Linear Algebra, lesson 4

L. Giacomazzi, ac. year 2020

Linear transformations

 We need mathematical tools to describe the transformation of vectors from a reference system to another one:

Linear transformations

• We need tools to describe, for example, change of figures like rotations, rescaling:

• Consider $f: \mathbb{R}^2 \to \mathbb{R}^2$ defined as

 $f(x_1, x_2) = (ax_1 + bx_2, cx_1 + dx_2)$ with a, b, c, d real numbers

• Using the **row by column** product one could write it as:

$$f\begin{pmatrix}x_1\\x_2\end{pmatrix} = \begin{pmatrix}ax_1 + bx_2\\cx_1 + dx_2\end{pmatrix} = \begin{pmatrix}a & b\\c & d\end{pmatrix}\begin{pmatrix}x_1\\x_2\end{pmatrix}$$

• In short notation f(X)=AX, where X is a vector of \mathbb{R}^2 and A is an element of $\mathbb{R}^{2,2}$ 4/13

• We denote with **R**^{*m*,*n*} the collection of all *m*_{*x*}*n* matrices *A* whose entries are real numbers:

[See Chapt 4.1 Landi's book]

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & \dots & \dots & a_{mn} \end{pmatrix}$$

• **R**^{*m*,*n*} is a **real vector space** with dim *mn*:

•
$$A+B=(a_{ij}+b_{ij})$$
 and $\lambda A=(\lambda a_{ij})$

• Consider $f: \mathbb{R}^2 \to \mathbb{R}^2$ defined as

 $f(x_1, x_2) = (ax_1 + bx_2, cx_1 + dx_2)$ with a, b, c, d real numbers

• Using the **row by column** product one could write it as:

$$f\begin{pmatrix}x_1\\x_2\end{pmatrix} = \begin{pmatrix}ax_1 + bx_2\\cx_1 + dx_2\end{pmatrix} = \begin{pmatrix}a & b\\c & d\end{pmatrix}\begin{pmatrix}x_1\\x_2\end{pmatrix}$$

• In short notation f(X)=AX, where X is a vector of \mathbb{R}^2 and A is an element of $\mathbb{R}^{2,2}$ 6/13

Consider $X^{=t}(x_1, x_2)$ and $Y^{=t}(y_1, y_2)$ then it is clear that f(X+Y)=f(X)+f(Y):

$$f\begin{pmatrix}x_{1}+y_{1}\\x_{2}+y_{2}\end{pmatrix} = \begin{pmatrix}a(x_{1}+y_{1})+b(x_{2}+y_{2})\\c(x_{1}+y_{1})+d(x_{2}+y_{2})\end{pmatrix} = \begin{pmatrix}a & b\\c & d\end{pmatrix}\begin{pmatrix}x_{1}\\x_{2}\end{pmatrix} + \begin{pmatrix}a & b\\c & d\end{pmatrix}\begin{pmatrix}y_{1}\\y_{2}\end{pmatrix}$$

Also for any real number λ it is $f(\lambda X) = \lambda f(X)$

Such a *f* is a *linear map or linear transformation or linear application*

Example. Consider $f: \mathbb{R}^3 \to \mathbb{R}^2$ defined as

$$f\begin{pmatrix}x_{1}\\x_{2}\\x_{3}\end{pmatrix} = \begin{pmatrix}x_{1}+2x_{2}+x_{3}\\x_{1}-x_{2}\end{pmatrix} = \begin{pmatrix}1 & 2 & 1\\1 & -1 & 0\end{pmatrix}\begin{pmatrix}x_{1}\\x_{2}\\x_{3}\end{pmatrix}$$

f=AX is a linear map, with A belonging to $\mathbf{R}^{2,3}$

Consider a matrix $A=(a_{ij})$ of \mathbb{R}^{mn} we can define a linear map $f_A: \mathbb{V} \to \mathbb{W}$, with $B=\{v_1,...,v_n\}$ basis of \mathbb{V} and $C=\{w_1, ..., w_m\}$ basis of \mathbb{W} , then taken a vector v in \mathbb{V} with $v=x_1v_1+...+x_nv_n$ we have $f_A(v)=y \in \mathbb{W}$ i.e. $f_A(v)=y_1w_1+...y_mw_m=[Av]_c$ Where:

$$f_{A}(v) = \begin{pmatrix} y_{1} \\ \cdots \\ y_{m} \end{pmatrix}_{C} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{m1} & \cdots & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} x_{1} \\ \cdots \\ x_{n} \end{pmatrix}_{B} \Big|_{C}$$

Consider a linear map $f: \mathbf{V} \to \mathbf{W}$ we can define a matrix $M_f^{C,B}$ of \mathbf{R}^{mn} with $B=\{v_1,...,v_n\}$ basis of V and $C=\{w_1,...,w_m\}$ basis of W. Taken a vector v in V with $v=x_1v_1+...+x_nv_n$ we have $y=f(v)=x_1f(v_1)+....+x_nf(v_n) \in \mathbf{W}$. Now $f(v_j)=a_{ij}w_1+...a_{mj}w_m$ can be thought as the column of a matrix $M_f^{C,B}=[f(v_1),...,f(v_n)]_c$ so that:

$$\begin{pmatrix} y_1 \\ \cdots \\ y_m \end{pmatrix}_C = \begin{pmatrix} \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{m1} & \cdots & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ \cdots \\ x_n \end{pmatrix}_B \end{pmatrix}_C$$

10/13

Consider a linear map $f: \mathbf{V} \to \mathbf{W}$ we can define a matrix $A=M_f^{C,B}$ of \mathbf{R}^{mn} with $B=\{v_1,...,v_n\}$ basis of V and $C=\{w_1,...,w_m\}$ basis of W. It turns out [See Landi's book, chapt. 7, prop. 7.1.13] that $f_A=f$ and also for A in \mathbf{R}^{mn} by setting $f=f_A$ it is $M_f^{C,B}=A$.

Hence it is clear that a **linear map** corresponds to a **matrix** and viceversa.

- Example: $id : V_B \to V_E$, $id: v \to id(v)=v$, with basis $B=\{v_1,...,v_n\}$ and $E=\{e_1,...,e_n\}$ then it is
- $M_{id}^{E,B} = [id(v_1), \dots, id(v_n)]_E = [v_1, \dots, v_n]_E$
- $M_{id}^{B,E} = [id(e_1), ..., id(e_n)]_B = [e_1, ..., e_n]_B$
- $e_1 = a_{11}V_1 + \dots + a_{n1}V_n$
- $e_k = a_{1k} V_1 + \dots + a_{nk} V_n$

Linear maps [Chapt. 7.3]

• Kernel of a linear map $f: V \to W$:

Ker(f) = {*v* in *V* | *f(v)* = 0_w }

v,w are in the kernel, then f(av+bw)=af(v)+bf(w)=0

- Image or range of a linear map
 Im(f)={w in W | there is v in V with w =f(v) }
- *Ker(f)* and *Im(f)* are **vector subspaces** of V and W
- *f* is injective if and only if *Ker(f)={0_v}*
- f is surjective if and only if f(v₁),...,f(v_n) generate W