8.  Artificial neural network for bifurcating phenomena modelled by nonlinear parametrized PDEs

Authors: F. Pichi, F. Ballarin, G. Rozza, J. S.Hesthaven


7.  A successive partition method for the efficient evaluation of parametrized stability factors

Authors: F. Pichi, F. Ballarin, G. Rozza


6.  Driving bifurcating parametrized nonlinear PDEs by optimal control strategies: application to Navier-Stokes equations with model order reduction

Authors: F. Pichi, M. Strazzullo, F. Ballarin, G. Rozza

Preprint on arXiv

5.  Reduced order models for the buckling of hyperelastic beams

Authors: F. Pichi, J. Eftang, G. Rozza, A. T. Patera


4.  Efficient computation of bifurcation diagrams with a deflated approach to reduced basis spectral element method

Authors: M. Pintore, F. Pichi, M. Hess, G. Rozza, C. Canuto

Advances in Computational Mathematics, 47:1, 2021

3.  A Reduced Order technique to study bifurcating phenomena: application to the Gross-Pitaevskii equation

Authors: F. Pichi, A. Quaini, G. Rozza

SIAM Journal on Scientific Computing, 42:5, B1115-B1135, 2020.

2.  Reduced basis approaches for parametrized bifurcation problems held by non-linear Von Kármán equations

Authors: F. Pichi, G. Rozza

Journal of Scientific Computing, 10.1007/s10915-019-01003-3, 2019.

1.  Reduced basis approximation and a posteriori error estimation: applications to elasticity problems in several parametric settings

Authors: D.B.P. Huynh, F. Pichi and G. Rozza

Numerical Methods for PDEs: State of the Art Techniques, Springer International Publishing, Ch. 8, 203-247, 2018