 4.1.6. The constants ¢, in Lemma 4.1.3 have the following explicit expressions

Co = —%. (4.1.10)
Proof. Fix a € {1,...,n}. We are to compute 74|y, u,_,=0. Assume u; =0,...,uq—1 = 0. Looking at
equation (2.1.5) for the pair (U, H) we obtain
yHl = =plbmd == gl-l = = glt-md,

The first nontrivial equation arises from the component of principal degree —m, in (2.1.5):
Hlmmal [U[_m“_l},A} = ugY* (no summation in a). (4.1.11)
Let us decompose the elements HI=™el U7[=ma=1 a5 follows

_ 9a(T) ga(T)

Hl=mal 3 Ap—m, = ga(x) K_p, + 3 Lym,, a=1,...,n,
1
U[_ma_l] = XYh—ma—l +W—ma—la a=1,...,n—1,
1
[—mn—1] = Y,
U 3 Yo-
Substituting these expressions in (4.1.11) and comparing the coefficients of powers of A we obtain
A gu(x) Ly + [Yaemg—1,1+] = 0, (4.1.12)
A gu(@) Koy + [Yaema—1, B—g] + Weoma—1, 14] = ua?, (4.1.13)
M W 1,E_9]=0 (automatic!). (4.1.14)

Since Lj_p,, is the highest weight vector of the irreducible slo(C)-module £"*t17¢ the solution to
eq. (4.1.12) is
ga(T)
Y _ _ =
h=ma=1 2(h —my)

for some function f(x) which is a differential polynomial in u. So we have

I Lhmg] + f() Lh—m,—1

Wiomet ot = 5 1 (Lo Bool] + £0) o1, Bl
A2 (L K 4 @) B Bl (0015)
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Plugging (4.1.15) into (4.1.13) we find

9a(2)
ga(l‘)K—ma + m

Employing the Jacobi identity we obtain

h 9o ()
K., + |1, -9
h —my a+{+ 2(h —my)

Taking the inner products of both sides of the above equation with L,,, we have
(1|2 9ul) (L K]
Ma

h—mg 2(h — ma)
Noticing that L,,, is a highest weight vector of the sla(C)-module L%, i.e.
[Lma ’ I—l—] =0, [Lmath—ma—l] =0,
and using (4.1.3), (4.1.5) we obtain

[ K )+ Wemg 1, L)+ F(@) B, B—g) = 0™

0a(a) K] — W_ma_l} @) L1 Bg) = ™.

K_,, + |:I+ > - W—ma—1:| + f(x) [Lh—ma—la E—G]) = Uq (Lmah/a) .

(4.1.16)

0(0) = e (e 19°) @) = a2,

: Lma | K_ma)

Using Def. 4.1.1 and eq. (2.7.3) we have
1
—Tq = res (eUAmae_U ‘ E_9> = res (Ama()\) ‘ E_¢g—[UN),E_g] + E[U(A), [UN), E_g]] + .. >
The only possible contribution to the residue comes from the terms of principal degree —h — m, and the
first one in the series is easily seen to be residueless

Jes (A, (N)|E_g)dX\ = 0.
Note that we have already shown that U has the form
U=yltmetiy S gl

J<—mgq—2
Therefore only the very next term —(A,,,(\) | [U(\), E_g]) can contribute to the residue. Thus

ra = 105 (A, (W) U, B-]) = ves (A, () [[UE70(0), BL] ). (4.1.17)
Now substituting
1
A, (N) = XKy —p 4 Ly, UMl = S Yhome-1+ Wom, 1 (4.1.18)

in (4.1.17) we obtain

- ra($) = <Lma [Yh—ma—la E—G]) = <Lma [%[I—7Lh—ma] + f(l‘) Lh—ma—lyE—6:|>
— S (L | (B0, L] 1))
S (L | (K 1) 120) = o225 (11 (1 L) [ K o)
= 0al0) e (D | Koy ) = 5% a(0)
The lemma is proved. U
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Remark 4.1.7. For the A, case, a similar lemma on relations between normal coordinates and Wronskian-
gauge coordinates was obtained e.g. in [9]; see Lemma 3.1 therein.

4.2 Partition function and topological ODE

The partition function of the DS hierarchy of g-type is a particular tau-function specified (up to a
constant factor) by the string equation (1.3.5). The compatibility between the string equation and the
DS hierarchy follows from the fact that the flow J; , defined by

or

: Zztk+1ata+ ZnabtotoT il

a=1k>0 a,b=1

is an additional symmetry of the DS hierarchy.

The function u = u(T) = u(t) associated to Z(t) is called the topological solution to the lowest-
weight-gauge DS hierarchy, and r = r(t) = r(T) the topological solution in normal coordinates.

Lemma 4.2.1. The normal coordinates associated to the partition function Z satisfy

h—1 —h
Ta(®)lg—s¢ 50ty = ~Oan to,  wi=V-h . (4.2.1)

Proof. By applying the t§-derivative on both sides of eq. (1.3.5) we have

0%log Z 5 o4
otlotd le=soo oty "V
Hence from (1.3.6) we obtain
D>*log Z h—1 h
= —San—— VN .
OTE OTE ltg=5¢ 6401} “np 0
The lemma is proved. O

Lemma 4.2.2. The topological solution to the lowest-weight-gauge DS hierarchy of g-type satisfies

Ly
Ua(®)lig—s7 5ty = dan — to- (4.2.2)
Proof. By applying Lemma 4.1.3, Lemma 4.1.6 and Lemma 4.2.1. O

Topological ODE of g-type. Let u = u(T) = u(t) be the topological solution to the lowest-weight-
gauge DS hierarchy. Note that

t(l) = —Tol = 2.
Define
Ma()Hx) =\ Rgan|tz=x5ll75k’o7 a=1,...,n;
then we have .
[ax A+ M, x)} ~0. (4.2.3)
Noting that v = E_g we have
9, (M,) + [1+ + </\ + f) E_y, Ma} =0, a=1...,n. (4.2.4)
K
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Lemma 4.2.3 (Key Lemma). The following formulae hold true

1
Or (M) = " O\ (M,), a=1,...,n. (4.2.5)
Proof. Consider the transformation of independent variables (A, z) — (s,z) defined by
s=A+ E, T =1
K
Then we have 1 dM
p ds“+[I++sE_9,Ma]:O, a=1,...,n. (4.2.6)

Note that eq. (4.2.6) for M, is the topological ODE of g-type [8]. At s = oo, M, is a regular solution
satisfying that
M, = s & A, (s) + lower order terms w.r.t. deg?. (4.2.7)

According to the uniqueness part of Thm. 1.2 in [7] we have
My(s,z) = My(s). (4.2.8)
The lemma is proved. O

Proof. of Thm.1.3.2.  Note that M,(\) = M,(\;x = 0). Substituting eq. (4.2.5) into eq. (4.2.4), and
then taking x = 0. we obtain

L, My(\)] =0, L= +rA,

Ma(A\) = A~ % [Am, (A) + lower order terms w.r.t. deg?].

The theorem is proved. O

Proof. of Thm.1.4.2. By Thm-ADE, Thm-BCFG, Thm. 1.3.1, and by Thm. 1.3.2 we obtain

()
k[-i-l

(Ti1k1 s TiNkN>g

N
(I{\/—_h)N Z k1+ kN H

77Lil

g7k1,...,kN>0 < > +ko+1
! B (Wi, (Ast)s s My (Asy))
2N hv SESN H‘A;V::l(j\ - )\SJ+1)
LMy Mg - -
R z . .
—ON2 Miyis M A (mll At i, /\2), N > 2. (4.2.9)
(A1 — A2)?
where M, = Ma(S\), a=1,...,n are the unique solutions to
dM —h
=" IM,AQN)], k= (\/_h) ,
M,(\) = A\~%" [Ama(:\) + lower degree terms w.r.t. deg] .

Now consider the following conjugation of M, together with a rescaling in \ :



1
where o := k™ »+1. It is straightforward to check that

dM
T~ A

My(A) = X" " [Ap, (M) + lower degree terms w.r.t. deg].

Combining with (4.2.9), this proves the validity of the formula (1.4.9). To prove formula (1.4.8), one
further needs to observe the following identity obtained from the string equation (1.3.5)

<Ta’k+1T170>FJRW_g = <Tak>FJRW_g, a=1,...,n, k>0.

The rest of proving (1.4.8) follows from the identity (2.7.3) and the above conjugation of M, with the
rescaling in A. O

Proof of Thm. 1.4.3. The theorem is a particular case of Thm. 1.4.2 with the particular realization of A,
Lie algebra being consistent with normalization of flows suggested by Witten [52]. O

Example 4.2.4 (Rationality of Witten’s r-spin intersection numbers.). It is known that Witten’s r-spin
intersection numbers are non-negative rational numbers. Let us verify the rationality through (1.4.12)
and (1.4.13). Indeed, our definition of N-point r-spin correlators reads

r—spin - N )kl-i-l r—spin
Fe 7aN(>‘lv---v)‘N) = (/-VH \/—7‘> Z H (Tayky - - - Tanky)

i kptl
ki, ,kN>0£ 1 ( /’V“ )\Z)

ke (ﬂ)k 1
—14+N +
S D Sl | = et - T

920 k1,...kn>00=1

where we have used k = \/—r ' and the dimension-degree matching (1.4.5). Clearly, all the coefficients

are rational. On the other hand, the r.h.s. of (1.4.12) or of (1.4.13) belongs to Q[[\{ _l/r ..,)\J_\,l/r]] as
our regular solutions My(\), a =1,...,n to the topological ODEs of sl,,(C)-type (1.4.11) are of rational
coefficients. The rationality of r-spin correlators is verified.

A 3-spin

The matrices M;(A), ¢ = 1,2 for the Witten’s 3-spin invariants have the following explicit expressions.
Denote M;(X) = (M;(N)f)ap=1,....3- Then we have
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(A{3)3 _ _l (71)93691_‘(8_(] + %))\ 24 +14 Z ( 1 93"91“(85] + 17)/\724&11
! 645 10899!T(g +3) T 1089 g!T(g + 3)
(]\[3 2 _ Z ( 1 ‘136JF(8g + 3) _z4q+2z Z 9309F(Sg + z4q 11 Z ( 1 9369F ?1)/\_24?11
T 144 1089 g!T(g + 5 1089 g!T(g + 2 62 1089g!T(g + 3)
(My)3 = ! Z (—1)93%9T (8¢ + 8) e (—1)93%9T (8¢ + %)/\724,,;20
655 1089 g!T(g + 2) 144 &= 108991 T(g + 3)

B Remark on tau-functions

Let us recall a consistent gauge slice introduced by Hollowood—Miramontes (HM) [35]. It is proven i

[35, 36] that for any smooth function g(x) € b, there exists

> U ¢ Lgeo

k>0

V() =

32

Vi(z) €9




such that
e WL =9, 4N,  L=0,+A+q (B.0.1)

Note that the functions Vi (z) in general are not differential polynomials in ¢ [35, 53]. The HM gauge is
characterized by

Vo=0, ieVeL(ge= % ®O\2). (B.0.2)
It is straightforward to derive from eq. (B.0.1) an infinite sequence of equations

(@) = Vi, Bo),
0u(VA) + Vi, 1] + Vi, Vi, Egl] = ~[V2, B,

etc. Existence of the HM gauge has been proved by Hollowood and Miramontes in [35]. For the DS
hierarchy associated to the HM gauge, Ti can be identified with —z [35].

So now we assume V = 0 and denote ® = " Let
LM =0, + A+ g™
and let RIM be the basic resolvents of LM . Define
n
w = exp(V) exp(—§), with £ := — Z Z T2 Ay +kh-
a=1 k>0
Recall that w is called the wave function associated to the HM gauge,

Lemma B.0.1 ([35, 36]). Denote ® = €¥. The DS hierarchy of the HM gauge can be viewed as the
compatibility between the linear flows

wrp = ()\k RfM>+ w. (B.0.3)

Definition B.0.2 (Cafasso-Wu, [13]). For an arbitrary solution ¢ to the DS hierarchy associated to
the HM gauge, the tau-function 7V of this solution is defined by

dlog €W k 1
W = — )\IES A P ()\7 T) q))\()\, T) Ama ()\) d)\, a = 1, oo, n, k > 0. (BO4)
k =00

We leave as an exercise to the readers to prove the following
Proposition B.0.3. Up to a factor of the form (1.2.6), T coincides with 7€V .

Remark B.0.4. Eq. (2.3./) uniquely determines TV of ¢'™ only up to a constant; however, the freedom
(1.2.6) for W of ¢"™ also exists, because of the non-locality of V (x).
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