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• Experimental progresses challenge us with new questions:

Out-of-Equilibrium

Universal Dynamics of  Soliton after a Quantum Quench n. 3 Fabio Franchini

Transition from Superfluid 

to Mott Insulator 

Greiner, Mandel, Esslinger, Haensch & Bloch, 

Nature 415 (2002)

Quantum Newton’s Cradle

Kinoshita, Wenger, & Weiss, 
Nature 440 (2006)



• Quest for recurring structures in out-of-equilibrium 

systems: 

 Aging

 (Dynamical) Quantum Phase Transitions 

Work Statistics

Common questions
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Equilibration?

 Thermalization?

 Pre-Thermalization? 

 GGE?

 Non-equilibrium State?

 GGE?

Yes

No



• Reductionist Approach (universalities?)

• Different Set-ups to be considered

• Typical protocol: Quantum Quench

 Initial condition: ground state of local Hamiltonian

 Evolution: different Hamiltonian

• Extended excited states also considered 

(free fermions)

Out-of-Equilibrium Stat. Mech.?
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Bucciantini, Kormos, Calabrese, JPA 47 (2014)



• Initial condition: ground state of local Hamiltonian

→ low entanglement entropy

• Evolution: different Hamiltonian

→ entropy growth

• Late times: unitary evolution “scrambles” information

→ can describe system as effective mixed state

• Not much known for short times

Quantum Quench
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Morawetz, PRB 90 (2004)
Chiocchetta et al., PRB 91 (2015)
Chiocchetta et al., PRB 94 (2016)



• Quantum dynamics → Unitary Evolution

• A pure sate evolve into a pure state

• However, locally, the asymptotic state can be effectively 

approximated by a mixed one: 

• Out-of-equilibrium quantum systems act as their own bath

• Locality allows transition from quantum to classical

Unitary Dynamics
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Our question: 

What happens if you change the 

interaction strength 

in a system prepared 

in a (moving) localized excitation?

Our Answer:

Short time dynamics is Universal

Quenching a Soliton
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• Instead of a ground state, let’s start with a 

localized excited state in interacting system

• Let it evolve with a different Hamiltonian

• Universality emerges for short times!

• Previously: local quenches or extended excited 

states (in free systems) → long times

Our Protocol
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• Generally, localized excitations cannot be eigenstates of 

translational invariant Hamiltonians

• We consider a solitonic state (e.g. in cold atom systems)

Our Set-Up
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v

v

Bright Soliton
(v > c)

Dark (gray) Soliton
(v < c)



• Soliton: “Localized excitation that propagates at 

constant velocity while maintaining its shape” 

• Stable solutions of certain PDE

→ balancing of dispersive and non-linear terms

• Multi-soliton solutions exist only for integrable systems

• Solitonic states are ubiquitous

Solitons
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nonlinearity

dispersionCourtesy of A. Abanov



Soliton on Scott Russell Aqueduct
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Dugald Duncan/Heriot-Watt University, Edinburgh

https://www.youtube.com/watch?v=SknvLa8qEu0



Morning Glory
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•300 m

•2000 m

40-60 km/h

Rolling Clouds in
the Gulf of Carpentaria,

Northern Australia



Morning Glory: solitons
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Mick Petroff - Wikimedia Commons



Soliton Dynamics
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• Soliton-like solutions evolve without deformation

Courtesy of A. Abanov



Soliton Dynamics
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D.R. Christie (1988)

Courtesy of A. Abanov

Courtesy of A. Abanov

Multi-solitons exist only 

in integrable dynamics



• A localized excitation cannot be eigenstate of 
translational invariant Hamiltonian

• Nonetheless, long-lived localized excitations are 
observed in cold atom systems:

Solitons in cold atomes
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Strecker, Partridge, Truscott, & Hulet, Nature 417 (2002)



• Generated from ground state applying phase mask

• It is not clear how to describe them as quantum states 

→ Probably some sort of 

coherent state

for interacting systems

• Emerge naturally in 

semi-classical 

hydrodynamic description 

→ Low-entanglement excitations!

Solitons in cold atoms
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Strecker et al., Nature 417 (2002)



• Existence of solitons (and many more experimental 

probes) indicates the validity of hydrodynamic 

description for cold atoms (f.i. Gross-Pitaevskii Eq.)

• Semi-classical description: only density & velocity

→ single-body reduced 

• Valid for superfluids, weakly interacting systems…      

→ low entanglement states

Hydrodynamic Approach

Universal Dynamics of  Soliton after a Quantum Quench n. 19 Fabio Franchini



1. Excite a solitonic state & let it evolve

2. At some point, change interaction strength of 

underlying quantum Hamiltonian (change scattering 

length, sound velocity…)

3. Follow evolution immediately after the quench

• We use effective (semi-classical)

hydrodynamics, not unitary evolution

Our proposal
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• We consider a one-component, Galilean 

invariant, isentropic, inviscid fluid:

Hydrodynamics
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Euler

Continuity

Enthalpy: Quantum pressure



• Short times (qualitatively like wave equation):

• Quench acts as external perturbation: soliton

splits into transmitted and reflected component

• Longer Times: different scenarios

(soliton trains + dispersive waves 

vs. dissipation)

What to expect
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V
suddenly

Vt
Vr



• Linearizing non-linear PDE: Bogolioubov modes 

(phonons, Luttinger Liquid…)

Linearization
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Euler

Continuity



• Non-linear behavior for small perturbations:

• Particular scaling of density, velocity, space & time   

→ Korteweg-de Vries equation (KdV)

(non-linear fixed point for local interactions)
•

• KdV: wave on shallow water surfaces, chiral equation

KdV Reduction
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Kulkarni & Abanov, PRA 86 (2012)



• KdV scaling:

KdV Reduction
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Kulkarni, & Abanov, PRA 86 (2012)

Euler

Continuity



• Lieb-Liniger:

• For weak interaction collective 

description by Non-Linear Schrödinger Equation   

• Reduce to canonical hydrodynamic form with ansatz

Example: Lieb-Liniger <=> NLSE

Universal Dynamics of  Soliton after a Quantum Quench n. 26 Fabio Franchini



KdV Reduction:

Example: NLSE
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1. Excite a shallow solitonic state & let it evolve 

→ stable evolution due to initial Hamiltonian

2. Change interaction strength of underlying quantum 

system

3. Describe post quench dynamics using KdV,

with parameters from post-quench system

⇒ Universality for short time from KdV

Our approach
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• Interaction Quench:

• Initial Soliton:

Quench
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NLSE: Gray Soliton

KdV



• Interaction Quench:

Quench
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Harmonic Calogero: Bright Soliton



Soliton Splitting
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• Quench acts as external perturbation: soliton splits 

into transmitted and reflected components

• Continuity and momentum conservation yield

• Here: just kinematics.  Need (KdV) dynamics to fix 

Soliton Splitting
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• Using KdV we determined

• Completely UNIVERSAL !

Chiral Profiles
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Same as linear problem,
but non-trivial velocities!



Numerical Checks: Amplitudes
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Numerical Checks: Velocities
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Numerical Simulations on NLSE
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Stability of velocity
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NLSE numerics vs KdV predictions
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• We introduce reduced velocities:

• Transmitted and reflected profiles are not solitons of 

post-quench system → internal dynamics

• For instance: profile peaks and center of mass move at 

different velocities:

Peak Velocities
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NLSE numerics vs KdV predictions
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Points: numerical reduced peak velocities for NLSE. Black are reflected (filled circles - V = 0.96c-, 
& stars - V = 0.9c-), red are transmitted (squares -V = 0.96c-, & down triangles -V = 0.9c-).
Lines: analytical curves for peak (solid) & bulk (dashed)



• We calculated the time at which the two profiles 

become discernible:

t2
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t2
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t2
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Further Splitting
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• Gamayun & al. considered same set-up

• Large time using integrability of NLSE (ISM)

• If integer ⇒ solitons (no dispersive waves)

Large time asymptotics for NLSE
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Gamayun et al, PRA 91 (2015)



• Integrable in harmonic confinement!

• Long(ish)-range model: hydrodynamics in Benjamin-Ono 

class (not KdV, different dispersion)

• Solitons have longer tails (Lorentzian)

• We simulate the model using microscopic Classical 

Newtonian evolution

Harmonic Calogero
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Harmonic Calogero
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• Quench protocol: change    and     so that background 

stays fixed (oscillations otherwise)

• For this case:

• Bulk velocities: same prediction as for KdV

• Peaks velocities:

Harmonic Calogero
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Rajabpour & Sotiriadis, PRA 89 (2014)



Harmonic Calogero
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Points: numerical results for harm. Calogero.
Black are reflected (filled circles –V=1.04c-
& stars –V=1.07c-), red are transmitted 
(squares –V=1.04c- & stars –V=1.07c-). 
Lines: analytical curves for peak (solid) & 
bulk (dashed)



• We studied a quantum quench on localized excited state 

using an effective semi-classical hydrodynamics

• Universal dynamics for short time after quench: 

predicted shape and velocities of chiral profiles

• Great agreement with numerical simulations

• Experimentally feasible (bulk & peak velocities)

• Open questions: quantum nature of a soliton, microscopic 

unitary evolution, large time behavior

Conclusions
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Thank you!



• Take a system in its Ground State

• Let it evolve according to different Hamiltonian

• Unitary evolution:

Quantum Quenches

Universal Dynamics of  Soliton after a Quantum Quench n. 51 Fabio Franchini

Does the system reach a 

stationary state, in some sense?



• Restricted to local observables, most quantum 

quenches result in an effective stationary mixed state

• Moreover, generally: 

(Gibbs distribution consequence of 

Eigenstate Thermalization Hypothesis)

Gibbs Ensemble
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Deutsch, PRA 43 (1991); Srednicki, PRE 50 (1994); 
Rigol, Dunjko, & Olshanii, Nature 452 (2009)…



• If system has local conservation laws (f.i. integrabilty), 

these should be included → G.G.E.

• Open problem: find all local charges

Generalized Gibbs Ensemble
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Countless efforts from 
• SISSA (Mussardo, Silva, Gambassi & collaborators);
• Pisa/SISSA (Calabrese & collaborators);
• Oxford (Cardy, Essler & collaborators);
• Amsterdam (Caux & collaborators); 
• Many more (Polkovnikov, Mitra, Kehrein, Andrei, Prosen)…
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