

UNG-FN, Študijsko leto 2018/19

1. letnik - 1. stopnja Fizika in astrofizika

Linear Algebra: Exam (03/07/2019)

Each exercise has a value of 1 point. Each answer has to be properly justified.

Exercise 1. Let $\phi \in \operatorname{End}\left(\mathbb{R}^{3}\right)$ be defined in the canonical basis \mathcal{E} as:

$$
\phi(x, y, z)=(4 x+y+2 z, 2 x+3 y+2 z,-3 x-y-z)
$$

i $(0.1 \mathrm{pt})$ Write the matrix $A=M_{\phi}^{\mathcal{E}, \mathcal{E}}$.
ii (0.25 pt) Write the characteristic polynomial $p_{\phi}(T)$ where $T \in \mathbb{R}$, and provide the value of $\operatorname{det}(A)$.
iii (0.5 pt) Find the eigenvalues and a basis \mathcal{B} of eigenvectors of ϕ. Show that \mathcal{B} is not an orthonormal basis.
iv (0.15 pt) Find the eigenvalues of ϕ^{-1}.
Exercise 2. A system of linear equations

$$
\Sigma:\left\{\begin{array}{cc}
x_{1}-2 x_{2}+x_{4} & =-1 \\
x_{2}+2 x_{3}-x_{4} & =1 \\
x_{1}-x_{2}+2 x_{3} & =\alpha \\
x_{1}+4 x_{3}-x_{4}=1 &
\end{array}\right.
$$

is given where the unknowns $X=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ and the parameter α are real numbers (in short notation Σ : $A X=b$).
i $(0.2 \mathrm{pt})$ Find the value of α so that a solution of Σ is $(1,1,0,0)$
ii $(0.6 \mathrm{pt})$ Find the solutions of the associated homogeneous system $\Sigma_{0}: A X=0$
iii (0.2 pt) Write all the solutions of the system Σ for the α value found in the first request (i).
Exercise 3. The atoms of an ammonia molecule $\left(\mathrm{NH}_{3}\right)$ are found at certain moment to have, in a cartesian orthogonal reference system, the following coordinates:

$$
\begin{aligned}
\mathrm{N} & =(3,0,0) \\
\mathrm{H}^{i} & =(0,0,0) \\
\mathrm{H}^{i i} & =(4,3,0) \\
\mathrm{H}^{i i i} & =(4,-2,-2)
\end{aligned}
$$

resulting in a pyramid shape with N being at the peak and the three H on the corners.
i $(0.3 \mathrm{pt})$ Find the cartesian equation of the plane π which contains the three hydrogen atoms.
ii (0.2 pt) Find the distance between the plane π and the N atom.
iii $(0.2 \mathrm{pt})$ Find the parametric equation of the line r passing through $\mathrm{H}^{i i}$ and $\mathrm{H}^{i i i}$.
iv (0.3) Find the volume of the parellelepiped with sides $\left(\mathrm{H}^{i} \mathrm{H}^{i i}, \mathrm{H}^{i} \mathrm{H}^{i i i}, \mathrm{H}^{i} \mathrm{~N}\right)$.
Exercise 4. Let $f: \mathbb{R}[X]_{\leq 2} \rightarrow \mathbb{R}[X]_{\leq 2}$ be the linear map defined in the basis $\mathcal{B}=\left\{1, X, X^{2}\right\}$ as:

$$
f\left(a+b X+c X^{2}\right)=a-b+(2 a-2 b) X+(a+b-2 c) X^{2}
$$

Find:
i (0.25 pt) the matrix $M_{f}^{\mathcal{B}, \mathcal{B}}$ and $\operatorname{det}\left(M_{f}^{\mathcal{B}, \mathcal{B}}\right)$;
ii (0.25 pt) a basis for $\operatorname{ker}(f)$. Is f injective ?
iii (0.25 pt) a basis for $\operatorname{Im}(f)$; Is f surjective ?
iv (0.25 pt) the matrix of $g \circ f$ with respect to \mathcal{B}, for a g defined as:

$$
g\left(a+b X+c X^{2}\right)=a+b+(a+b) X+(a-b+2 c) X^{2}
$$

Exercise 5. In \mathbb{R}^{3} let's consider the following basis $\mathcal{B}=\left\{b_{1}, b_{2}, b_{3}\right\}$:

$$
\left\{\begin{array}{l}
b_{1}=\frac{\sqrt{3}}{2} e_{1}+\frac{1}{2} e_{2} \\
b_{2}=-\frac{1}{2} e_{1}+\frac{\sqrt{3}}{2} e_{2} \\
b_{3}=a e_{3}
\end{array}\right.
$$

where $a \in \mathbb{R}$ and where $\mathcal{E}=\left\{e_{1}, e_{2}, e_{3}\right\}$ is the canonical basis.
i $(0.2 \mathrm{pt})$ Write the matrix $R_{a}=M^{\mathcal{E}, \mathcal{B}}$ and find $\operatorname{det}\left(M^{\mathcal{E}, \mathcal{B}}\right)$;
ii (0.4) For which a does R_{a} belongs to the group $\mathrm{SO}(3)$?
iii (0.15) For the value of a as in the previous point, write R_{a}^{-1}
iv (0.25) Calculate, for a as in (ii), the length of the vector $v=2 e_{1}-e_{2}+4 e_{3}$ in the basis \mathcal{E}.
Write then v and $\|v\|$ in the basis \mathcal{B}.

