

UNG-FN, Študijsko leto 2019/20

1. letnik - 1. stopnja Fizika in astrofizika

Linear Algebra written exam
8/9/2020
Lecturers: L. Giacomazzi, Z. Benher.

Questions and exercise 1 are recommended. [30 pt $=10$.]
Q. 1. $[3 \mathrm{pt}]$ A linear map $t: \mathbb{R}^{2,2} \rightarrow \mathbb{R}^{2,2}$ is defined as:

$$
t\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right)
$$

Find the matrix $T=M_{t}^{\mathcal{B}, \mathcal{B}}$ representing t with respect to the basis

$$
\mathcal{B}=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right\}
$$

Q. 2. $[3 \mathrm{pt}]$ In the real affine space \mathbb{A}^{3} find the cartesian equation of the line passing through points $P=(1,-1,1)$ and $Q=(0,2-1)$.
Q. 3. $[3 \mathrm{pt}]$ A bilinear symmetric form $g: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ is given of which the matrix w.r.t the canonical basis is

$$
G=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)
$$

If $W=\left\{v \in \mathbb{R}^{2} \mid v=\lambda(1,2) \quad \lambda \in \mathbb{R}\right\}$ find the g-orthogonal subspace W^{\perp} of W.

Exercise 1. Let V be a real vector space and $\mathcal{B}=\left\{v_{1}, v_{2}, v_{3}\right\}$ a basis of V. An endomorphism $\phi: V \rightarrow V$ is such that:

$$
\phi\left(v_{1}\right)=v_{1}+v_{2}-v_{3}, \quad \phi\left(v_{2}\right)=-v_{1}+3 v_{2}-v_{3}, \quad \phi\left(v_{3}\right)=-v_{1}+v_{2}+v_{3}
$$ and

i) $[2 \mathrm{pt}]$ Write the matrix $A=M_{\phi}^{\mathcal{B}, \mathcal{B}}$
ii) [5 pt] Write the characteristic polynomial $p_{\phi}(\lambda)$
iii) [5 pt] Find the eigenvalues λ_{j} and eigenvectors ξ_{j} of ϕ.
iv) [2 pt] Write the matrix of $\phi^{2}=\phi \circ \phi$ with respect to \mathcal{B} and find the eigenvalues of ϕ^{2}.

Exercise 2. Given the linear application $f: V \rightarrow U$, where V, U are real vector spaces with basis $\mathcal{B}=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and $\mathcal{C}=\left\{w_{1}, w_{2}, w_{3}\right\}$, respectively, and f is defined as:

$$
\begin{gathered}
f\left(v_{1}\right)=w_{1}-w_{2} \quad f\left(v_{2}\right)=2 w_{2}-6 w_{3} \\
f\left(v_{3}\right)=-2 w_{1}+2 w_{2} \quad f\left(v_{4}\right)=w_{2}-3 w_{3}
\end{gathered}
$$

i) $[2 \mathrm{pt}]$ Write the matrix $A=M_{f}^{\mathcal{C}, \mathcal{B}}$
ii) [4 pt] Find the dimension and a basis of $\operatorname{ker}(f)$
iii) [4 pt] Find the dimension and a basis of $i m(f)$.
iv) [3 pt] Say if the vector $w_{1}+w_{2}+w_{3}$ belongs to $i m(f)$?

Exercise 3. [8 pt] Given the system of linear equations

$$
\Sigma_{t}:\left\{\begin{array}{cl}
(t-1) x_{1}+2 x_{2}-t x_{3} & =0 \\
2 x_{1}-x_{3} & =0 \\
-(t+1) x_{1}-t x_{2}+(t+2) x_{3} & =0
\end{array}\right.
$$

where t is a real number $t \in \mathbb{R}$. Let S_{t} be the set of solutions of the system Σ_{t}. Find the dimension of the subspace S_{t} as the parameter t varies in the real numbers \mathbb{R}.

