

UNG-FN, Študijsko leto 2018/19

1. letnik-1. stopnja Fizika in astrofizika

Linear Algebra: Exam (02/09/2019)

Each exercise has a value of 1 point. Each answer has to be properly justified.

Exercise 1. Let $\phi \in \operatorname{End}\left(\mathbb{R}^{3}\right)$ be defined in the canonical basis \mathcal{E} as:

$$
\phi(x, y, z)=(5 x+2 y+3 z, 3 x+4 y+3 z,-4 x-2 y-2 z)
$$

i (0.1 pt) Write the matrix $A=M_{\phi}^{\mathcal{E}, \mathcal{E}}$.
ii (0.25 pt) Write the characteristic polynomial $p_{\phi}(T)$ where $T \in \mathbb{R}$, and provide the value of $\operatorname{det}(A)$.
iii (0.5 pt) Find the eigenvalues and a basis \mathcal{B} of eigenvectors of ϕ. Show that \mathcal{B} is not an orthonormal basis.
iv $(0.15 \mathrm{pt})$ Find the eigenvalues of A^{2}.
Exercise 2. A system of linear equations

$$
\Sigma:\left\{\begin{array}{cl}
2 x_{1}+x_{2}+2 x_{3}+x_{4} & =1 \\
2 x_{1}+3 x_{2}-x_{3} & =3 \\
x_{1}+x_{3} & =0
\end{array}\right.
$$

is given where the unknowns $X=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ are real numbers (in short notation $\Sigma: A X=$ b).
i $(0.5 \mathrm{pt})$ Find the solutions S_{0} of the associated homogeneous system $\Sigma_{0}: A X=0$
ii (0.3 pt) Write all the solutions of the system Σ.
iii (0.2 pt) Find a basis for the orthogonal complement S_{0}^{\perp}.
Exercise 3. The atoms of an ammonia molecule $\left(\mathrm{NH}_{3}\right)$ are found at certain moment to have, in a cartesian orthogonal reference system, the following coordinates:

$$
\begin{aligned}
\mathrm{N} & =(3,0,0) \\
\mathrm{H}^{i} & =(0,0,0) \\
\mathrm{H}^{i i} & =(4,3,0) \\
\mathrm{H}^{i i i} & =(4,-2,-2)
\end{aligned}
$$

resulting in a pyramid shape with N being at the peak and the three H on the corners.
i (0.3 pt) Find the cartesian equation of the plane π which contains the nitrogen $\mathrm{N}, \mathrm{H}^{i}$ and $\mathrm{H}^{i i}$ hydrogen atoms.
ii (0.3 pt) Find the angle between the edges NH^{i} and $\mathrm{NH}^{i i}$
iii (0.3 pt) Find the cartesian equation of the line r passing through N and $\mathrm{H}^{i i}$.
iv $(0.1 \mathrm{pt})$ Find the parametric equation of the line r^{\prime} passing through N and $\mathrm{H}^{i i i}$.
Exercise 4. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear map:

$$
f(x, y, z)=(x+y-z, 2 x-y+z, 3 x)
$$

defined with respect to the canonical basis \mathcal{E}.
i $(0.1 \mathrm{pt})$ write the matrix $A=M_{f}^{\mathcal{E}, \mathcal{E}}$.
ii (0.1 pt) calculate the $\operatorname{det}(A)$ and trace of A.
iii (0.4 pt) say if the vector $u=(3,0,3)$ belongs to $\operatorname{Im}(f)$ i.e. $u \in \operatorname{Im}(f)$?
iv (0.4 pt) find a basis for $\operatorname{ker}(f)$.
Exercise 5. In \mathbb{R}^{4} let's consider the following vectors

$$
v_{1}=(2,1,1,1), \quad v_{2}=(2,2,1,4), \quad v_{3}=(0,0,0,1)
$$

i (0.6 pt) By applying the Grahm-Schmidt method find an orthonormal basis $\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$ for the subspace $W=\mathcal{L}\left\{v_{1}, v_{2}, v_{3}\right\}$ (Hint: use $\xi_{1}=v_{3}$).
ii (0.3) Find the orthogonal complement W^{\perp}.
iii (0.1) Find the orthogonal projection on W and on W^{\perp} of the vector $v=(6,4,7,5)$.

