UNG-FN, Študijsko leto 2018/19

1. letnik - 1. stopnja Fizika in astrofizika

Linear Algebra Exam (18/06/2019):
FirstName/Ime:
LastName/Priimek:
Enrollment number:
Tick the correct answer of the given questions.
Threshold for the correction of the exercises: 5

Question 1. Which one of the following sets is not formed by linearly independent vectors of \mathbb{R}^{4} ?
(A) $\left\{e_{1}+e_{2}, e_{3}+e_{4},-2 e_{1}-2 e_{2}, e_{3}\right\}$.
(B) $\left\{e_{1}+e_{2}, e_{1}+e_{3}, e_{1}-e_{4}, e_{1}\right\}$.
(C) $\left\{e_{1}+e_{2}, e_{1}+e_{3}, e_{1}-e_{4}, e_{2}\right\}$.
(D) $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$.

Question 2. Given the following two vectors in $\mathbb{R}^{3}, \mathbf{a}=2 i-j$ and $\mathbf{b}=3 j+k$, where i, j, k are the basis unit vectors of an orthogonal cartesian coordinate system, their cross product $\mathbf{a} \times \mathbf{b}$ is:
(A) $-i-j+6 k$
(B) $-i-2 j+6 k$
(C) $-2 i-j+6 k$

Question 3. Let ϕ be an endomorphism of \mathbb{R}^{3} and $A=M_{\phi}^{\mathcal{E}, \mathcal{E}}$ its matrix with respect to the canonical basis \mathcal{E}. Knowing that ϕ is simple and that there exists a matrix $P \in \operatorname{GL}(n)$ such that $A=P D P^{-1}$ where D is diagonal with λ_{j} diagonal elements, then:
(A) A^{2} is in general not diagonalisable.
(B) A^{2} is diagonalisable and an eigenvectors basis of A is still an eigenvectors basis of A^{2}.
(C) A^{2} is diagonalisable with the same eigenvalues λ_{j} found for the matrix A.

Question 4. Le W_{1}, W_{2} be two vector subspaces of \mathbb{R}^{3}. If $W_{1}=\mathcal{L}\left(e_{1}+e_{2}, e_{1}-e_{2}\right)$ and $W_{2}=\mathcal{L}\left(e_{1}+e_{2}+e_{3}\right)$ then:
(A) $W_{1} \cap W_{2}=e_{1}+e_{2}$
(B) $W_{1}+W_{2}=\mathcal{L}\left(e_{1}, e_{2}\right)$.
(C) The sum $W_{1}+W_{2}$ is direct and $W_{1} \oplus W_{2}=\mathbb{R}^{3}$

Question 5. The determinant of a square matrix $A=\left(a_{i, j}\right) \in \mathbb{R}^{n, n}$ can be written as:
(A) $\operatorname{det}(A)=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) a_{1, \sigma(1)} \cdots a_{n, \sigma(n)}$
(B) $\operatorname{det}(A)=a_{1, \sigma(1)} \cdots a_{n, \sigma(n)}$
(C) $\operatorname{det}(A)=a_{1,1} \cdots a_{n, n}$

Question 6. Which one of the following is not a property of the determinant of a square matrix ?
(A) A square matrix and its transpose have the same determinant.
(B) The determinant of a matrix does not change when adding, to the elements of a row, the elements of another row each one multiplied by a scalar λ.
(C) If two rows (or two columns) of a matrix are identical, then the determinant of the matrix is 1.

Question 7. The characteristic polynomial $p_{A}(T)$ of a matrix $A=M_{\phi}^{\mathcal{B}, \mathcal{B}}$ of $\phi \in \operatorname{End}(\mathrm{V})$ in the basis $\mathcal{B}=\left\{v_{1}, \ldots v_{n}\right\}$ is:
(A) $p_{A}(T)=(-1)^{n} T^{n}+(-1)^{n-1} \operatorname{tr}(A) T^{n-1}+\ldots+\operatorname{det}(A)$
(B) $p_{A}(T)=(-1)^{n} T^{n}+(-1)^{n-1} \operatorname{det}(A) T^{n-1}+\ldots+\operatorname{tr}(A)$
(C) $p_{A}(T)=(-1)^{n} T^{n}+(-1)^{n-1} \operatorname{tr}(A)^{n} T^{n-1}+\ldots+\operatorname{det}(A)^{n}$

Question 8. In the euclidean space E^{n} let's consider the orthogonal projection P_{W} onto a subspace W of E^{n}. Then it is:
(A) $P_{W}^{2}=I+P_{W}$
(B) $P_{W}^{2}=I-P_{W}$
(C) $P_{W}^{2}=P_{W}$

Question 9. In the affine plane, let's consider the line $r:\{(x, y) \mid a x+b y+c=0\}$. In which case does r represent a vector subspace:
(A) $c=-a$
(B) $c=0$
(C) $c=-a-b$

Question 10. The dimension of $\mathbb{C}^{2}=\mathbb{C} \times \mathbb{C}$, when considered as a real vector space, is:
(A) $\operatorname{dim}_{\mathbb{R}}\left(\mathbb{C}^{2}\right)=2$
(B) $\operatorname{dim}_{\mathbb{R}}\left(\mathbb{C}^{2}\right)=3$
(C) $\operatorname{dim}_{\mathbb{R}}\left(\mathbb{C}^{2}\right)=4$

Question 11. For which of the following pairs of vectors a, b does the equality holds in the triangle inequality $\|a+b\| \leq\|a\|+\|b\|$?
(A) $a=(1,2)$ and $b=(-2,-3)$
(B) $a=(-1,-2)$ and $b=(3,4)$
(C) $a=(2,3)$ and $b=\left(1, \frac{3}{2}\right)$

Question 12. Let's consider the following subset of the orthogonal matrices $O(n)$ in $\mathbb{R}^{n, n}$: $\mathrm{SO}(n)=\{A \in \mathrm{O}(n): \operatorname{det}(A)=1\}$. If $A, B \in \mathrm{SO}(n)$ then:
(A) As multiplication of matrices is not commutative, if $C=A B$ belongs to $\mathrm{SO}(n), D=B A$ may not belong to $\mathrm{SO}(n)$.
(B) The product $C=A B$ still belongs to $\mathrm{SO}(n)$.
(C) As $\mathrm{SO}(n)$ is a vector space any linear combination $C=\alpha A+\beta B$ still belongs to $\mathrm{SO}(n)$.

Question 13. Given the matrices $A=\left(\begin{array}{ccc}2 & 1 & 3 \\ 4 & -1 & 2\end{array}\right)$ and $B=\left(\begin{array}{cc}1 & 2 \\ 0 & -1 \\ 1 & 1\end{array}\right)$ the product $A B$ is:
(A) $\left(\begin{array}{cc}5 & 6 \\ 6 & 11\end{array}\right)$
(B) $\left(\begin{array}{cc}5 & 3 \\ 5 & 10\end{array}\right)$
(C) $\left(\begin{array}{cc}4 & 5 \\ 7 & 12\end{array}\right)$

Question 14. An endomorphism f of the polynomials vector space $V=\mathbb{R}[X]_{2}$ is defined as:

$$
f\left(a+b X+c X^{2}\right)=2 a-b+3 c X^{2} .
$$

The associated matrix with respect to the basis $\mathcal{B}=\left(1, X, X^{2}\right)$ is:
(A) $\left(\begin{array}{cc}2 & -1 \\ 0 & 3\end{array}\right)$
(B) $\left(\begin{array}{lll}2 & -1 & 3\end{array}\right)$
(C) $\left(\begin{array}{ccc}2 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3\end{array}\right)$

Question 15. A self-adjoint endomorphism ϕ of the euclidean space E^{n} has two distinct eigenvalues λ_{1}, λ_{2}, with $\lambda_{1} \neq \lambda_{2}$ and v_{1}, v_{2} eigenvectors, respectively. Then:
(A) $v_{1} \in\left[\mathcal{L}\left(v_{2}\right)\right]^{\perp}$
(B) $\left(\lambda_{1}-\lambda_{2}\right) v_{1} \cdot v_{2}=1$
(C) $\phi\left(v_{1}\right) \cdot v_{2}=\phi\left(\lambda_{1} v_{1}+\lambda_{2} v_{2}\right) \cdot\left(v_{1} / \lambda_{1}+v_{2} / \lambda_{2}\right)$

