Ex. (1).

Say which are the (non trivial) invariant subspaces of the linear map $f : \mathbb{R}^3 \to \mathbb{R}^3$ of which the matrix with respect to the canonical basis is:

$$\begin{pmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix}$$

where $0 < \theta < \pi$.

Ex. (2). Let $\phi \in \text{End}(\mathbb{R}^2)$ be defined as:

$$\phi(x,y) = (5x - y, 8x - y)$$

with respect to the canonical basis \mathcal{E} of \mathbb{R}^2 .

- (0.1 pt) Write the associated matrix $M_{\phi}^{\mathcal{E},\mathcal{E}}$
- (0.2 pt) Write the characteristic polynomial $p_{\phi}(t), t \in \mathbb{R}$.
- (0.5 pt) Find the eigenvalues and eigenvectors of ϕ .
- (0.2 pt) Show by explicitly computing that

$$\Delta = Q^{-1} \cdot M_{\phi}^{\mathcal{E},\mathcal{E}} \cdot Q$$

 Δ is a diagonal matrix, provided that $Q = M_{id}^{\mathcal{E},\mathcal{B}}$ is the matrix of change of basis between \mathcal{E} and the basis of eigenvectors \mathcal{B} .