Linear algebra: Homework Week 6, 08/3/2019

Ex. (1).
Let $\phi \in \operatorname{End}\left(\mathbb{R}^{3}\right)$ be defined in the canonical basis as:

$$
\phi(x, y, z)=\frac{1}{3}(2 x-2 y+z, 2 x+y-2 z, x+2 y+2 z)
$$

check that ϕ is an isometry (with respect to the canonical scalar product).
Ex. (2).
Let $\phi \in \operatorname{End}\left(\mathbb{E}^{2}\right)$ be defined in the canonical basis as:

$$
\phi(x, y)=\left(\frac{\sqrt{2}}{2} x-\frac{\sqrt{2}}{2} y, \frac{\sqrt{2}}{2} x+\frac{\sqrt{2}}{2} y\right)
$$

- verify that ϕ is an isometry
- Given a basis $\mathcal{B}=\{(1,0),(1,1)\}$ of \mathbb{R}^{2}, write the matrix $M_{\phi}^{\mathcal{B}, \mathcal{B}}$ of ϕ with respect to \mathcal{B}, and show it is not orthogonal.
- Given the vector $v=(2,1)$ in the canonical basis, calculate $\|v\|$ and $\|\phi(v)\|$ and show it is $\|v\|=\|\phi(v)\|$.

Ex. (3).
Let $\phi \in \operatorname{End}\left(\mathbb{E}^{2}\right)$ the endomorphism with associated matrix:

$$
M_{\phi}^{\mathcal{B}, \mathcal{B}}=\frac{1}{2}\left(\begin{array}{cc}
5 & -5 \\
-1 & 5
\end{array}\right)
$$

where the basis is $\mathcal{B}=\{(1,0),(1,2)\}$. Check that ϕ is a self-adjoint endomorphism (hint: write the matrix of ϕ with respect to an orthonormal basis).

Ex. (4).
Let $\mathcal{D}=\frac{d}{d x}$ be the differentiation operator on the space of polynomials $\mathbb{R}[x]_{r \leq 2}$ equiped with the standard basis $\mathcal{E}=\left\{1, x, x^{2}\right\}$ and canonical scalar product $p \cdot q=\sum_{i=1}^{3} \alpha_{i} \beta_{i}$, where $p=\alpha_{1}+\alpha_{2} x+\alpha_{3} x^{2}$ and $q=\beta_{1}+\beta_{2} x+\beta_{3} x^{2}$

- is \mathcal{D} self-adjoint ?
- Write the matrix $M_{\mathcal{D}}^{\mathcal{E}, \mathcal{E}}:$ is it symmetric ?

