Lectures on Linear Algebra, Week 4.
Multiple choice questions test.

Question 1. Let $\phi: V \rightarrow W$ be a linear map between finitely generated vector spaces V , W. If $\operatorname{dim}(\operatorname{Im}(\phi)) \leq \operatorname{dim}(W)<\operatorname{dim}(V)$ then:
(A) ϕ could be surjective.
(B) ϕ is injective.
(C) ϕ could be an isomorphism.

Question 2. Let $\Sigma: A x=b$, a sistem of linear equations where $A \in \mathbb{R}^{4,4}$ and $x, b \in \mathbb{R}^{4}$. If $r k(A)=3$ and $r k(A \mid b)=4$, from the Rouché Capelli's theorem it follows:
(A) There are $\infty^{4-3}=\infty^{1}$ solutions.
(B) Σ is not solvable.
(C) The associated homogenous system $\Sigma_{0}: A x=0$ has no solutions.

Question 3. The matrix (w.r.t. canonical basis) associated to the following quadratic form $Q(\mathbf{x})=x_{1}^{2}-2 x_{1} x_{2}+4 x_{1} x_{3}+2 x_{2}^{2}+3 x_{3}^{2}$ is:
(A) $\left(\begin{array}{ccc}1 & -1 & 2 \\ -1 & 2 & 0 \\ 2 & 0 & 3\end{array}\right)$
(B) $\left(\begin{array}{ccc}1 & -2 & 4 \\ -2 & 2 & 0 \\ 4 & 0 & 3\end{array}\right)$
(C) $\left(\begin{array}{ccc}1 & -1 / 2 & 1 / 4 \\ -1 / 2 & 2 & 0 \\ 1 / 4 & 0 & 3\end{array}\right)$

Question 4. Let v_{1}, v_{2}, v_{3} vectors of \mathbb{R}^{3}, then the volume of the parallelepiped with sides given by v_{1}, v_{2}, v_{3} is:
(A) $\frac{1}{3!} \operatorname{det}\left(v_{1}, v_{2}, v_{3}\right)$
(B) $\left|\operatorname{det}\left(v_{1}, v_{2}, v_{3}\right)\right|$
(C) $\left|\operatorname{det}\left(\frac{v_{1}}{\left\|v_{1}\right\|}, \frac{v_{2}}{\left\|v_{2}\right\|}, \frac{v_{3}}{\left\|v_{3}\right\|}\right)\right|$

Question 5. The isotropic cone of the following symmetric bilinear form $b: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$, with $b\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=2 x_{1} x_{2}-3 y_{1} y_{2}$ is:
(A) $I_{b}=(0,0)$
(B) $I_{b}=\left\{(x, y) \in \mathbb{R}^{2} \mid x=\sqrt{3 / 2} y\right\}$
(C) $I_{b}=\left\{(x, y) \in \mathbb{R}^{2} \mid x=\sqrt{3 / 2} y\right\} \cup\left\{(x, y) \in \mathbb{R}^{2} \mid x=-\sqrt{3 / 2} y\right\}$

Question 6. Let f a linear map between \mathbb{R}^{n} and itself, and A the associated matrix with respect to some basis \mathcal{B}, and A^{\prime} to \mathcal{B}^{\prime}. If H is the matrix of change of basis from \mathcal{B} to \mathcal{B}^{\prime}, then which one of the following is true?
(A) $A=A^{\prime} H^{-1}$
(B) $A=H^{-1} A^{\prime} H$
(C) $A=H^{-1} A^{\prime} H^{-1}$

Question 7. Let A be a $n \times n$ square matrix, $A=\left(C_{1}, \ldots, C_{n}\right)$ where $\mathbb{R}^{n} \ni C_{j} \neq 0$, and $k \in \mathbb{R} \backslash\{0\}$. Which one of the following statements is true ?
(A) $\operatorname{det}\left(C_{1}, C_{2}, \ldots, k C_{1}+\ldots .+k C_{n-1}\right)=0$
(B) $\operatorname{det}\left(k C_{1}, k C_{2}, \ldots, k C_{n}\right)=k \cdot \operatorname{det}\left(C_{1}, C_{2}, \ldots, C_{n}\right)$
(C) $\operatorname{det}\left(k C_{1}, C_{2}, \ldots, C_{n}\right)=\frac{1}{k!} \cdot \operatorname{det}\left(C_{1}, C_{2}, \ldots, C_{n}\right)$

Question 8. Let g a bilinear map $g: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$, and A the associated matrix with respect to some basis \mathcal{B}, and A^{\prime} to \mathcal{B}^{\prime}. If H is the matrix of change of basis from \mathcal{B} to \mathcal{B}^{\prime}, then which one of the following is true ?
(A) $A={ }^{t} H A^{\prime} H^{-1}$
(B) $A=H^{-1} A^{\prime} H$
(C) $A={ }^{t} H A^{\prime} H$

