

UNG-FN, Študijsko leto 2019/20

1. letnik - 1. stopnja Fizika in astrofizika

Linear Algebra written exam 2/7/2020
Lecturers: L. Giacomazzi, Z. Benher.

Questions and exercise 1 are recommended. [30 pt $=10$.]
Q. 1. [2 pt $]$ Say what kind of conic is represented by the points (x, y) of the affine plane such that

$$
x^{2}+y^{2}-4 x-6 y=-4
$$

Q. 2. $[3 \mathrm{pt}]$ In the affine space \mathbb{A}^{3} a point $A=(3,-1,2)$ is given. Provide the distance between A and the plane π : $\quad x+y+z=5$
Q. 3. [2 pt] A bilinear form $g: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ is given of which the matrix w.r.t the canonical basis is

$$
G=\left(\begin{array}{cc}
2 & 0 \\
0 & -2
\end{array}\right)
$$

Say if g is a scalar product. Justify your answer.

Exercise 1. Let V be a vector space and $\mathcal{B}=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ a basis of V. An endomorphism $\phi: V \rightarrow V$ is such that:

$$
\phi\left(v_{1}\right)=v_{1}+3 v_{2}, \quad \phi\left(v_{2}\right)=3 v_{1}-v_{2}, \quad \phi\left(v_{3}\right)=2 v_{3}+v_{4}, \text { and } \phi\left(v_{4}\right)=v_{3}+2 v_{4}
$$

i) $[2 \mathrm{pt}]$ Write the matrix $A=M_{\phi}^{\mathcal{B}, \mathcal{B}}$
ii) [5 pt] Write the characteristic polynomial $p_{\phi}(\lambda)$
iii) [5 pt] Find the eigenvalues λ_{j} and eigenvectors ξ_{j} of ϕ.
iv) [2 pt] Write the eigenvectors and the eigenvalues of $\phi^{2}=\phi \circ \phi$

Exercise 2. Given the linear application $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ which with respect to canonical basis \mathcal{E}_{3} is defined as:

$$
f\left(x e_{1}+y e_{2}+z e_{3}\right)=(x-2 z) e_{1}+(2 x-y-5 z) e_{2}+3(y+z) e_{3}
$$

i) $[2 \mathrm{pt}]$ Write the matrix $A=M_{f}^{\mathcal{E}_{3}, \mathcal{E}_{3}}$
ii) [3 pt] Find the dimension and a basis of $\operatorname{Im}(f)$
iii) [4 pt] find the dimension and a basis of $\operatorname{ker}(f)^{\perp}$.
iv) [4 pt] Write the matrix $A^{\prime}=M_{f}^{\mathcal{B}, \mathcal{B}}$ where $\mathcal{B}=\left\{v_{1}, v_{2}, v_{3}\right\}$ and $v_{1}=$ $e_{1}+e_{2}, v_{2}=e_{2}-e_{3}, v_{3}=e_{1}+e_{2}+e_{3}$.

Exercise 3. [12 pt] Given the system of linear equations:

$$
\Sigma_{t}:\left\{\begin{array}{cc}
2 x_{1}+x_{3} & =5 \\
-t x_{1}+(t-1) x_{2}+x_{3} & =1 \\
(t-1) x_{2}+t x_{3} & =1
\end{array}\right.
$$

determine the solutions of Σ_{t} for t varying in the real numbers \mathbb{R}.

