UNG-FN, Študijsko leto 2018/19

1. letnik - 1. stopnja Fizika in astrofizika

Linear Algebra: Exam (18/06/2019)

Each exercise has a value of 1 point. Each answer has to be properly justified.

Exercise 1. Let $\phi \in \operatorname{End}\left(\mathbb{R}^{3}\right)$ be defined in the canonical basis \mathcal{E} as:

$$
\phi(x, y, z)=(3 x-2 y+4 z,-2 x+6 y+2 z, 4 x+2 y+3 z)
$$

i $(0.1 \mathrm{pt})$ Write the matrix $A=M_{\phi}^{\mathcal{E}, \mathcal{E}}$.
ii (0.2 pt) Write the characteristic polynomial $p_{\phi}(T)$ where $T \in \mathbb{R}$.
iii (0.4 pt) Find the eigenvalues and a basis of eigenvectors of ϕ.
iv $(0.3 \mathrm{pt})$ Find an orthonormal basis of eigenvectors \mathcal{B}. Show by explicitly computing the matrix product that $D={ }^{t} P A P$ is the diagonal matrix with the eigenvalues of ϕ on the diagonal, provided that $P=M^{\mathcal{E}, B}$ where \mathcal{B} is the orthonormal basis of eigenvectors.

Exercise 2. A system of linear equation

$$
\Sigma:\left\{\begin{array}{cl}
x_{1}+a x_{2}+(1+4 a) x_{3} & =1+4 a \\
2 x_{1}+(a+1) x_{2}+(2+7 a) x_{3} & =1+7 a \\
3 x_{1}+(a+2) x_{2}+(3+9 a) x_{3} & =1+9 a
\end{array}\right.
$$

is given where the unknowns $X=\left(x_{1}, x_{2}, x_{3}\right)$ and the parameter a are real numbers (in short notation Σ : $A X=b$).
i (0.5 pt) Find the solution of Σ when $a=-1$ and provide the value of $\operatorname{det}(A)$.
ii (0.5 pt) Discuss the number of solutions of the system Σ depending on the parameter $a \in \mathbb{R}$.
Exercise 3. In the Euclidean affine space \mathbb{E}^{3}, a point $\mathrm{P}=(1,-1,2)$ and a line r :

$$
r: \quad\{(x, y, z)=(t, 2 t, 3 t), \quad t \in \mathbb{R}\} .
$$

are given.
i $(0.25 \mathrm{pt})$ Find the carthesian equation of the plane π which is orthogonal to the line r and contains the point P.
ii (0.3 pt) Find the parametric equation of the line r^{\prime} knowing that $\mathrm{P} \in r^{\prime}$ and $r^{\prime} \perp r$ and $r_{\cap}^{\prime} r \neq \emptyset$.
iii (0.25 pt) Find the carthesian equation of the plane π^{\prime} which contains both lines r and r^{\prime}.
iv $(0.2 \mathrm{pt})$ Find the distance between the plane π and the point $T=(4,1,3)$.
Exercise 4. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ the linear map defined by:

$$
f(x, y, z)=(x-y,-x+y, x+y+2 z)
$$

Find:
i $(0.1 \mathrm{pt})$ the matrix $M_{f}^{\mathcal{E}, \mathcal{E}}$ where \mathcal{E} is the canonical basis of \mathbb{R}^{3};
ii (0.3 pt) a basis for $\operatorname{ker}(f)$;
iii (0.2 pt) a basis for $\operatorname{Im}(f)$;
iv (0.4 pt) the matrix $M_{f}^{\mathcal{B}, \mathcal{E}}$ where \mathcal{B} is the basis $\mathcal{B}=\{(1,1,-1),(-1,1,0),(0,0,1)\}$
Exercise 5. Let's consider the bilinear symmetric form $g: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ of which the matrix w.r.t. the canonical basis is:

$$
G=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)
$$

i (0.1 pt) Is g degenerate ?
ii (0.2 pt) Is g a scalar product ? (hint: check if g is positive definite).
iii $(0.4 \mathrm{pt})$ Find a g-orthonormal basis \mathcal{E}^{\prime} for the bilinear symmetric form g.
iv (0.3 pt) If $H=M^{\mathcal{E}^{\prime}, \mathcal{E}}$ is the change of basis matrix, write how G transforms under the change of basis, and find the matrix G^{\prime} of g with respect to the basis \mathcal{E}^{\prime}.

