Linear algebra: Homework Week 4, 23/2/2019

Ex. (1).
Say which are the (non trivial) invariant subspaces of the linear map $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ of which the matrix with respect to the canonical basis is:

$$
\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
$$

where $0<\theta<\pi$.

Ex. (2).
Let $\phi \in \operatorname{End}\left(\mathbb{R}^{2}\right)$ be defined as:

$$
\phi(x, y)=(5 x-y, 8 x-y)
$$

with respect to the canonical basis \mathcal{E} of \mathbb{R}^{2}.

- (0.1 pt$)$ Write the associated matrix $M_{\phi}^{\mathcal{E}, \mathcal{E}}$
- (0.2 pt) Write the characteristic polynomial $p_{\phi}(t), t \in \mathbb{R}$.
- (0.5 pt$)$ Find the eigenvalues and eigenvectors of ϕ.
- (0.2 pt) Show by explicitly computing that

$$
\Delta=Q^{-1} \cdot M_{\phi}^{\mathcal{E}, \mathcal{E}} \cdot Q
$$

Δ is a diagonal matrix, provided that $Q=M_{i d}^{\mathcal{E}, \mathcal{B}}$ is the matrix of change of basis between \mathcal{E} and the basis of eigenvectors \mathcal{B}.

