## Linear algebra: Homework Week 7, 15/3/2019

Ex. (1).
Let $\phi \in \operatorname{End}\left(\mathbb{R}^{3}\right)$ be defined in the canonical basis $\mathcal{E}$ as:

$$
\phi(x, y, z)=(2 x+y+z, x+2 y+z, x+y+2 z)
$$

- (0.1pt) Write the matrix $A=M_{\phi}^{\mathcal{E}, \mathcal{E}}$.
- (0.2pt) Write the characteristic polynomial $p_{\phi}(T)$.
- (0.4pt) Find the eigenvalues and a basis of eigenvectors of $\phi$.
- (0.2pt) Find an orthonormal basis of eigenvectors $\mathcal{B}$. Show by explicitly computing the matrix product that $D={ }^{t} P A P$ is the diagonal matrix with the eigenvalues of $\phi$ on the diagonal, provided that $P=M^{\mathcal{E}, \mathcal{B}}$ where $\mathcal{B}$ is the orthonormal basis of eigenvectors.
- (0.1pt) Show that $P$ is orthogonal i.e. ${ }^{t} P P=I_{3}$.

Ex. (2).
Given the matrix

$$
A=\left(\begin{array}{ccc}
2 & 2 & 2 \\
2 & -1 & 1 \\
6 a & 1 & a^{2}
\end{array}\right)
$$

where $a \in \mathbb{R}$, say for which values of $a$ the matrix $A$ is orthogonally diagonalisable.

Ex. (3).
Let $\phi \in \operatorname{End}\left(\mathbb{R}^{3}\right)$ be defined in the canonical basis $\mathcal{E}$ as:

$$
\phi(x, y, z)=(2 y+z, 2 x+3 y+2 z, x+2 y)
$$

- Write the matrix $A=M_{\phi}^{\mathcal{E}, \mathcal{E}}$.
- Write the characteristic polynomial $p_{\phi}(T)$.
- Find the eigenvalues and a basis of eigenvectors of $\phi$.

