

UNG-FN, Študijsko leto 2018/19

1. letnik - 1. stopnja Fizika in astrofizika

Linear Algebra Exam (02/09/2019)

FirstName/Ime:
LastName/Priimek:
Tick the correct answer of the given questions.
Threshold for the correction of the exercises: 5

Question 1. Which one of the following set is not a vector subspace of \mathbb{R}^{3} ?
(A) $\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid 3 x_{1}-2 x_{2}+x_{3}=0\right\}$
(B) $\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid 3 x_{1}+4 x_{3}=0, \quad 2 x_{1}-x_{2}+x_{3}=0\right\}$
(C) $\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid 3 x_{1}-4 x_{2}^{2}=0\right\}$

Question 2. The sign, $\operatorname{sgn}(\sigma)$ [or parity, also indicated as $(-1)^{\sigma}$], of the following permutation σ :

$$
\sigma=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right)
$$

is:
(A) +1
(B) -1
(C) +i

Question 3. Let V, W be two finitely generated real vector spaces. If f is an isomorphism between V and W, then:
(A) $V=W=\mathbb{R}^{n}$.
(B) $\operatorname{dim}(V)=\operatorname{dim}(W)$.
(C) $f(v)=f(w), \forall v, w \in V$.

Question 4. The determinant of a lower triangular matrix $A=\left(a_{i j}\right), \quad A \in \mathbb{R}^{n, n}$, is:
(A)

$$
\operatorname{det}(A)=\prod_{i=1}^{n} a_{i i}
$$

(B)

$$
\operatorname{det}(A)=\prod_{i=1}^{n} a_{n i}
$$

(C)

$$
\operatorname{det}(A)=\prod_{i=1}^{n} a_{i n}
$$

where $\prod_{i=1}^{n} a_{i i}=a_{11} \cdots a_{n n}$

Question 5. The trace of $D=A B$, where $A=\left(a_{i j}\right), \quad B=\left(b_{i j}\right) \quad A, B \in \mathbb{R}^{n, n}$ are two lower triangular matrices, is:
(A) $\operatorname{Tr}(D)=\sum_{i=1}^{n} a_{i i} b_{i i}$.
(B) $\operatorname{Tr}(D)=\sum_{i, j=1}^{n} a_{i j} b_{i j}$.
(B) $\operatorname{Tr}(D)=\operatorname{Tr}(A) \cdot \operatorname{Tr}(B)$.

Question 6. Given the matrices $F=\left(\begin{array}{ccc}2 & -1 & 3 \\ 4 & 1 & 2\end{array}\right)$ and $G=\left(\begin{array}{cc}1 & -1 \\ 0 & -1 \\ -2 & 1\end{array}\right)$ the product $F G$ is:
(A) $\left(\begin{array}{cc}-4 & 3 \\ 1 & -3\end{array}\right)$
(B) $\left(\begin{array}{cc}-4 & 2 \\ 0 & -3\end{array}\right)$
(C) $\left(\begin{array}{cc}-4 & 1 \\ 0 & -2\end{array}\right)$

Question 7. Let A be a $n \times n$ square matrix, $A=\left(C_{1}, \ldots, C_{n}\right)$ where $\operatorname{det}(A) \neq 0$, and $k \in$ $\mathbb{R} \backslash\{0\}$. Which one of the following statements is false ?
(A) $\operatorname{det}\left(k C_{1}+k C_{2}+\ldots .+k C_{n}, C_{2}, \ldots, C_{n}\right)=0$
(B) $\operatorname{det}\left(k C_{1}, k C_{2}, \ldots, k C_{n}\right)=k^{n} \cdot \operatorname{det}\left(C_{1}, C_{2}, \ldots ., C_{n}\right)$
(C) $\operatorname{det}\left(C_{1}, C_{2}, \ldots, C_{n}\right)=-\operatorname{det}\left(C_{2}, C_{1}, \ldots, C_{n}\right)$

Question 8. If $A, B \in G L(n)$ then:
(A) $\operatorname{det}\left[(A B)^{-1}\right]=[\operatorname{det}(B)]^{-1}[\operatorname{det}(A)]^{-1}$
(B) $\operatorname{det}(A B)=-\operatorname{det}(B A)$
(C) $\operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B)$

Question 9. Let V, W be two \mathbb{R}-vector spaces. If v_{1}, v_{2} belongs to the kernel $\operatorname{ker}(f)$ (or null space) of a linear transformation $f: V \rightarrow W$ then:
(A) $v_{1}+v_{2} \in \operatorname{ker}(f)$
(B) $\alpha f\left(v_{1}\right)+\beta f\left(v_{2}\right)$ is a non-zero vector of $\operatorname{Im}(f)$
(C) $\beta f\left(v_{1}\right)-\alpha f\left(v_{2}\right)$ is a non-zero vector of W

Question 10. Which one, among the following sets, describes a line in \mathbb{A}^{3} ?
(A) $\left\{(x, y, z) \mid y=x z+z_{0}\right.$, where $\left.z_{0} \in \mathbb{R}\right\}$
(B) $\{(x, y, z) \mid 2 y=x, \quad 2 y-z=1\}$
(C) $\left\{(x, y, z) \mid x_{0} x+\left(y_{0}+y\right) z+z_{0} z=0\right.$, where $\left.x_{0}, y_{0}, z_{0} \in \mathbb{R}\right\}$

Question 11. In the euclidean space E^{2} let's consider the orthogonal projection P_{W} onto the subspace $W=\{v \mid v=\lambda(1,0), \lambda \in \mathbb{R}\}$ of E^{2}. Then it is:
(A) P_{W} has eigenvalues 1 and 2 .
(B) $\operatorname{Im}\left(P_{W}\right)=\{v \mid v=\lambda(1,0)\}$ and $\operatorname{ker}\left(P_{W}\right)=\{v \mid v=\lambda(0,1)\}$
(C) $\operatorname{Im}\left(P_{W}\right)=\{v \mid v=\lambda(0,1)\}$ and $\operatorname{ker}\left(P_{W}\right)=\{v \mid v=\lambda(1,0)\}$

Question 12. Given the matrix A of a linear map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, let's consider the eigenvalue problem:

$$
A u=\lambda u .
$$

If $\lambda=0$ is an eigenvalue, then:
(A) the eigenvalue problem is ill-defined
(B) $u \in \operatorname{ker}(f)$
(C) $u \in \operatorname{Im}(f)$

Question 13. Let v, w be two vectors of the Euclidean vector space E^{n}. Which one of the following inequalities is false for any v, w ?
(A) $|v \cdot w| \leq\|v\|\|w\|$
(B) $|v \cdot w| \leq 1$
(C) $|v|+|w|<|v+w|$

Question 14. The matrix (w.r.t. canonical basis) associated to the following quadratic form $Q(\mathbf{x})=x_{1}^{2}-4 x_{2} x_{3}+6 x_{1} x_{3}+3 x_{2}^{2}+4 x_{3}^{2}$ is:
(A) $\left(\begin{array}{ccc}1 & 0 & 3 \\ 0 & 3 & -2 \\ 3 & -2 & 4\end{array}\right)$
(B) $\left(\begin{array}{ccc}1 & 0 & 6 \\ 0 & 3 & -4 \\ 6 & -4 & 4\end{array}\right)$
(C) $\left(\begin{array}{ccc}1 & 0 & 1 / 6 \\ 0 & 3 & -1 / 4 \\ 1 / 6 & -1 / 4 & 4\end{array}\right)$

Question 15. Given the following polynomial $p(x)=-2 x^{3}+x^{2}+2 x-1$, which one among the following numbers is a root (or a zero) of $p(x)$?
(A) 0
(B) -2
(C) $\frac{1}{2}$

