

UNG-FN, Študijsko leto 2018/19 1. letnik - 1. stopnja Fizika in astrofizika Linear Algebra: Exam (03/07/2019)

Each exercise has a value of 1 point. Each answer has to be properly justified.

Exercise 1. Let $\phi \in \text{End}(\mathbb{R}^3)$ be defined in the canonical basis \mathcal{E} as:

$$\phi(x, y, z) = (4x + y + 2z, 2x + 3y + 2z, -3x - y - z)$$

- i (0.1 pt) Write the matrix $A = M_{\phi}^{\mathcal{E},\mathcal{E}}$.
- ii (0.25 pt) Write the characteristic polynomial $p_{\phi}(T)$ where $T \in \mathbb{R}$, and provide the value of det(A).
- iii (0.5 pt) Find the eigenvalues and a basis \mathcal{B} of eigenvectors of ϕ . Show that \mathcal{B} is not an orthonormal basis.
- iv (0.15 pt) Find the eigenvalues of ϕ^{-1} .

Exercise 2. A system of linear equations

$$\Sigma:\begin{cases} x_1 - 2x_2 + x_4 &= -1\\ x_2 + 2x_3 - x_4 &= 1\\ x_1 - x_2 + 2x_3 &= \alpha\\ x_1 + 4x_3 - x_4 = 1 \end{cases}$$

is given where the unknowns $X = (x_1, x_2, x_3, x_4)$ and the parameter α are real numbers (in short notation $\Sigma : AX = b$).

- i (0.2 pt) Find the value of α so that a solution of Σ is (1,1,0,0)
- ii (0.6 pt) Find the solutions of the associated homogeneous system Σ_0 : AX = 0
- iii (0.2 pt) Write all the solutions of the system Σ for the α value found in the first request (i).

Exercise 3. The atoms of an ammonia molecule (NH_3) are found at certain moment to have, in a cartesian orthogonal reference system, the following coordinates:

$$N = (3, 0, 0)$$

$$H^{i} = (0, 0, 0)$$

$$H^{ii} = (4, 3, 0)$$

$$H^{iii} = (4, -2, -2)$$

resulting in a pyramid shape with N being at the peak and the three H on the corners.

- i (0.3 pt) Find the cartesian equation of the plane π which contains the three hydrogen atoms.
- ii (0.2 pt) Find the distance between the plane π and the N atom.
- iii (0.2 pt) Find the parametric equation of the line r passing through Hⁱⁱ and Hⁱⁱⁱ.
- iv (0.3) Find the volume of the parellelepiped with sides $(H^iH^{ii}, H^iH^{iii}, H^iN)$.

Exercise 4. Let $f : \mathbb{R}[X]_{\leq 2} \to \mathbb{R}[X]_{\leq 2}$ be the linear map defined in the basis $\mathcal{B} = \{1, X, X^2\}$ as:

$$f(a + bX + cX^{2}) = a - b + (2a - 2b)X + (a + b - 2c)X^{2}$$

Find:

- i (0.25 pt) the matrix $M_f^{\mathcal{B},\mathcal{B}}$ and $det(M_f^{\mathcal{B},\mathcal{B}})$;
- ii (0.25 pt) a basis for ker(f). Is f injective ?
- iii (0.25 pt) a basis for Im(f); Is f surjective ?
- iv (0.25 pt) the matrix of $g \circ f$ with respect to \mathcal{B} , for a g defined as:

$$g(a + bX + cX^{2}) = a + b + (a + b)X + (a - b + 2c)X^{2}$$

Exercise 5. In \mathbb{R}^3 let's consider the following basis $\mathcal{B} = \{b_1, b_2, b_3\}$:

$$\begin{cases} b_1 &= \frac{\sqrt{3}}{2}e_1 + \frac{1}{2}e_2\\ b_2 &= -\frac{1}{2}e_1 + \frac{\sqrt{3}}{2}e_2\\ b_3 &= ae_3 \end{cases}$$

where $a \in \mathbb{R}$ and where $\mathcal{E} = \{e_1, e_2, e_3\}$ is the canonical basis.

- i (0.2 pt) Write the matrix $R_a = M^{\mathcal{E},\mathcal{B}}$ and find $det(M^{\mathcal{E},\mathcal{B}})$;
- ii (0.4) For which a does R_a belongs to the group SO(3) ?
- iii (0.15) For the value of a as in the previous point, write R_a^{-1}
- iv (0.25) Calculate, for a as in (ii), the length of the vector $v = 2e_1 e_2 + 4e_3$ in the basis \mathcal{E} . Write then v and ||v|| in the basis \mathcal{B} .