Linear algebra: Homework Week 5, 01/3/2019

Ex. (1).
Let $\phi \in \operatorname{End}\left(\mathbb{R}^{3}\right)$ be defined as:

$$
\phi(x, y, z)=(3 x-y,-x+3 y, x+y+4 z)
$$

with respect to the canonical basis \mathcal{E} of \mathbb{R}^{3}.

- (0.1 pt$)$ Write the associated matrix $M_{\phi}^{\mathcal{E}, \mathcal{E}}$
- (0.2 pt) Write the characteristic polynomial $p_{\phi}(t), t \in \mathbb{R}$.
- (0.5 pt) Find the eigenvalues and eigenvectors of ϕ.
- (0.2 pt) Say if ϕ is simple (i.e. if M_{ϕ} is diagonalizable) and why (hint: compare algebraic and geometric multiplicities).

Ex. (2).
Say if the following matrices:

$$
A=\left(\begin{array}{lll}
2 & 0 & 0 \\
1 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) \quad \text { and } \quad \mathrm{B}=\left(\begin{array}{ccc}
-1 & -2 & 0 \\
3 & 4 & 0 \\
1 & 1 & 1
\end{array}\right)
$$

are similar ?
Ex. (3).
Find the Jordan normal form and the generalized eigenvectors of the following matrix:

$$
A=\left(\begin{array}{cc}
4 & 1 \\
-1 & 6
\end{array}\right)
$$

