

UNG-FN, Študijsko leto 2018/19

1. letnik - 1. stopnja Fizika in astrofizika

Linear Algebra Exam (03/07/2019)

FirstName/Ime:
LastName/Priimek:
Tick the correct answer of the given questions.
Threshold for the correction of the exercises: 5

Question 1. Let $\Sigma: A x=\xi$, a sistem of linear equations where $A \in \mathbb{R}^{5,5}$ and $x, \xi \in \mathbb{R}^{5}$. If $r k(A)=2$ and $r k(A \mid \xi)=3$, from the Rouché Capelli's theorem it follows:
(A) There is an infinite number of solutions.
(B) The associated homogenous system $\Sigma_{0}: A x=0$ has no solutions.
(C) Σ is not solvable.

Question 2. The sign, $\operatorname{sgn}(\sigma)$ [or parity, also indicated as $(-1)^{\sigma}$], of the following permutation σ :

$$
\sigma=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)
$$

is:
(A) +1
(B) -1
(C) +i

Question 3. Let V, W be two \mathbb{R}-vector spaces. The kernel $\operatorname{ker}(f)$ (or null space) of a linear transformation $f: V \rightarrow W$ is defined as:
(A) $\operatorname{ker}(f)=\left\{v \in V \mid f(v)=0_{W}\right\}$
(B) $\operatorname{ker}(f)=\left\{(v, w) \in V \times W \mid f(v)-w=0_{W}\right\}$
(C) $\operatorname{ker}(f)=\left\{v \in W \mid f\left(0_{V}\right)=v\right\}$

Question 4. Let V, W be two real vector spaces. An isomorphism between V and W is:
(A) any linear transformation between V and W.
(B) a bijective linear map between V and W.
(C) any linear map associated to a real symmetric matrix.

Question 5. Given the matrix $A \in \mathbb{R}^{n, n}$, let's consider the eigenvalue problem:

$$
A u=\lambda u
$$

When could $u=0_{\mathbb{R}^{n}}$ be called an eigenvector ?
(A) Never, by definition
(B) Only for $\lambda=0$
(C) Only for $\lambda \neq 0$.

Question 6. The matrix (w.r.t. canonical basis) associated to the following quadratic form $Q(\mathbf{x})=x_{1}^{2}-4 x_{1} x_{2}+4 x_{1} x_{3}+3 x_{2}^{2}+3 x_{3}^{2}$ is:
(A) $\left(\begin{array}{ccc}1 & -2 & 2 \\ -2 & 3 & 0 \\ 2 & 0 & 3\end{array}\right)$
(B) $\left(\begin{array}{ccc}1 & -4 & 4 \\ -4 & 3 & 0 \\ 4 & 0 & 3\end{array}\right)$
(C) $\left(\begin{array}{ccc}1 & -1 / 4 & 1 / 4 \\ -1 / 4 & 3 & 0 \\ 1 / 4 & 0 & 3\end{array}\right)$

Question 7. Let $f: V \rightarrow W$ be a linear map between two finitely generated \mathbb{R}-vector spaces V, W. It holds that:
(A) $\operatorname{dim}(\operatorname{ker}(f))+\operatorname{dim}(\operatorname{Im}(f))=\operatorname{dim}(V)$
(B) $\operatorname{dim}(\operatorname{Im}(f))=\operatorname{dim}(W)$
(C) $\operatorname{dim}(\operatorname{ker}(f))-\operatorname{dim}(\operatorname{Im}(f))=\operatorname{dim}(V)$

Question 8. In the euclidean space E^{n} let's consider the orthogonal projection P_{W} onto a subspace W of E^{n}. Then it is:
(A) $\operatorname{Im}\left(P_{W}\right)=E^{n}$ and $\operatorname{ker}\left(P_{W}\right)=0_{W}$
(B) $\operatorname{Im}\left(P_{W}\right)=W$ and $\operatorname{ker}\left(P_{W}\right)=W^{\perp}$
(C) $\operatorname{Im}\left(P_{W}\right)=W^{\perp}$ and $\operatorname{ker}\left(P_{W}\right)=W$

Question 9. Which one, among the following equations, describes a plane in \mathbb{A}^{3} ?
(A) $y=x z+z_{0}$, where $z_{0} \in \mathbb{R}$
(B) $2 y=x$
(C) $x_{0} x+\left(y_{0}+y\right) z+z_{0} z=0$, where $x_{0}, y_{0}, z_{0} \in \mathbb{R}$

Question 10. Let $A=M^{\mathcal{B}, \mathcal{E}}$ be the matrix of the change of basis from the canonical basis \mathcal{E} to a basis $\mathcal{B}=\left\{b_{1}, \ldots, b_{n}\right\}$ of \mathbb{R}^{n} and $v=\sum_{i=1}^{n} \xi_{i} b_{i}=\sum_{i=1}^{n} x_{i} e_{i}$. Then the components of v [for short $x={ }^{t}\left(x_{1} \ldots x_{n}\right)$ and $\xi={ }^{t}\left(\xi_{1} \ldots \xi_{n}\right)$] do transform as:
(A) $x=A \xi$
(B) $\xi=A x$
(C) $b_{i}=A e_{i}, \forall i=1, \ldots, n$.

Question 11. Let v, w be two vectors of the Euclidean vector space E^{n}. Which one of the following inequalities is true for any v, w ?
(A) $|v \cdot w| \leq\|v\|\|w\|$
(B) $|v \cdot w| \leq 1$
(C) $\frac{v \cdot w}{\|v\|\|w\|} \leq-1$

Question 12. Let's consider the endomorphism $\phi \in \operatorname{End}\left(\mathbb{R}^{2}\right)$ which has

$$
M_{\phi}^{\mathcal{E}, \mathcal{E}}=\left(\begin{array}{ll}
4 & 1 \\
0 & 4
\end{array}\right)
$$

Is ϕ simple (i.e. M_{ϕ} is diagonalizable) ?
(A) Yes, as $\lambda=4$ is an eigenvalue with multiplicity 2 .
(B) No, as the geometric multiplicity of $\lambda=4$ does not match its algebraic multiplicity.
(C) No, because the eigenspace $V_{\lambda=4}$ has zero dimension $\operatorname{dim}\left(V_{\lambda=4}\right)=0$.

Question 13. Let A be a $n \times n$ square matrix, $A=\left(C_{1}, \ldots, C_{n}\right)$ where $\mathbb{R}^{n} \ni C_{j} \neq 0$, and $k \in \mathbb{R} \backslash\{0\}$. Which one of the following statements is true ?
(A) $\operatorname{det}\left(k C_{2}+\ldots .+k C_{n}, C_{2}, \ldots, C_{n}\right)=0$
(B) $\operatorname{det}\left(k C_{1}, k C_{2}, \ldots, k C_{n}\right)=n k \cdot \operatorname{det}\left(C_{1}, C_{2}, \ldots, C_{n}\right)$
(C) $\operatorname{det}\left(C_{1}, C_{2}, \ldots, k C_{n}\right)=\frac{n}{k} \cdot \operatorname{det}\left(C_{1}, C_{2}, \ldots, C_{n}\right)$

Question 14. Given the matrices $A=\left(\begin{array}{ccc}2 & 1 & 3 \\ 4 & -1 & 2\end{array}\right)$ and $B=\left(\begin{array}{cc}1 & 1 \\ 0 & -1 \\ 2 & 1\end{array}\right)$ the product $A B$ is:
(A) $\left(\begin{array}{ll}8 & 5 \\ 8 & 7\end{array}\right)$
(B) $\left(\begin{array}{ll}8 & 3 \\ 7 & 7\end{array}\right)$
(C) $\left(\begin{array}{ll}8 & 4 \\ 8 & 7\end{array}\right)$

Question 15. If $A, B \in G L(n)$ then:
(A) $(A B)^{-1}=A^{-1} B^{-1}$
(B) $A B-B A=0$
(C) $(A B)^{-1}=B^{-1} A^{-1}$

