

UNG-FN, Študijsko leto 2020/21
3. letnik - 1. stopnja Fizika in astrofizika

Continuum Mechanics written exam 15/6/2021
Lecturers L. Giacomazzi, J. Urbančič

Exercise 1. The velocity field of a fluid, in a rectangular Cartesian reference system, has the following spatial description :

$$
v_{1}=-\frac{1}{2} \alpha x_{1}-f(r) x_{2}, \quad v_{2}=-\frac{1}{2} \alpha x_{2}+f(r) x_{1}, \quad v_{3}=\alpha x_{3}
$$

where $r=\left(x_{1}^{2}+x_{2}^{2}\right)^{1 / 2}$, and α is a positive constant and $f(r)$ is a real function of r.
A) (5 pt) Calculate the vorticity vector ω.
B) (6 pt) Under which condition is the motion of the fluid irrotational ? Find the functions f which make the motion irrotational.
C) (5 pt) For a velocity field as in point B) calculate the circulation round the circle Γ defined by $x_{1}^{2}+x_{2}^{2}=r^{2}$ and $x_{3}=$ constant .

Exercise 2. (6 pt) A wind with velocity $30 \mathrm{~m} / \mathrm{s}$ is blowing against a vertical wall, orthogonal with respect to the wind velocity. Determine the increase of the pressure on the surface of the wall due to the wind. Assume the air is an ideal fluid with density $1.25 \mathrm{Kg} / \mathrm{m}^{3}$ and $p_{0}=100 \mathrm{kPa}$ is the atmospheric pressure.

Exercise 3. The motion of a viscous fluid can be described by means of a velocity potential

$$
\Phi=\frac{\alpha}{2}\left(x_{1}^{2}-x_{2}^{2}\right)
$$

where α is a positive constant and x_{i} are expressed in a Cartesian rectangular coordinate system.
A) (2 pts) Find the velocity field.
B) $(4 \mathrm{pts})$ Find the stress tensor $\sigma_{i j}$.
C) (8 pts) Keeping into account (A) obtain the pressure distribution from the Navier-Stokes equations.

Exercise 4. (6 pts) A velocity field, in Cartesian rectangular coordinates, is given as:

$$
v_{1}=0, \quad v_{2}=\frac{\alpha x_{2}}{\alpha+\beta t}, \quad v_{3}=\alpha x_{3}
$$

where α, β are non zero real numbers. Find the pathline for a particle that was at point $\left(X_{1}, X_{2}, X_{3}\right)$ at time $t=t_{0}$.

Exercise 5. (6 pts) The velocity field of an incompressible fluid in cylindrical coordinates is:

$$
v_{r}=v(r, \theta), \quad v_{\theta}=0, \quad v_{z}=0
$$

Show that

$$
v_{r}=\frac{f(\theta)}{r}
$$

where $f(\theta)$ is any function of θ.

