Linear Algebra, lesson 4

L. Giacomazzi, ac. year 2020

Linear transformations

- We need mathematical tools to describe the transformation of vectors from a reference system to another one:

Linear transformations

- We need tools to describe, for example, change of figures like rotations, rescaling:

Linear maps and matrices

- Consider $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ defined as
$f\left(x_{1}, x_{2}\right)=\left(a x_{1}+b x_{2}, c x_{1}+d x_{2}\right)$ with a, b, c, d real numbers
- Using the row by column product one could write it as:

$$
f\binom{x_{1}}{x_{2}}=\binom{a x_{1}+b x_{2}}{c x_{1}+d x_{2}}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x_{1}}{x_{2}}
$$

- In short notation $f(X)=A X$, where X is a vector of \mathbf{R}^{2} and A is an element of $\mathbf{R}^{2,2}$

Linear maps and matrices

- We denote with $\mathbf{R}^{m, n}$ the collection of all $m \times n$ matrices A whose entries are real numbers:
[See Chapt 4.1 Landi's book]

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots . & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots & \ldots \\
a_{m 1} & \ldots & \ldots & a_{m n}
\end{array}\right)
$$

- $\mathbf{R}^{m, n}$ is a real vector space with dim $m n$:
- $A+B=\left(a_{i j}+b_{i j}\right)$ and $\lambda A=\left(\lambda a_{i j}\right)$

Linear maps and matrices

- Consider $f: \mathbf{R}^{\mathbf{2}} \rightarrow \mathbf{R}^{2}$ defined as
$f\left(x_{1}, x_{2}\right)=\left(a x_{1}+b x_{2}, c x_{1}+d x_{2}\right)$ with a, b, c, d real numbers
- Using the row by column product one could write it as:

$$
f\binom{x_{1}}{x_{2}}=\binom{a x_{1}+b x_{2}}{c x_{1}+d x_{2}}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x_{1}}{x_{2}}
$$

- In short notation $f(X)=A X$, where X is a vector of \mathbf{R}^{2} and A is an element of $\mathbf{R}^{2,2}$

Linear maps and matrices

Consider $X=t\left(X_{1}, X_{2}\right)$ and $Y=t\left(y_{1}, y_{2}\right)$ then it is clear that $f(X+Y)=f(X)+f(Y)$:
$f\binom{x_{1}+y_{1}}{x_{2}+y_{2}}=\binom{a\left(x_{1}+y_{1}\right)+b\left(x_{2}+y_{2}\right)}{c\left(x_{1}+y_{1}\right)+d\left(x_{2}+y_{2}\right)}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{x_{1}}{x_{2}}+\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{y_{1}}{y_{2}}$
Also for any real number λ it is $f(\lambda X)=\lambda f(X)$
Such a f is a linear map or linear transformation or linear application

Linear maps and matrices

Example. Consider $f: \mathbf{R}^{\mathbf{3}} \rightarrow \mathbf{R}^{\mathbf{2}}$ defined as

$$
f\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\binom{x_{1}+2 x_{2}+x_{3}}{x_{1}-x_{2}}=\left(\begin{array}{ccc}
1 & 2 & 1 \\
1 & -1 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
$$

$f=A X$ is a linear map, with A belonging to $R^{2,3}$

Linear maps and matrices

Consider a matrix $A=\left(a_{i j}\right)$ of $\mathbf{R}^{m n}$ we can define a linear map $f_{A}: \mathbf{V} \rightarrow \mathbf{W}$, with $B=\left\{v_{1}, \ldots, v_{n}\right\}$ basis of V and $C=\left\{W_{1}\right.$, $\left.\ldots, W_{m}\right\}$ basis of W , then taken a vector v in V with $v=x_{1} v_{1}+\ldots .+x_{n} v_{n}$ we have $f_{A}(\boldsymbol{v})=\boldsymbol{y} \boldsymbol{\epsilon} \mathbf{W}$ i.e.
$f_{A}(v)=y_{1} w_{1}+\ldots y_{m} w_{m}=[A v]_{C}$
Where:

$$
f_{A}(v)=\left(\begin{array}{l}
y_{1} \\
\ldots \\
\ldots \\
y_{m}
\end{array}\right)_{C}=\left(\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots & \ldots \\
a_{m 1} & \ldots & \ldots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
\ldots \\
\ldots \\
x_{n}
\end{array}\right)_{B}\right)_{C}
$$

Linear maps and matrices

Consider a linear map $f: \mathbf{V} \rightarrow \mathbf{W}$ we can define a matrix $M_{f}^{C, B}$ of $\mathbf{R}^{m n}$ with $B=\left\{v_{p}, \ldots, v_{n}\right\}$ basis of V and $C=\left\{w_{1}, \ldots, w_{m}\right\}$ basis of W. Taken a vector v in V with $v=x_{1} v_{1}+\ldots .+x_{n} v_{n}$ we have $\boldsymbol{y}=f(v)=x_{1} f\left(v_{1}\right)+\ldots+x_{n} f\left(v_{n}\right) \in \mathbf{W}$. Now $f\left(v_{j}\right)=a_{1 j} w_{1}+\ldots a_{m j} w_{m}$ can be thought as the column of a matrix $M_{f}^{C, B=}=\left[f\left(v_{1}\right), \ldots, f\left(v_{n}\right)\right]_{c}$ so that:

$$
\left(\begin{array}{c}
y_{1} \\
\ldots \\
\ldots \\
y_{m}
\end{array}\right)_{C}=\left(\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots . & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots & \ldots \\
a_{m 1} & \ldots & \ldots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
\ldots \\
\ldots \\
x_{n}
\end{array}\right)_{B}\right)_{C}
$$

Linear maps and matrices

Consider a linear map $f: \mathbf{V} \rightarrow \mathbf{W}$ we can define a matrix $A=M_{f}^{C, B}$ of $\mathbf{R}^{m n}$ with $B=\left\{v_{1}, \ldots, v_{n}\right\}$ basis of V and $C=\left\{w_{1}, \ldots, w_{m}\right\}$ basis of W. It turns out [See Landi's book, chapt. 7, prop. 7.1.13] that $f_{A}=f$ and also for A in $\mathrm{R}^{m n}$ by setting $f=\boldsymbol{f}_{A}$ it is $\boldsymbol{M}_{f}^{C, B}=A$.

Hence it is clear that a linear map corresponds to a matrix and viceversa.

Linear maps and matrices

- Example: id : $V_{B} \rightarrow V_{E}$, id: $v \rightarrow i d(v)=v$, with basis $B=\left\{v_{1}, \ldots, v_{n}\right\}$ and $E=\left\{e_{1}, \ldots, e_{n}\right\}$ then it is
- $M_{i d}{ }^{E, B}=\left[i d\left(v_{1}\right), \ldots ., i d\left(v_{n}\right)\right]_{E}=\left[v_{p}, \ldots, v_{n}\right]_{E}$
- $M_{i d}^{B, E}=\left[i d\left(e_{1}\right), \ldots, i d\left(e_{n}\right)\right]_{B}=\left[e_{1}, \ldots, e_{n}\right]_{B}$
- $e_{1}=a_{11} v_{1}+\ldots a_{n 1} v_{n}$
- $e_{k}=a_{1 k} v_{1}+\ldots a_{n k} v_{n}$

Linear maps [Chapt. 7.3]

- Kernel of a linear map $f: V \rightarrow \boldsymbol{W}$:
$\operatorname{Ker}(f)=\left\{v \operatorname{in} V \mid f(v)=0_{w}\right\}$
v, w are in the kernel, then $f(a v+b w)=a f(v)+b f(w)=0$
- Image or range of a linear map
$\operatorname{Im}(f)=\{\boldsymbol{w}$ in $W \mid$ there is v in V with $\boldsymbol{w}=f(v)\}$
- $\operatorname{Ker}(f)$ and $\operatorname{Im}(f)$ are vector subspaces of V and W
- f is injective if and only if $\operatorname{Ker}(f)=\left\{0_{w}\right\}$
- f is surjective if and only if $f\left(v_{1}\right), \ldots, f\left(v_{n}\right)$ generate $\underset{13 / 13}{W}$

