Linear algebra: Homework Week 2, 15/1/2019

Ex. (1).
Find the rank of the following matrix by reducing it by rows:

$$
A=\left(\begin{array}{cccc}
0 & 1 & 2 & 1 \\
1 & 1 & 1 & 0 \\
0 & -1 & 1 & 1 \\
1 & 1 & 4 & 2
\end{array}\right)
$$

Ex. (2).
Find by reducing by rows the rank of the following matrix:

$$
A=\left(\begin{array}{ccccc}
0 & 1 & 2 & 1 & 0 \\
1 & 2 & 2 & 1 & 1 \\
1 & 1 & a & 0 & 1 \\
0 & a & 2 a & a^{2} & 0
\end{array}\right)
$$

where a is a real parameter. For which value of a, the $\operatorname{rk}(A)$ is equal to 3 ?
Ex. (3).
Say if the linear application

$$
\begin{gathered}
f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \\
(x, y, z) \rightarrow(x+2 y, y+z, 2 z-x)
\end{gathered}
$$

is injective and if it is surjective. Find a basis of $\operatorname{ker}(f)$ and a basis of $\operatorname{Im}(f)$.

Ex. (4).
Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ a linear application such that its associated matrix is:

$$
M_{f}=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

with respect to canonical basis. Find the rank of M_{f}, and basis of $\operatorname{ker}(f)$ and $\operatorname{Im}(f)$.

