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• Anderson Model:

• Tight-binding model (nearest neighbor hopping) 

• Random on-site energies:

• 1 (& 2) Dimensions: localized for any 

• Higher D:

• Hard problem (uncontrolled perturbation expansion) 

Disorder & Localization
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➢ Small      : conducting                       

(weak loc., Random Matrices) 

➢ : insulating

(localized at low energies)

(Anderson. ‘58)

Extended

Localized



Metal/Insulator Transition
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Extended

Localized

• Mobility Edge 

separates extended 

from localized states

• Transition as Intermediate 

state  (multifractal)
Van Tiggelen group (PRL 2009)



• At each height , the wavefunction’s amplitude

draws a “curve” with a different fractal dimension

• Behavior at mobility edge known in “perturbative” regimes

 long-standing open problem

Multifractality
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• Localization/extendedness of wavefunctions is a   

basis-dependent property

Motivating Question for this work

Ergodicity Loss in Invariant Matrix Models n. 5 Fabio Franchini

Localized

Extended



• Localization/extendedness of wavefunctions is a   

basis-dependent property

• However, level spacing statistics characterizes 

insulating/conducting systems

Motivating Question for this work

Localized Extended

Poisson  Localized

Wigner Dyson  Extended
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• Spectral signature hints toward localization as 

basis independent property

• Random Matrix Theory ideal to test this hypothesis

• Similar ideas introduced before: 

➢ Moshe, Neuberger, Shapiro: PRL ’94

➢ Canali, Kravtsov: PRE ’95; Bogomolny, Bohigas, Pato: PRE 

’97; Pato: PRE ’00

➢ Bonnet, David, Eynard: JPA ‘00 …

• However: lack of analytical tools to study 

eigenstate behavior in RMT

My Approach
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(Allez & Bouchaud ’11-’12; Allez & Guionnet ‘13)



• Eigenvector and eigenvalue statistics are linked in RMT:

The U(N) symmetry matrix models are endowed with     

can be spontaneously broken

• Peculiar SSB: thermodynamic limit also takes 

symmetry’s rank to infinity

• Conjecture 1: certain models break U(N) in a critical

way (similar to Metal/Insulator Transition)

• Conj. 2: U(N) symmetry breaking as a replica breaking?

My Claim
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1. Introduction: Matrix Models

2. Spontaneous Symmetry Breaking:

➢Geometrical argument

➢Numerical finite size detection

➢Symmetry  Breaking term

3. Conclusions & Outlook

Outline
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• Take W(M) real: statistical model

• Matrix M can represent different “objects”

• Consider M as a Hamiltonian:

➢ M: Hermitean Matrix

➢ Matrix entries randomly from a distribution

➢ Interaction between every degree of freedom    

(no preconceived notion of locality)

• Common wisdom: RMT describes delocalized systems

Random Matrix Theory
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• Action invariant under rotations:

• Switch to eigenvalues/eigenvectors:

Invariant Ensembles

Van der Monde Determinant:

(from Jacobian)

Eigenvectors uniformly

distributed over the      

N-dimensional sphere  

(Hilbert space):

independent from V(l)
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• Entries of Unitary matrix follow the Porther-Thomas

Distribution:

The Haar Measure
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• Jacobian introduces interaction between eigenvalues

• Coulomb gas picture:

• Eigenvalues as 1-D particles with

➢ logarithmic repulsion

➢ external confining potential V(l)

• Universal level spacing distribution

• Valid for any polynomial V(l) 

Wigner-Dyson Universality

(distance between n.n. eigenvalues)
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• Wigner Dyson distribution & level repulsion: 

Jacobian introduces interaction between eigenvalues

• Extended states/conducting phases:               

uniform distribution means eigenvectors typically 

have all non-vanishing entries

• Eigenvalues interact through their eigenvectors:  

Invariant Ensembles

WD  extended states
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• To study localization problems, introduce non-invariant 
random matrix ensembles (Random Banded Matrices)

• Limited analytical tools (SUSY, cluster expansion…)

Non-Invariant Ensembles

→ Localized states (Poisson statistics)

→  Multi-Fractal states (Critical Statistics: 
Anderson Metal/Insulator transition)

(Mirlin et al. ’96; …)

(Evers & Mirlin, ’00; …)
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• Within Random Matrix Theory, localization problems 

studied through non-invariant ensembles

• Confirmation of eigenvalue/eigenvector statistics link

• However, limited analytical tools (perturbative)

New perspective:

• There are invariant models with non-WD statistics

• Invariant models are endowed with superior  

(non-perturbative) analytical techniques

Eigenvalues/Eigenvectors Statistics
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• Consider invariant models with non-WD statistics

• If eigenvalue/eigenvector link holds

 System undergoes a spontaneous breaking of 

rotational symmetry

 Invariant machinery for localization problems!

• Recall a ferromagnet: 

➢ From partition function, rotational invariance

→ no spontaneous magnetization

➢ Need, e.g., a symmetry breaking term 

Spontaneous Breaking

of Rotational Invariance

Ergodicity Loss in Invariant Matrix Models n. 17 Fabio Franchini



• Soft confinement sets them apart from usual 

polynomial potentials 

→ WD universality does not apply

→ Indeterminate moment problem

• Arise in localization limit of Chern-Simons/ABJM:

• Solvable through orthogonal polynomials:

q-deformed Hermite/Laguerre Polynomials

Weakly Confined Invariant Models

Ergodicity Loss in Invariant Matrix Models n. 18 Fabio Franchini

(Muttalib et al. ’93; Tierz’04 )

(Marino ’02; Kapustin et a. ’10; …)



Weakly 

Confined 

Matrix 

Models

&

their

applica-

tions
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• Intermediate level 

spacing statistics

• Same eigenvalue 

correlations as 

Critical Random 

Banded Matrices

Weakly Confined Matrix Models

k
k
k

k
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(Muttalib et al. ‘93)

• Critical level statistics signals fractal eigenstates?

• Critical Spontaneous Breaking of U(N) Invariance?
(Canali, Kravtsov, ‘95)



Non-Local Correlations
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• Level repulsion also at antipodal points!

• Effective description as Luttinger Liquid in Rindler space

(Canali & Kravtsov ’95)

(Franchini & Kravtsov ’09)



• Same spectral signatures as C-RBM :

• C-RBM toy model for the Anderson Transition:

reproduce multifractal spectrum (analytical for )

• Conjecture: SSB of WCMM to calculate analytically

multifractal spectrum of Anderson MIT

WCMM and Anderson Transition
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(Canali, Kravtsov, ‘95)



Spontaneous Breaking      

of Rotational Symmetry

in Invariant Multi-Cuts

Matrix Model

Part 2
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• V(x) with several, well separated, minima

 disconnected support for 

eigenvalues (multi-cuts)

• For example: double well potential

(2-cuts for          )

Level Density:

Multi-Cut Solutions
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• Geometrical argument: line element

• Angular degrees of freedom live on 

spheres of radii

Understanding the matrix SSB
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• Geometrical argument: line element

• Angular degrees of freedom live on 

spheres of radii

Understanding the matrix SSB
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• Geometrical argument: line element

• Angular degrees of freedom live on 

spheres of radii

• For large , rotations generate large

 move to far point in conf. space

• Entropic (fine tuning) origin of SSB 

(same as level repulsion)

Understanding the matrix SSB
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• Geometrical argument: line element

• Angular degrees of freedom live on 

spheres of radii

➢ Two lengths scales:

• Eigenvectors of eigenvalues 

in different cuts cannot mix

Understanding the matrix SSB

Eigenvalues spacing:

Support of distribution:
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• Gaussian Models:

→ each matrix entries sampled independently

• One-Cut Models: 

→ entries correlated: generated as perturbation of 

Gaussian case in a Metropolis scheme

• Multi-Cut Solutions: Gaussian case unstable

→ start from initial seed and evolve it to equilibrium

→ SSB: final configuration has memory of 

eigenvectors of initial seed

Generating a Random Matrix
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• Level repulsion resolves degeneracy: 

 each of the     cuts contains       eigenvalues

• Gap between cuts breaks rotational 

invariance:

• Three Arguments:

Brownian motion;

Numerical finite size analysis;

Symmetry Breaking Term

Multi-Cuts SSB

F.F. arXiv:1412.6523

Double well 

(assume N even)
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• Without preferred, reference basis; localization means 

rigidity of eigenvectors under perturbations

• Take double well matrix model:

• Generate a representative matrix: 

• Apply perturbation (sparse Gaussian Matrix)

• Find eigenvectors of perturbed matrix:

• Eigenvector rotation induced by perturbation:

Finite Size Analysis
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(Order of N non-zero elements)



t=4, N=1000, sparse matrix with n=200 

non zero elements, drawn from Gaussian 

with zero mean and variance N)

Finite Size Analysis
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Finite Size Analysis

Ergodicity Loss in Invariant Matrix Models n. 33 Fabio Franchini

Off-diagonal blocks suppressed as 1/N compared to diagonal ones 

Onset of localizations!

Overlaps between 

eigenstates



• To detect SSB introduce symmetry breaking term

• Most natural one is , but too hard to handle

• We introduce:

Symmetry Breaking Term
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: given Hermitian Matrix

Favors alignment of eigenvectors

: source strength

Absolute value can be removed by 
sorting eigenvalues in increasing order



• Double well:

(assume N even)

• Take    with 2 sets of N/2-degenerate eigenvalues:      

to induce correct symmetry breaking

• Use (regularized) Itzykson-Zuber formula:

Symmetry Breaking: Double Well
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(Itzykson & Zuber, ‘80)

Sum over ways to partition eigenvalues 
of M according to degeneracies of S



• Calculate (dis-)order parameter:

Symmetry Breaking Term

Symmetry is Broken!

Eigenvectors 
misaligned➢ Finite N:

➢
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• Calculate (dis-)order parameter:

Symmetry Breaking Term

➢ Finite N:

➢
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Instantons: 

➢ Pairs of eigenvalues 
tunneling between cuts

➢ Restore broken 
symmetries



• WCMM partition function can be expanded on a large 

number of saddle point configurations (1 for WD models)

➢ Each corresponds to a different multi-cut solution

➢ Each corresponds to a different pattern of           

U(N) breaking

• Critical behavior of the model from interference between 

different saddles (instantons)

• Glassy behavior?

Perspective: WCMM energy landscape
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• Critical exponents, machinery for new “eigenvector” 

observables in invariant models

• Invariant models as toy model of Anderson MIT?

• Matrix SSB as Replica Symmetry Breaking?

• Generality of mechanism / string

theory / additional applications?

Outlook
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Thank you!

Conclusions
• Gap in the eigenvalue distribution (deviation from WD) 

 Spontaneous breaking of rotational symmetry

• Not “localization”, but loss of ergodicity:

• Criticality at gap opening as SSB phenomenon



Luttinger theory for RME

• Two-Point function (Kravtsov et al. ’00):

• In flat space: 

Unfolding:

r0 = 1

2-Point Function

for Gaussian RME
(K=1: Unitary)
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Luttinger theory in Rindler space

• Far from the origin:  

Periodic in imaginary time

→ finite temperature
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Luttinger Liquid in Rindler Space

• Remind two-Point function:

• With the new coordinates: 
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• We recover exactly the RME correlation ( K=1):

(Anomalous: non-translational invariant)

(Normal: translational invariant)

Luttinger Liquid in Rindler Space
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• Level repulsion resolves degeneracy: 

 each of the    cuts contains       eigenvalues

• Gap between cuts breaks rotational 

invariance:

• Dyson Brownian Motion for 

equilibrium distribution shows scale separation:

Brownian Motion Picture
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delta-corr.

stochastic

sources



• Qualitative picture on eigenvalue/eigenvector connection

• 2-level system:

Landau Zener Picture
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“Localized” “Extended”


