Lectures on Linear Algebra, Week 4. Multiple choice questions test.

Question 1. Let $\phi : V \to W$ be a linear map between finitely generated vector spaces V, W. If $dim(Im(\phi)) \leq dim(W) < dim(V)$ then:

- (A) ϕ could be surjective.
- (B) ϕ is injective.
- (C) ϕ could be an isomorphism.

Question 2. Let Σ : Ax = b, a sistem of linear equations where $A \in \mathbb{R}^{4,4}$ and $x, b \in \mathbb{R}^4$. If rk(A) = 3 and rk(A|b) = 4, from the Rouché Capelli's theorem it follows: (A) There are $\infty^{4-3} = \infty^1$ solutions.

(B) Σ is not solvable.

(C) The associated homogenous system Σ_0 : Ax = 0 has no solutions.

Question 3. The matrix (w.r.t. canonical basis) associated to the following quadratic form $Q(\mathbf{x}) = x_1^2 - 2x_1x_2 + 4x_1x_3 + 2x_2^2 + 3x_3^2$ is:

(A)
$$\begin{pmatrix} 1 & -1 & 2 \\ -1 & 2 & 0 \\ 2 & 0 & 3 \end{pmatrix}$$
 (B) $\begin{pmatrix} 1 & -2 & 4 \\ -2 & 2 & 0 \\ 4 & 0 & 3 \end{pmatrix}$ (C) $\begin{pmatrix} 1 & -1/2 & 1/4 \\ -1/2 & 2 & 0 \\ 1/4 & 0 & 3 \end{pmatrix}$

Question 4. Let v_1 , v_2 , v_3 vectors of \mathbb{R}^3 , then the volume of the parallelepiped with sides given by v_1 , v_2 , v_3 is:

(A) $\frac{1}{3!}det(v_1, v_2, v_3)$ (B) $|det(v_1, v_2, v_3)|$ (C) $|det(\frac{v_1}{||v_1||}, \frac{v_2}{||v_2||}, \frac{v_3}{||v_3||})|$

Question 5. The isotropic cone of the following symmetric bilinear form $b : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$, with $b((x_1, y_1), (x_2, y_2)) = 2x_1x_2 - 3y_1y_2$ is: (A) $I_b = (0, 0)$ (B) $I_b = \{(x, y) \in \mathbb{R}^2 | x = \sqrt{3/2}y\}$ (C) $I_b = \{(x, y) \in \mathbb{R}^2 | x = \sqrt{3/2}y\} \cup \{(x, y) \in \mathbb{R}^2 | x = -\sqrt{3/2}y\}$

Question 6. Let f a linear map between \mathbb{R}^n and itself, and A the associated matrix with respect to some basis \mathcal{B} , and A' to \mathcal{B}' . If H is the matrix of change of basis from \mathcal{B} to \mathcal{B}' , then which one of the following is true ? (A) $A = A'H^{-1}$ (B) $A = H^{-1}A'H$ (C) $A = H^{-1}A'H^{-1}$ **Question 7.** Let A be a $n \times n$ square matrix, $A = (C_1, ..., C_n)$ where $\mathbb{R}^n \ni C_j \neq 0$, and $k \in \mathbb{R} \setminus \{0\}$. Which one of the following statements is true ? (A) $det(C_1, C_2, ..., kC_1 + ... + kC_{n-1}) = 0$ (B) $det(kC_1, kC_2, ..., kC_n) = k \cdot det(C_1, C_2, ..., C_n)$ (C) $det(kC_1, C_2, ..., C_n) = \frac{1}{k!} \cdot det(C_1, C_2, ..., C_n)$

Question 8. Let g a bilinear map $g : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$, and A the associated matrix with respect to some basis \mathcal{B} , and A' to \mathcal{B}' . If H is the matrix of change of basis from \mathcal{B} to \mathcal{B}' , then which one of the following is true ?

(A) $A = {}^{t}HA'H^{-1}$ (B) $A = H^{-1}A'H$ (C) $A = {}^{t}HA'H$